On a Generalization of Semicommutative Rings

Cuizhen DU ${ }^{1, *}$, Long WANG ${ }^{2}$, Junchao WEI ${ }^{3}$
1. School of Mathematical Sciences, Huaibei Normal University, Anhui 235000, P. R. China;
2. Department of Mathematics, Southeast University, Jiangsu 210096, P. R. China;
3. School of Mathematical Sciences, Yangzhou University, Jiangsu 225002, P. R. China

Abstract

In this paper, a generalization of the class of semicommutative rings is investigated. A ring R is called left GWZI if for any $a \in R, l(a)$ is a GW-ideal of R. We prove that a ring R is left GWZI if and only if $S_{3}(R)$ is left GWZI if and only if $V_{n}(R)$ is left GWZI for any $n \geq 2$.

Keywords semicommutative rings; GWZI rings; trivial extension.
MR(2010) Subject Classification 13C99; 16D80; 16U80

1. Introduction

All rings considered in this paper are associated with identity, and all modules are unital. The symbols $N(R), E(R)$ stand respectively for the set of all nilpotent elements, the set of all idempotent elements of R. For any nonempty subset X of $R, r(X)=r_{R}(X)$ and $l(X)=l_{R}(X)$ denote the set of right annihilators of X and the set of left annihilators of X in R, respectively. Especially, if $X=a$, we write $r(X)=r(a)$ and $l(X)=l(a)$.

According to Cohn [1], a ring R is called reversible if $a b=0$ implies $b a=0$ for $a, b \in R$, and R is said to be semicommutative [2] or ZI [3] if $a b=0$ implies $a R b=0$ for $a, b \in R$. Note that R is a semicommutative ring if and only if $l(a)$ is an ideal of R for any $a \in R$ by [4, Lemma 1.2]. Following Zhou [5], a left ideal L of R is called a generalized weak ideal (simply, GW-ideal) if for any $a \in L$, there exists a positive integer $n \geq 1$ such that $a^{n} R \subseteq L$. Clearly, ideals are GW-ideals, but the converse is not true, in general, by Zhou [5, Example 1.2]. A ring R is called reduced if it has no nonzero nilpotent elements. In this paper, we will define a left GWZI ring which is a generalization of semicommutative rings. For several years, the applications of semicommutative rings have been studied by many authors. In [6], Kim and Lee showed that if R is a reduced ring, then

$$
S_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}
$$

[^0]is a semicommutative ring. But
\[

S_{n}(R)=\left\{\left.\left($$
\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}
$$\right) \right\rvert\, a, a_{12}, ···, a_{n-1, n} \in R\right\}
\]

may not be semicommutative for $n \geqslant 4$. In [7], the authors introduced a class of generalized semicommutative rings. A rings R is said to be weakly semicommutative ring, if for any $a, b \in$ $R, a b=0$ implies arb is a nilpotent element for any $r \in R$. They show that R is weakly semicommutative if and only if for any n, the $n \times n$ upper triangular matrix ring

$$
T_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right) \right\rvert\, a_{11}, a_{12}, a_{13}, \ldots, a_{n n} \in R\right\}
$$

is a weakly semicommutative ring by [7, Example 2.1]. In this paper, we show that a ring R is left GWZI if and only if $S_{3}(R)$ is left GWZI if and only if $V_{n}(R)$ is left GWZI for any $n \geq 2$.

2. Main results

We denote $N_{2}(R)=\left\{x \in R \mid x^{2}=0\right\}$, and suppose that $N(R) \neq 0$ for a given ring R. Now, we have the following characterization of weakly semicommutative rings.

Proposition 2.1 The following conditions are equivalent for a ring R :
(1) For any $0 \neq a \in N(R)$, there exists a positive integer n such that $a^{n} \neq 0$ and $a^{n} R \subseteq$ $N(R)$;
(2) $r_{1} a r_{2} \in N(R)$ for any $0 \neq a \in N_{2}(R)$ and $r_{1}, r_{2} \in R$;
(3) $\operatorname{ar} \in N(R)$ for any $0 \neq a \in N_{2}(R)$ and $r \in R$;
(4) R is weakly semicommutative.

Proof $(1) \Rightarrow(2)$. Suppose $a^{2}=0$ and $a \neq 0$. By the hypothesis, $a r_{1} r_{2} \in N(R)$ for any $r_{1}, r_{2} \in R$. Then there exists $k \geq 2$ such that $\left(r_{2} a r_{1}\right)^{k}=r_{2}\left(a r_{1} r_{2}\right)^{k-1} a r_{1}=0$, that is $r_{2} a r_{1} \in N(R)$.
$(2) \Rightarrow(3)$. It is clear.
$(3) \Rightarrow(1)$. For any $0 \neq a \in N(R)$, there exists a positive integer n such that $a^{n} \neq 0$ and $a^{n+1}=0$. Clearly, $a^{n} \in N_{2}(R)$ and $a^{n} R \subseteq N(R)$ by the hypothesis.
$(3) \Rightarrow(4)$. Suppose that $a b=0$ for any $a, b \in R$. If $b a=0$, then it is easy to get $(\operatorname{arb})^{2}=0$. Now, let $b a \neq 0$. Then we have $0 \neq b a \in N_{2}(R)$ and $b a r \in N(R)$ for any $r \in R$ by the hypothesis. That is, $\operatorname{arb} \in N(R)$ for any $r \in R$, which implies that R is weakly semicommutative.
$(4) \Rightarrow(3)$. Suppose that $a^{2}=0$ and $a \neq 0$. Then $a^{2} r=0$ for any $r \in R$, that is $a(a r)=0$. Therefore $a R(a r) \subseteq N(R)$ by the hypothesis. Then $(a r)^{2} \in N(R)$ and ar $\in N(R)$.

