Journal of Mathematical Research with Applications Mar., 2014, Vol. 34, No. 2, pp. 249–252 DOI:10.3770/j.issn:2095-2651.2014.02.015 Http://jmre.dlut.edu.cn

On Vasantha Kandasamy's Problem

Hanbin ZHANG, Shenglin ZHOU*

Department of Mathematics, South China University of Technology, Guangdong 510640, P. R. China

Abstract In this paper, we solve the problem proposed by Vasantha Kandasamy about the torsion-free non-abelian groups.

Keywords essential group; torsion-free non-abelian group.

MR(2010) Subject Classification 20D25; 20F99; 20E34

1. Introduction

In 1995, Vasantha Kandasamy [1] introduced the definition of the essential group which is defined as follows:

Definition 1.1 ([1]) Let G be a group and H any subgroup of group G. If for every subgroup K of G we have $H \cap K = \{e\}$, then we say H is an essential subgroup of G. A group G is called an essential group if every subgroup H of G is an essential subgroup.

Definition 1.2 ([1]) Let G be a group, and H a normal subgroup of G. If for every normal subgroup K of G we have $H \cap K = \{e\}$, then H is said to be a strongly essential subgroup of G. A group G is called a strongly essential group if every normal subgroup H of G is a strongly essential subgroup.

Definition 1.3 ([1]) Let G be a group, and H a normal subgroup of G. If for every subgroup K of G we have $H \cap K = \{e\}$, then we say H is a weakly essential subgroup of G. A group G is called a weakly essential group if any normal subgroup H of G is a weakly essential subgroup.

In [1], Vasantha Kandasamy discussed the essentiality of the symmetric group S_n and proved the following results:

- (i) $S_n(n > 3)$ is not an essential group;
- (ii) $S_n(n > 3)$ is not a weakly essential group;
- (iii) $S_n (n \neq 4)$ is a strongly essential group.

In particular, S_3 is an essential group, weakly essential and strongly essential group.

Example 1.1 (i) If n is a prime, then D_{2n} is an essential group, weakly essential group and strongly essential group;

Received December 2, 2012; Accepted May 17, 2013

Supported by the National Natural Science Foundation of China (Grant No. 11071081).

* Corresponding author

E-mail address: slzhou@scut.edu.cn (Shenglin ZHOU)

(ii) If n is not a prime, then D_{2n} is not an essential group, weakly essential group and strongly essential group.

Proof Let $G = D_{2n} = \langle a, b \mid a^n = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle$.

(i) If n = p is a prime, then D_{2p} has only one subgroup Z_p of order p and p subgroups of order 2, and Z_p is the unique nontrivial normal subgroup of D_{2p} . It follows that D_{2p} is an essential group, weakly essential group and strongly essential group.

(ii) If n = uv is not a prime, where u and v are positive proper divisors of n. Let $H = \langle a^v \rangle$. Then by the fact that H is a characteristic subgroup of $\langle a \rangle$ and $\langle a \rangle \leq G$, we have $H \leq G$. From $H \cap \langle a \rangle = H \neq 1$, we know that G is neither a strongly essential group, nor essential or weakly essential. \Box

Vasantha Kandasamy also proposed the following Problem:

Problem 1.1 Is every torsion-free non-abelian group:

- (i) an essential group?
- (ii) a weakly essential group?
- (iii) a strongly essential group?

Recall that a group is said to be torsion-free if apart from the identity all its elements have infinite order [2]. In this paper, we will answer the above problem on the torsion-free non-abelian group.

2. On Vasantha Kandasamy's problem

In this section, we will answer the problem proposed by Vasantha Kandasamy.

The answer of the problem is negative, so we will give a counter-example here. One important kind of non-abelian group is the linear group, such as $SL(n, \mathbb{C})$. We consider the $n \times n$ upper triangular matrices:

$\begin{pmatrix} 1 \end{pmatrix}$	a_{12}	a_{13}		$a_{1,n-2}$	$a_{1,n-1}$	$a_{1,n}$	
0	1	a_{23}		$a_{2,n-2}$	$a_{2,n-1}$	$a_{2,n}$	
0	0	1		$a_{3,n-2}$	$a_{3,n-1}$	$a_{3,n}$	
÷	:	÷	·	÷	•	÷	.
0	0	0		1	$a_{n-2,n-1}$	$a_{n-2,n}$	
0	0	0		0	1	$a_{n-1,n}$	
0	0	0		0	0	1)

In $SL(n, \mathbb{C})$, all upper triangular matrices and the identity matrix E form a group G under the matrix multiplication. It is clear that G is non-abelian. We first prove that G is a torsion-free group.