By Proposition 2.1, it is easy to get the following corollary.
Corollary 2.2 ([7, Claim 2.1]) R is a weakly semicommutative ring if and only if $T_{n}(R)$ is a weakly semicommutative ring.

Proof It is enough to show the sufficiency since the class of weakly semicommutative rings is closed under the subrings. Assume that R is weakly semicommutative. For any $0 \neq A \in$ $N_{2}\left(T_{n}(R)\right)$, we have $a_{i i} \in N_{2}(R)$ for all i. Since R is weakly semicommutative, $a_{i i} r \in N(R)$ for any $r \in R$ and all i by Proposition 2.1. So, we have $A B \in N\left(T_{n}(R)\right)$ for any $B \in T_{n}(R)$, and so $T_{n}(R)$ is weakly semicommutative by Proposition 2.1.

Note that R is a ZI ring if and only if $l(a)$ is an ideal of R for any $a \in R$ by [4, Lemma 1.2]. This will give a new class of generalized semicommutative rings using the GW-ideal.

Definition 2.3 A ring R is called a left GWZI ring if for any $a \in R, l(a)$ is a $G W$-ideal of R.
We do not know whether the property of GWZI is left-right symmetric. Obviously, semicommutative rings are left GWZI, but the converse is not true, in general.

Set $R=\left\{\left.\left(\begin{array}{cccc}a & a_{1} & a_{2} & a_{3} \\ 0 & a & a_{4} & a_{5} \\ 0 & 0 & a & a_{6} \\ 0 & 0 & 0 & a\end{array}\right) \right\rvert\, a, a_{1}, a_{2}, \ldots, a_{6} \in \mathbb{Z}_{2}\right\}$, where Z_{2} is the ring of integers modulo 2. Then every non-unit of R is nilpotent and hence it follows that every left ideal of R is a GW-ideal. But R is not semicommutative by [6].

Theorem 2.4 Let R be a left GWZI ring. Then $a r \in N(R)$ and $r a \in N(R)$ for any $a \in N(R)$ and $r \in R$.

Proof Let R be a left GWZI ring. For any $0 \neq a \in N(R)$, there exists a positive integer n such that $a^{n}=0$, then $r a a^{n-1}=0$ for any $r \in R$. Since R is left GWZI, there exists a positive integer m such that $(r a)^{m} R a^{n-1}=0$, especially, $(r a)^{m+1} a^{n-2}=0$, then there exists a positive integer t such that $(r a)^{(m+1) t} R a^{n-2}=0$, especially, $(r a)^{(m+1) t+1} a^{n-3}=0$. Using the induction, we can attain $(r a)^{k}=0$ for some positive integer k, then $r a \in N(R)$. It is obvious that $a r \in N(R)$ if and only if $r a \in N(R)$ for any $r \in R$.

As a corollary, we have the following result, combining Theorem 2.4 and Proposition 2.1.
Corollary 2.5 Left GWZI rings are weakly semicommutative.
Remark 2.6 By Corollary 2.2, when R is left GWZI, $T_{n}(R)$ is weakly semicommutative. However, in the following we will have $T_{n}(R)$ is not GWZI by Remark 2.19, in general. So the converse of Corollary 2.5 is not true.

Motivated by these, in the following we will consider if R is a GWZI ring, whether the $n \times n$ upper triangular matrix ring $V_{n}(R)$ is also GWZI.

For a ring R and $n \geq 2$, we denote

$$
V_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
0 & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & 0 & a_{1} & \cdots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{1}
\end{array}\right) \right\rvert\, a_{1}, a_{2}, a_{3}, \ldots, a_{n} \in R\right\}
$$

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring $T(R, M)=R \bigoplus M$ with the usual addition and the following multiplication:

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)
$$

This is isomorphic to the ring of all matrices $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$, where $r \in R$ and $m \in M$ and the usual matrix operations are used. Note that $T(R, R)=V_{2}(R)$.

Lemma 2.7 If R is a left GWZI ring, then the trivial extension $T(R, R)$ is also left GWZI.
Proof Let $0 \neq A=\left(\begin{array}{cc}u & v \\ 0 & u\end{array}\right) \in T(R, R)$ and $0 \neq B=\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \in l_{T(R, R)}(A)$. Then $B A=\left(\begin{array}{cc}a u & a v+b u \\ 0 & a u\end{array}\right)=0$ and so $a u=0$ and $a v+b u=0$.

Case 1 Set $u=0$. Then $v \neq 0$ and $a v=0$.
If $a=0$, it is easy to get $B C A=0$ for any $C=\left(\begin{array}{cc}x & y \\ 0 & x\end{array}\right) \in T(R, R)$. Thus we get $B T(R, R) \subseteq l_{T(R, R)}(A)$.

If $a \neq 0$, then by the hypothesis there exists a positive integer n such that $a^{n} R v=0$ from $a v=0$. So

$$
B^{n} C A=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right)^{n}\left(\begin{array}{cc}
x & y \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
0 & v \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
a^{n} & * \\
0 & a^{n}
\end{array}\right)\left(\begin{array}{cc}
0 & x v \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & a^{n} x v \\
0 & 0
\end{array}\right)=0
$$

for any $C=\left(\begin{array}{cc}x & y \\ 0 & x\end{array}\right) \in T(R, R)$. That shows $B^{n} T(R, R) \subseteq l_{T(R, R)}(A)$.
Case 2 Set $u \neq 0$.
If $a=0$, then $B^{2} C A=0$ for any $C \in T(R, R)$. Hence $B^{2} T(R, R) \subseteq l_{T(R, R)}(A)$.
If $a \neq 0$, then by the hypothesis, there exists a positive integer m such that $a^{m} R u=0$ from $a u=0$. Then

$$
\begin{aligned}
B^{m+1} C A & =\left(\begin{array}{cc}
a^{m+1} & a^{m} b+a^{m-1} b a+\cdots+b a^{m} \\
0 & a^{m+1}
\end{array}\right)\left(\begin{array}{cc}
x u & x v+y u \\
0 & x u
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & a^{m+1} x v+a^{m-1} b a x u+\cdots+a b a^{m-1} x u \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

It follows that $B^{m-1} B^{m+1} C A=\left(\begin{array}{cc}0 & \left(a^{m}\right)^{2} x v \\ 0 & 0\end{array}\right)$. Since $a v+b u=0$, we have $a^{m} a v+a^{m} b u=$ 0 and $a^{m} a v=0$, and so $a^{m+1} v=0$. By the hypothesis, there exists a positive integer n such that $\left(a^{m+1}\right)^{n} R v=0$. If $2 m \geq m n+n$, then $B^{2 m} C A=0$. If $2 m<m n+n$, then $B^{m n+n-2 m} B^{m} B^{m} C A=0$. Hence $B^{m n+n} T(R, R) \subseteq l_{T(R, R)}(A)$.

This implies that $T(R, R)$ is left GWZI.
Corollary 2.8 If R is a left GWZI ring, then $R[x] /\left(x^{2}\right)$ is also a left GWZI ring.
Clearly, $W T_{4}(R)=\left\{\left.\left(\begin{array}{cccc}a & b & c & d \\ 0 & a & 0 & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c, d \in R\right\} \cong T(T(R, R), T(R, R))$ via
$\left(\begin{array}{llll}a & b & c & d \\ 0 & a & 0 & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a\end{array}\right) \longmapsto\binom{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)\left(\begin{array}{ll}c & d \\ 0 & c\end{array}\right)}{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)}$.
Corollary 2.9 If R is a left GWZI ring, then $W T_{4}(R)$ is also a left GWZI ring.

Lemma 2.10 Let R be a left GWZI ring and $n \geq 2$. If $A=\left(\begin{array}{cc}A_{1} & \alpha \\ 0 & a_{1}\end{array}\right)$ and $B=\left(\begin{array}{cc}B_{1} & \beta \\ 0 & b_{1}\end{array}\right)$ with $A B=0$, then there exists a positive integer t such that $A^{t} \gamma b_{1}=0$, for any $\gamma \in R^{n}=$ $\left\{\left.\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right) \right\rvert\, c_{1}, c_{2}, \ldots, c_{n} \in R\right\}$ and $A_{1}, B_{1} \in V_{n-1}(R)$.

Proof We will show by induction on n.
If $n=2$, then the proof is trivial. Suppose that the result is also true for $n=k-1$.
Now let $A=\left(\begin{array}{cc}A_{1} & \alpha \\ 0 & a_{1}\end{array}\right), B=\left(\begin{array}{cc}B_{1} & \beta \\ 0 & b_{1}\end{array}\right) \in V_{k}(R)$ and $A B=0$. Then $A_{1} B_{1}=0$, $A_{1} \beta+\alpha b_{1}=0$ and $a_{1} b_{1}=0$. Since R is a left GWZI ring, there exists a positive integer m_{1} such that $a_{1}^{m_{1}} R b_{1}=0$ from $a_{1} b_{1}=0$. Since $A_{1} B_{1}=0$, there exists a positive integer m_{2} such that $A_{1}^{m_{2}} R^{k-1} b_{1}=0$ by induction hypothesis. Write $m=\max \left\{m_{1}, m_{2}\right\}$. Then $a_{1}^{m} R b_{1}=0$ and $A_{1}^{m} R^{k-1} b_{1}=0$. For any $\gamma=\binom{\delta}{c_{k}} \in R^{k}$, where $\delta=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{k-1}\end{array}\right) \in R^{k-1}$, then $A^{m+1} \gamma b_{1}=$ $\left(\begin{array}{cc}A_{1}^{m+1} & A_{1}^{m} \alpha+A_{1}^{m-1} \alpha a_{1}+\cdots+\alpha a_{1}^{m} \\ 0 & a_{1}^{m+1}\end{array}\right)\binom{\delta b_{1}}{c_{k} b_{1}}=\binom{A_{1}^{m-1} \alpha a_{1} c_{k} b_{1}+\cdots+\alpha a_{1}^{m} c_{k} b_{1}}{0}$. It is easy to know that $A^{2 m+1} \gamma b_{1}=0$, for any $\gamma \in R^{k}$.

Theorem $2.11 R$ is a left GWZI ring if and only if $V_{n}(R)$ is also a left GWZI ring for any $n \geq 2$.

Proof Let R be a left GWZI ring. We will show by induction on n.
If $n=2$, then $V_{2}(R)=T(R, R)$. Thus the proof is similar to Lemma 2.7.
Now suppose that $2<n \leq k-1$ is such that $V_{n}(R)$ is left GWZI. We will show that $V_{k}(R)$ is left GWZI.