Proposition 2.1 G is a torsion-free group.

Proof We assume that there exists a non-trivial element L_1 of finite order. Since the eigenvalue

of every matrix in G is 1, the diagonal elements of the Jordan classical form J_1 of L_1 are all 1, and there exists P such that $P^{-1}L_1P = J_1$. Because the order of L_1 is finite, say m, we have $L_1^m = E$, and $J_1^m = (P^{-1}L_1P)^m = P^{-1}L_1^mP = E$. But J_1 satisfies $J_1^m = E$ if and only if $J_1 = E$. It follows that $L_1 = E$, which contradicts the fact that L_1 is a non-trivial element of G. \Box

Since the essential group is related to the subgroup and normal subgroup, we need to discuss the subgroups and normal subgroups of the torsion-free non-abelian group G which we introduced above.

Consider the set $H_{\mathbb{C}}$ of $n \times n$ matrices P with the following form:

$$\left(\begin{array}{cccccc} 1 & 0 & \dots & 0 & a \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{array}\right), \quad a \in \mathbb{C}.$$

It is obvious that the product of any two elements in $H_{\mathbb{C}}$ is also contained in $H_{\mathbb{C}}$, and for $P \in H_{\mathbb{C}}$, $P^{-1} \in H_{\mathbb{C}}$, so that $H_{\mathbb{C}} \leq G$.

Proposition 2.2 $H_{\mathbb{C}}$ is a subgroup of Z(G).

Proof Let $P \in H_{\mathbb{C}}$ and $L \in G$ be defined as follows:

$$P = \begin{pmatrix} 1 & 0 & \dots & 0 & a \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = E + \begin{pmatrix} 0 & 0 & \dots & 0 & a \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = E + P_1,$$

$$L = \begin{pmatrix} 1 & l_{12} & \dots & l_{1,n-1} & l_{1,n} \\ 0 & 1 & \dots & l_{2,n-1} & l_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & l_{n-1,n} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = E + \begin{pmatrix} 0 & l_{12} & \dots & l_{1,n-1} & l_{1,n} \\ 0 & 0 & \dots & l_{2,n-1} & l_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = E + L_1.$$

We have

$$PL = (E + P_1)(E + L_1) = E + P_1 + L_1 + P_1L_1,$$

where

$$P_1L_1 = \begin{pmatrix} 0 & 0 & \dots & 0 & a \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & l_{12} & \dots & l_{1,n-1} & l_{1,n} \\ 0 & 0 & \dots & l_{2,n-1} & l_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & l_{n-1,n} \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} = 0 = L_1P_1.$$

It follows that

$$LP = (E + L_1)(E + P_1) = E + P_1 + L_1 = PL_1$$

Therefore, $H_{\mathbb{C}} \leq Z(G)$. \Box

Now let $H_{\mathbb{R}}$ be the set of the following matrices

$$\left(\begin{array}{cccccc} 1 & 0 & \dots & 0 & x \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{array}\right),$$

where $x \in \mathbb{R}$. Clearly, $H_{\mathbb{R}} \leq H_{\mathbb{C}}$, and $H_{\mathbb{R}} \leq G$, $H_{\mathbb{C}} \leq G$. Since $H_{\mathbb{R}} \cap H_{\mathbb{C}} = H_{\mathbb{R}} \neq \{e\}$, we see that $H_{\mathbb{R}}$ is not the strongly essential subgroup of G. Hence G is not a strongly essential group, so it is neither an essential group, nor a weakly essential group.

Hence, we have constructed a counter-example, and give the negative answer to Problem 1.1 proposed by Vasantha Kandasamy. This yields

Theorem 2.1 Not any torsion-free non-abelian group is

- (1) an essential group;
- (2) a weakly essential group;
- (3) a strongly essential group.

Acknowledgements The authors sincerely thank the anonymous referees for their very helpful suggestions and comments which led to the improvement of this article.

References

- W. B. VASANTHA KANDASAMY. Essential subgroups of group. J. Math. Res. Exposition, 1995, 15(3): 350–352.
- [2] D. ROBINSON. A Course in the Theory of Groups. Springer-Verlag, New York-Berlin, 1982.