Let $A=\left(\begin{array}{ccccc}a_{1} & a_{2} & a_{3} & \cdots & a_{k} \\ 0 & a_{1} & a_{2} & \cdots & a_{k-1} \\ 0 & 0 & a_{1} & \cdots & a_{k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{1}\end{array}\right)$ and $B=\left(\begin{array}{ccclc}b_{1} & b_{2} & b_{3} & \cdots & b_{k} \\ 0 & b_{1} & b_{2} & \cdots & b_{k-1} \\ 0 & 0 & b_{1} & \cdots & b_{k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{1}\end{array}\right)$ be such that $A B=0$.

Then $A=\left(\begin{array}{cc}A_{1} & \alpha \\ 0 & a_{1}\end{array}\right), B=\left(\begin{array}{cc}B_{1} & \beta \\ 0 & b_{1}\end{array}\right)$ with $A_{1} B_{1}=0, A_{1} \beta+\alpha b_{1}=0$ and $a_{1} b_{1}=0$, where $\alpha=\left(\begin{array}{c}a_{k} \\ \vdots \\ a_{2}\end{array}\right)$ and $\beta=\left(\begin{array}{c}b_{k} \\ \vdots \\ b_{2}\end{array}\right)$. By induction hypothesis, we have $T_{1}=V_{k-1}(R)$ is left GWZI, then there exists a positive integer m such that $A_{1}^{m} T_{1} B_{1}=0$ and $a_{1}^{m} R b_{1}=0$. Set $C=\left(\begin{array}{cc}C_{1} & \gamma \\ 0 & c_{1}\end{array}\right) \in V_{k}(R)$ where $C_{1} \in T_{1}$ and $\gamma=\left(\begin{array}{c}c_{k} \\ \vdots \\ c_{2}\end{array}\right)$. Then
$A^{m} C B=\left(\begin{array}{cc}A_{1}^{m} & A_{1}^{m-1} \alpha+A_{1}^{m-2} \alpha a_{1}+A_{1}^{m-3} \alpha a_{1}^{2}+\cdots+\alpha a_{1}^{m-1} \\ 0 & a_{1}^{m}\end{array}\right)\left(\begin{array}{cc}C_{1} B_{1} & C_{1} \beta+\gamma b_{1} \\ 0 & c_{1} b_{1}\end{array}\right)$
$=\left(\begin{array}{cc}0 & A_{1}^{m} C_{1} \beta+A_{1}^{m} \gamma b_{1}+A_{1}^{m-1} \alpha c_{1} b_{1}+A_{1}^{m-2} \alpha a_{1} c_{1} b_{1}+A_{1}^{m-3} \alpha a_{1}^{2} c_{1} b_{1}+\cdots+\alpha a_{1}^{m-1} c_{1} b_{1} \\ 0 & 0\end{array}\right)$.

By Lemma 2.10, we have $A_{1}^{m} \gamma b_{1}=0$. Then $A^{m} A^{m} C B=\left(\begin{array}{cc}A_{1}^{m} & * \\ 0 & a_{1}^{m}\end{array}\right) A^{m} C B=$ $\left(\begin{array}{cc}0 & A_{1}^{2 m} C_{1} \beta \\ 0 & 0\end{array}\right)$.

Since $A_{1} \beta+\alpha b_{1}=0$ and $A_{1}^{m} \gamma b_{1}=0$, we have $A_{1}^{m}\left(A_{1} \beta+\alpha b_{1}\right)=0$ and $A_{1}^{m+1} \beta=0$.
Since

$$
A_{1}^{m+1}\left(\begin{array}{cccc}
b_{2} & b_{3} & \ldots & b_{k} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & b_{3} \\
0 & \cdots & 0 & b_{2}
\end{array}\right)=\left((*) \quad\left(A_{1}^{m+1} \beta\right)\right) \in V_{k-1}(R)
$$

and $A_{1}^{m+1} \beta=0$, it follows that

$$
A_{1}^{m+1}\left(\begin{array}{cccc}
b_{2} & b_{3} & \ldots & b_{k} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & b_{3} \\
0 & \cdots & 0 & b_{2}
\end{array}\right)=0
$$

By the hypothesis, there exists a positive integer t such that

$$
A_{1}^{t} C_{1}\left(\begin{array}{cccc}
b_{2} & b_{3} & \ldots & b_{k} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & b_{3} \\
0 & \cdots & 0 & b_{2}
\end{array}\right)=0
$$

Hence $A_{1}^{t} C_{1} \beta=0$. It is easy to obtain that $V_{k}(R)$ is left GWZI. Therefore, $V_{n}(R)$ is a left GWZI ring for $n \geq 2$.

Conversely, if $V_{n}(R)$ is a left GWZI ring for $n \geq 2$, we clearly have R is a left GWZI ring.

$$
\text { Since } R[x] /\left(x^{n}\right) \cong V_{n}(R) \text { via } a_{0}+a_{1} \bar{x}+a_{2} \bar{x}^{2}+\cdots+a_{n-1} \bar{x}^{n-1} \longmapsto\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\
0 & a_{0} & a_{1} & \cdots & a_{n-2} \\
0 & 0 & a_{0} & \cdots & a_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_{0}
\end{array}\right) \text {, }
$$

$n \geq 2$. We have the following corollary.
Corollary 2.12 If R is a left GWZI ring, then $R[x] /\left(x^{n}\right)$ is also left GWZI.
Note that the homomorphic image of a GWZI ring need not be GWZI. Consider the following example.

Example 2.13 Let Z_{2} denote the field of integers modulo 2 and $Z_{2}(y)$ rational functions field of polynomial ring $Z_{2}[y]$ and $R=Z_{2}(y)[x]$ the ring of polynomials in x over $Z_{2}(y)$ subject to the relation $x y+y x=1$. By [8, Example 2.11], R is symmetric. Then R is also GWZI. Let $I=x_{2} R$. Then I is a maximal ideal of R. Consider the ring $S=R / I$. We write \bar{x} and \bar{y} for the images of x and y respectively under the natural epimorphism from R onto S. For $\bar{x}, \bar{y} \in S$, we have $\bar{x}^{2}=\overline{0}$ and $\bar{x} \bar{y}+\bar{y} \bar{x}=\overline{1}$. Then we have $(\bar{y} \bar{x})^{2}=\bar{y} \bar{x}$. If S is GWZI, then $\bar{y} \bar{x} S \bar{x}=0$ and $\bar{y} \bar{x} \bar{y} \bar{x}=0$ by $\bar{y} \bar{x} \bar{x}=0$. This implies that $\bar{y} \bar{x}=0$ and $\bar{x} \bar{y}=\overline{1}$. Hence we get $\bar{x}=\overline{0}$, leading to a contradiction.

Proposition 2.14 Suppose that R / I is a left GWZI ring for some ideal I of a ring R. If I is reduced as a ring without identity, then R is left GWZI.

Proof Let $a b=0$ with $a, b \in R$. Then we have $\bar{a} \bar{b}=\overline{0}$ in $\bar{R}=R / I$. Since \bar{R} is left GWZI, hence there exists a positive integer m such that $\bar{a}^{m} \bar{R} \bar{b}=\overline{0}$ and so $a^{m} r b \in I$ for any $r \in R$. Since $\left(b\left(a^{m} r b\right) a\right)^{2}=b\left(a^{m} r b\right) a b\left(a^{m} r b\right) a=0$ and I is a reduced ideal of R, we get $b\left(a^{m} r b\right) a=0$. Since $\left(a^{m} r b\right)^{3}=a^{m} r\left(b a^{m} r b a\right) a^{m-1} r b=0$, it follows that $a^{m} r b=0$. Thus this implies that R is left

GWZI.
Set

$$
I=\left\{\left.\left(\begin{array}{ccccc}
0 & c_{12} & c_{13} & \cdots & c_{1 n} \\
0 & 0 & c_{23} & \cdots & c_{2 n} \\
0 & 0 & 0 & \cdots & c_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \right\rvert\, 0 \neq c_{12}, c_{13}, \ldots, c_{n-1, n} \in R\right\}
$$

and R is a left GWZI ring, then $T_{n}(R)$ is a weakly semicommutative ring and I is an idea of $T_{n}(R)$. It is easy to get $T_{n}(R) / I$ is left GWZI. But $T_{n}(R)$ is not left GWZI for I is not reduced. So, this implies that the condition that I is reduced cannot be dropped in Proposition 2.14.

Proposition 2.15 The following conditions are equivalent for a ring R :
(1) R is Abelian.
(2) $l(e)$ is a $G W$-ideal of R for every $e \in E(R)$.
(3) $r(e)$ is a $G W$-ideal of R for every $e \in E(R)$.

Proof $(1) \Rightarrow(2)$. It is clear.
$(2) \Rightarrow(1)$. Let $e \in E(R)$ and $x \in R$. Since $1-e \in l(e)$ and $l(e)$ is a GW-ideal, there exists a positive integer n such that $(1-e)^{n} x \in l(e)$ which implies that $x e=e x e$. Similarly, we have $e x=e x e$. This implies that R is Abelian.
$(3) \Rightarrow(1)$. It is similar to $(2) \Rightarrow(1)$.
Corollary 2.16 A left GWZI ring is Abelian.
Theorem 2.17 A ring R is a left GWZI ring if and only if

$$
S_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}
$$

is a left GWZI ring.
Proof If a ring R is left GWZI, let

$$
0 \neq B=\left(\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
0 & a_{2} & d_{2} \\
0 & 0 & a_{2}
\end{array}\right) \in S_{3}(R) \text { and } 0 \neq A=\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & a_{1} & d_{1} \\
0 & 0 & a_{1}
\end{array}\right) \in l_{S_{3}(R)}(B) .
$$

Then $A B=\left(\begin{array}{ccc}a_{1} a_{2} & a_{1} b_{2}+b_{1} a_{2} & a_{1} c_{2}+b_{1} d_{2}+c_{1} a_{2} \\ 0 & a_{1} a_{2} & a_{1} d_{2}+d_{1} a_{2} \\ 0 & 0 & a_{1} a_{2}\end{array}\right)=0$.
Case 1 Set $a_{1}=0$. Then $A=\left(\begin{array}{ccc}0 & b_{1} & c_{1} \\ 0 & 0 & d_{1} \\ 0 & 0 & 0\end{array}\right) \in N\left(S_{3}(R)\right)$, and there exists a positive integer

3 such that $A^{3} S_{3}(R) B=0$
Case 2 Set $a_{1} \neq 0$ and $b_{1}=c_{1}=d_{1}=0$. Then $A=\left(\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & a_{1} & 0 \\ 0 & 0 & a_{1}\end{array}\right)$ and $A B=$ $\left(\begin{array}{ccc}a_{1} a_{2} & a_{1} b_{2} & a_{1} c_{2} \\ 0 & a_{1} a_{2} & a_{1} d_{2} \\ 0 & 0 & a_{1} a_{2}\end{array}\right)=0$.

That is, $a_{1} a_{2}=0 \cdots(1), a_{1} b_{2}=0 \cdots(2), a_{1} c_{2}=0 \cdots$ (3), $a_{1} d_{2}=0 \cdots$ (4).
By the hypothesis and (1)-(4), there exists a positive integer N such that

$$
a_{1}^{N} R a_{2}=0, a_{1}^{N} R b_{2}=0, a_{1}^{N} R c_{2}=0, a_{1}^{N} R d_{2}=0
$$

For any $C=\left(\begin{array}{ccc}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \in S_{3}(R)$, then

$$
\begin{aligned}
A^{N} C B & =\left(\begin{array}{ccc}
a_{1}^{N} & 0 & 0 \\
0 & a_{1}^{N} & 0 \\
0 & 0 & a_{1}^{N}
\end{array}\right)\left(\begin{array}{ccc}
a a_{2} & a b_{2}+b a_{2} & a c_{2}+b d_{2}+c a_{2} \\
0 & a a_{2} & a d_{2}+d a_{2} \\
0 & 0 & a a_{2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{1}^{N} a a_{2} & a_{1}^{N} a b_{2}+a_{1}^{N} b a_{2} & a_{1}^{N} a c_{2}+a_{1}^{N} b d_{2}+a_{1}^{N} c a_{2} \\
0 & a_{1}^{N} a a_{2} & a_{1}^{N} a d_{2}+a_{1}^{N} d a_{2} \\
0 & 0 & a_{1}^{N} a a_{2}
\end{array}\right)=0 .
\end{aligned}
$$

There exists a positive integer N such that $A^{N} S_{3}(R) B=0$.
Case 3 Set $a_{1} \neq 0, c_{1}=0, b_{1} \neq 0$ and $d_{1} \neq 0$. Then we have

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & a_{1} & d_{1} \\
0 & 0 & a_{1}
\end{array}\right), A^{2}=\left(\begin{array}{ccc}
a_{1}^{2} & a_{1} b_{1}+b_{1} a_{1} & b_{1} d_{1} \\
0 & a_{1}^{2} & a_{1} d_{1}+d_{1} a_{1} \\
0 & 0 & a_{1}^{2}
\end{array}\right), \\
A^{3}=\left(\begin{array}{ccc}
a_{1}^{3} & a_{1}^{2} b_{1}+a_{1} b_{1} a_{1}+b_{1} a_{1}^{2} & a_{1} b_{1} d_{1}+b_{1} a_{1} d_{1}+b_{1} d_{1} a_{1} \\
0 & a_{1}^{3} & a_{1}^{2} d_{1}+a_{1} d_{1} a_{1}+d_{1} a_{1}^{2} \\
0 & 0 & a_{1}^{3}
\end{array}\right), \ldots, \\
A^{n}=\left(\begin{array}{ccc}
a_{1}^{n} & a_{1}^{n-1} b_{1}+a_{1}^{n-2} b_{1} a_{1}+\cdots+b_{1} a_{1}^{n-1} & a_{1}^{n-1} d_{1}+a_{1}^{n-2} d_{1} a_{1}+\cdots+d_{1} a_{1}^{n-1} \\
0 & a_{1}^{n} & a_{1}^{n} \\
0 & 0 &
\end{array}\right),
\end{gathered}
$$

where $*=a_{1}^{n-2} b_{1} d_{1}+a_{1}^{n-3} b_{1} a_{1} d_{1}+a_{1}^{n-3} b_{1} d_{1} a_{1}+\cdots+b_{1} d_{1} a_{1}^{n-2}$.

$$
\text { By } A B=\left(\begin{array}{ccc}
a_{1} a_{2} & a_{1} b_{2}+b_{1} a_{2} & a_{1} c_{2}+b_{1} d_{2} \\
0 & a_{1} a_{2} & a_{1} d_{2}+d_{1} a_{2} \\
0 & 0 & a_{1} a_{2}
\end{array}\right)=0 \text {, we have } a_{1} a_{2}=0 \cdots(5), a_{1} b_{2}+
$$

$b_{1} a_{2}=0 \cdots(6), a_{1} c_{2}+b_{1} d_{2}=0 \cdots(7), a_{1} d_{2}+d_{1} a_{2}=0 \cdots$ (8). By the hypothesis and (5),
there exists a positive integer n_{1} such that $a_{1}^{n_{1}} R a_{2}=0 \cdots$ (9). By (6) and (9), it is easy to get $a_{1}^{n_{1}+1} b_{2}+a_{1}^{n_{1}} b_{1} a_{2}=0$ and $a_{1}^{n_{1}+1} b_{2}=0$, then there exists a positive integer n_{2} such that $a_{1}^{n_{2}} R b_{2}=0$. By (8) and (9), then there exists a positive integer n_{3} such that $a_{1}^{n_{3}} R d_{2}=0 \cdots$ (10). By (7) and (10), then there exists a positive integer n_{4} such that $a_{1}^{n_{4}} R c_{2}=0$. Write $N=\max \left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$. So $a_{1}^{N} R a_{2}=0, a_{1}^{N} R b_{2}=0, a_{1}^{N} R c_{2}=0, a_{1}^{N} R d_{2}=0$.

Let $n=3 N$. It is easy to get

$$
\begin{gathered}
\left(a_{1}^{n-1} b_{1}+a_{1}^{n-2} b_{1} a_{1}+\cdots+b_{1} a_{1}^{n-1}\right) a a_{2}=0, \\
\left(a_{1}^{n-1} b_{1}+a_{1}^{n-2} b_{1} a_{1}+\cdots+b_{1} a_{1}^{n-1}\right)\left(a d_{2}+d a_{2}\right)=0, \\
\left(a_{1}^{n-1} d_{1}+a_{1}^{n-2} d_{1} a_{1}+\cdots+d_{1} a_{1}^{n-1}\right) a a_{2}=0, \\
\left(a_{1}^{n-2} b_{1} d_{1}+a_{1}^{n-3} b_{1} a_{1} d_{1}+a_{1}^{n-3} b_{1} d_{1} a_{1}+\cdots+b_{1} d_{1} a_{1}^{n-2}\right) a a_{2}=0 .
\end{gathered}
$$

Hence we obtain $A^{n} S_{3}(R) B=0$. There exists a positive integer n such that $A^{n} S_{3}(R) B=0$.
Case 4 Set $a_{1} \neq 0, c_{1}=0, b_{1}=0$ and $d_{1} \neq 0$. It is similar to Case 3 .
Case 5 Set $a_{1} \neq 0, c_{1}=0, d_{1}=0$ and $b_{1} \neq 0$. It is similar to Case 3 .
Case 6 Set $a_{1} \neq 0, c_{1} \neq 0, d_{1}=0$ and $b_{1}=0$. Then

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
a_{1} & 0 & c_{1} \\
0 & a_{1} & 0 \\
0 & 0 & a_{1}
\end{array}\right), A^{2}=\left(\begin{array}{ccc}
a_{1}^{2} & 0 & a_{1} c_{1}+c_{1} a_{1} \\
0 & a_{1}^{2} & 0 \\
0 & 0 & a_{1}^{2}
\end{array}\right) \cdots, \\
& A^{n}=\left(\begin{array}{ccc}
a_{1}^{n} & 0 & a_{1}^{n-1} c_{1}+a_{1}^{n-2} c_{1} a_{1}+\cdots+c_{1} a_{1}^{n-1} \\
0 & a_{1}^{n} & 0 \\
0 & 0 & a_{1}^{n}
\end{array}\right) .
\end{aligned}
$$

Since $A B=\left(\begin{array}{ccc}a_{1} a_{2} & a_{1} b_{2} & a_{1} c_{2}+c_{1} a_{2} \\ 0 & a_{1} a_{2} & a_{1} d_{2} \\ 0 & 0 & a_{1} a_{2}\end{array}\right)$, that is, $a_{1} a_{2}=0, a_{1} b_{2}=0, a_{1} c_{2}+c_{1} a_{2}=0$,
$a_{1} d_{2}=0$. It is similar to Case 3 , there exists a positive integer N such that $a_{1}^{N} R a_{2}=0$, $a_{1}^{N} R b_{2}=0, a_{1}^{N} R c_{2}=0, a_{1}^{N} R d_{2}=0$. There exists a positive integer $n=3 N$ such that $A^{n} S_{3}(R) B=0$.

Case 7 Set $a_{1} \neq 0, c_{1} \neq 0, d_{1} \neq 0$ and $b_{1} \neq 0$. By $A B=0$,

$$
\left(\begin{array}{ccc}
a_{1} a_{2} & a_{1} b_{2}+b_{1} a_{2} & a_{1} c_{2}+b_{1} d_{2}+c_{1} a_{2} \\
0 & a_{1} a_{2} & a_{1} d_{2}+d_{1} a_{2} \\
0 & 0 & a_{1} a_{2}
\end{array}\right)=0
$$

Similarly to Case 3 , there exists a positive integer N such that $a_{1}^{N} R a_{2}=0, a_{1}^{N} R b_{2}=0, a_{1}^{N} R c_{2}=$ $0, a_{1}^{N} R d_{2}=0$.

$$
A^{n}=\left(\begin{array}{ccc}
a_{1}^{n} & a_{1}^{n-1} b_{1}+a_{1}^{n-2} b_{1} a_{1}+\cdots+b_{1} a_{1}^{n-1} & * \\
0 & a_{1}^{n} & a_{1}^{n-1} d_{1}+a_{1}^{n-2} d_{1} a_{1}+\cdots+d_{1} a_{1}^{n-1} \\
0 & 0 & a_{1}^{n}
\end{array}\right)
$$

where $*=\left(a_{1}^{n-2} b_{1} d_{1}+a_{1}^{n-3} b_{1} a_{1} d_{1}+a_{1}^{n-3} b_{1} d_{1} a_{1}+\cdots+b_{1} d_{1} a_{1}^{n-2}\right)+\left(a_{1}^{n-1} c_{1}+a_{1}^{n-2} c_{1} a_{1}+\cdots+\right.$ $c_{1} a_{1}^{n-1}$). Similarly to Case 3 , there exists a positive integer n such that $A^{n} S_{3}(R) B=0$.

Case 8 Set $a_{1} \neq 0, c_{1} \neq 0, d_{1} \neq 0$ and $b_{1}=0$. It is similar to Case 7 .
Case 9 Set $a_{1} \neq 0, c_{1} \neq 0, d_{1}=0$ and $b_{1} \neq 0$. It is similar to Case 7 .
Hence we obtain $S_{3}(R)$ is left GWZI.
Conversely, if $S_{3}(R)$ is left GWZI, set $b=c=d=0$. It is clear that R is left GWZI.
Remark 2.18 We do not know whether $S_{n}(R)$ is still a GWZI ring when R is left GWZI. But we have the following remark.

Remark 2.19 If R is a left GWZI ring, then $T_{n}(R)$ is not a left GWZI ring.
Set $A=\left(\begin{array}{ccccccc}0 & 1 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0\end{array}\right)$ and $B=\left(\begin{array}{ccccccc}0 & 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0\end{array}\right)$. It is easy to
get $A B=0, A^{2}=\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0\end{array}\right)$ and $A^{3}=A^{2}$. But
$A^{2} C B=\left(\begin{array}{ccccccc}0 & 0 & 0 & c_{23} & 0 & \ldots & 0 \\ 0 & 0 & 0 & c_{23} & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0\end{array}\right) \neq 0, A^{m} C B=A^{2} C B=\left(\begin{array}{ccccccc}0 & 0 & 0 & c_{23} & 0 & \ldots & 0 \\ 0 & 0 & 0 & c_{23} & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0\end{array}\right)$
$\neq 0$, for any $C=\left(\begin{array}{ccccc}c_{11} & c_{12} & c_{13} & \cdots & c_{1 n} \\ 0 & c_{22} & c_{23} & \cdots & c_{2 n} \\ 0 & 0 & c_{33} & \cdots & c_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c_{n n}\end{array}\right) \in T_{n}(R)$.
This implies that $T_{n}(R)$ is not left GWZI.

Next example will show that R is left GWZI, but $R[x]$ is not left GWZI.
Remark 2.20 ([9]) Let $k=F_{2}\left\langle a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}\right\rangle$ be the free associative algebra (with 1) over F_{2} generated by six indeterminates. Let I be the ideal generated by the following relations:

$$
\begin{gathered}
\left\langle a_{0} b_{0}, \quad a_{0} b_{1}+a_{1} b_{0}, \quad a_{1} b_{1}+a_{2} b_{0}, \quad a_{2} b_{1}+a_{3} b_{0}, \quad a_{3} b_{1},\right. \\
a_{0} a_{j}(0 \leq j \leq 3), \quad a_{3} a_{j}(0 \leq j \leq 3), \quad a_{1} a_{j}+a_{2} a_{j}(0 \leq j \leq 3), \\
\left.b_{i} b_{j}(0 \leq i, j \leq 1), \quad b_{i} a_{j}(0 \leq i \leq 1,0 \leq j \leq 3)\right\rangle .
\end{gathered}
$$

We let $R=k / I$. Think of $\left\{a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}\right\}$ as elements (sometimes called letters) of R satisfying the relations in I, suppressing the bar notation.

Put $F(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ and $G(x)=b_{0}+b_{1} x$. The first row of relations in I guarantees that $F(x) G(x)=0$ in $R[x]$.

By computing, we have $F(x)^{n}=\left(a_{1}+a_{2} x\right)^{n} x^{n}$ and $F(x)^{n} H(x) G(x)=x^{n}\left[a_{1}^{n} c_{0} b_{0}+(*) x+\right.$ $\left.(* *) x^{2}+\cdots\right] \neq 0$ whenever $H(x)=c_{0}+c_{1} x$.

This shows that $R[x]$ is not left GWZI. But it was proved in [9, Claim 6] that R is semicommutative, then R is also left GWZI.

Acknowledgements The authors would like to thank the referees for their time and useful comments.

References

[1] P. M. COHN. Reversible rings. Bull. London Math. Soc., 1999, 31(6): 641-648.
[2] H. E. BELL. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc., 1970, 2(3): 363-368.
[3] N. K. KIM, S. B. NAM, J. Y. KIM. On simple singular GP-injective modules, Comm. Algebra, 1999, 27(5): 2087-2096.
[4] G. SHIN. Prime ideals and sheaf representation of a pseudo symmetric ring. Trans. Amer. Math. Soc., 1973, 184: 43-60.
[5] Haiyan ZHOU. Left SF-rings and regular rings. Comm. Algebra, 2007, 35(12): 3842-3850.
[6] N. K. KIM, Y. LEE. Extensions of reversible rings. J. Pure. Appl. Algebra, 2003, 185(1-3): 207-223.
[7] Li LIANG, Limin WANG, Zhongkui LIU. On a generalization of semicommutative rings. Taiwanese J. Math., 2007, 11(5): 1359-1368.
[8] G. KAFKAS, B. UNGOR, S. HALICIOGLU, et al. Generalized symmetric rings. Algebra Discrete Math., 2011, 12(2): 72-84.
[9] P. P. NIELSEN. Semi-commutativity and the McCoy condition. J. Algebra, 2006, 298(1): 134-141.

[^0]: Received July 12, 2013; Accepted February 24, 2014
 Supported by the National Natural Science Foundation of China (Grant No. 11171291), the Natural Science Fund for Colleges and Universities of Jiangsu Province (Grant No. 11KJB110019) and the Foundation of Graduate Innovation Program of Jiangsu Province (Grant No. CXZZ12-0082).

 * Corresponding author

 E-mail address: dcz006@163.com (Cuizhen DU); wanglseu@hotmail.com (Long WANG); jcweiyz@126.com (Junchao WEI)

