Journal of Mathematical Research with Applications May, 2014, Vol. 34, No. 3, pp. 295–300 DOI:10.3770/j.issn:2095-2651.2014.03.005 Http://jmre.dlut.edu.cn

Some Characterizations of Prüfer v-Multiplication Rings

Huayu YIN

College of Mathematics and Software Science, Sichuan Normal University, Sichuan 610068, P. R. China

Abstract In this paper, we study Prüfer v-multiplication rings (PVMRs) and give some new characterizations of PVMRs. Moreover, we show that a Marot ring R is a PVMR if and only if every w-ideal of R is complete.

Keywords w-ideal; integrally closed; PVMR; complete.

MR(2010) Subject Classification 13A15; 13F99

1. Introduction

Throughout this paper, R denotes a commutative ring with identity, T(R) denotes its total quotient ring, and R^c denotes the integral closure of R in T(R). R is called an integrally closed ring if $R = R^c$. An overring of R is a ring between R and T(R). An element of R is regular if it is not a zero divisor. An ideal of R that contains a regular element is said to be a regular ideal.

Recall from [1] that an ideal J is called a Glaz-Vasconcelos ideal (GV-ideal), denoted by $J \in GV(R)$, if J is finitely generated and the natural homomorphism from R into $J^* = \operatorname{Hom}_R(J, R)$ is an isomorphism. An R-module M is called a GV-torsionfree module if whenever Jx = 0, for some $J \in GV(R)$ and $x \in M$, then x = 0. A GV-torsionfree R-module M is called a w-module if $\operatorname{Ext}^1_R(R/J, M) = 0$ for any $J \in GV(R)$, and the w-envelope of M is defined by $M_w = \{x \in E(M) \mid Jx \subseteq M \text{ for some } J \in GV(R)\}$, where E(M) is the injective envelope of M. M is a w-module if and only if $M_w = M$. M is said to be w-finite (or of finite type, when no confusion is likely) if $M_w = N_w$ for some finitely generated submodule N of M. A maximal w-ideal is an ideal that is maximal among the proper w-ideals. We denote by w-max(R) the set of maximal w-ideals of R. In this paper, we consider the case w-max $(R) \neq \emptyset$. In fact, if w-max $(R) = \emptyset$, and suppose that c is a regular element of R. Then $(c) = (c)_w = R$, and so c is a unit, therefore R = T(R). Let $\mathfrak{F}(R)$ be the set of R-submodules of T(R).

Recall that an integral domain R is called a Prüfer v-multiplication domain (PVMD) if each finitely generated ideal is w-invertible. In 1980, Huckaba and Papick [2], and Matsuda [3] extended this notion to rings with zero divisors by declaring that a ring R is said to be a Prüfer v-multiplication ring (PVMR) if each finitely generated regular ideal is w-invertible. For a monographic study on PVMDs, the reader may consult [4, 5].

Received May 24, 2013; Accepted November 11, 2013

Supported by the National Natural Science Foundation of China (Grant Nos. 11171240; 10971090) and the Scientific Research Fund of Sichuan Provincial Education Department (Grant Nos. 14ZB0035; 12ZB107). E-mail address: hygin520@163.com

In [1], the theory of w-operations was developed for arbitrary commutative rings. The purpose of this paper is to characterize PVMRs by the w-operation.

2. PVMRs and completion of *w*-ideals

Let S be a multiplicatively closed subset of R. The large quotient ring of R with respect to S, denoted by $R_{[S]}$, is the set $R_{[S]} = \{z \in T(R) \mid sz \in R \text{ for some } s \in S\}$. If $A \in \mathfrak{F}(R)$, then $[A]R_{[S]} = \{z \in T(R) \mid sz \in A \text{ for some } s \in S\}$ is an $R_{[S]}$ -submodule of T(R). In particular, if I is an ideal of R, then $[I]R_{[S]}$ is an ideal of $R_{[S]}$. For a prime ideal \mathfrak{p} , we write $R_{[\mathfrak{p}]}$ in place of $R_{[R\setminus\mathfrak{p}]}$.

Proposition 2.1 Let $A \in \mathfrak{F}(R)$. Then $[A]R_{[\mathfrak{p}]}$ is a w-module as an R-module for every prime w-ideal \mathfrak{p} of R.

Proof First, we prove that $[A]R_{[\mathfrak{p}]}$ is a GV-torsionfree R-module. Let Jx = 0 for some $J \in GV(R)$ and $x \in [A]R_{[\mathfrak{p}]}$. There exists a regular element $b \in R$ such that $bx \in R$. Thus Jbx = 0, and so bx = 0. Therefore, x = 0.

Let $Jx \subseteq [A]R_{[\mathfrak{p}]}$ for some $J \in GV(R)$ and $x \in E(R)$. Then there exists an element $s_1 \in R \setminus \mathfrak{p}$ such that $Js_1x \subseteq A$. Note that $J \not\subseteq \mathfrak{p}$. So there exists an element $s_2 \in J$, but $s_2 \notin \mathfrak{p}$ such that $s_1s_2x \in A$. Thus $x \in [A]R_{[\mathfrak{p}]}$. \Box

Note that for every prime ideal \mathfrak{p} of R, $R_{[\mathfrak{p}]}$ is a *w*-module as an R-module. In fact, let $Jx \subseteq R_{[\mathfrak{p}]}$ for some $J \in GV(R)$ and $x \in E(R)$. There exists an element $s \in R \setminus \mathfrak{p}$ such that $Jsx \subseteq R$. Thus $sx \in R$ since R is a *w*-module. It follows that $x \in R_{[\mathfrak{p}]}$.

Corollary 2.1 Let $A \in \mathfrak{F}(R)$. Then $[A_w]R_{[\mathfrak{p}]} = [A]R_{[\mathfrak{p}]}$ for every prime w-ideal \mathfrak{p} of R.

Proof For $x \in [A_w]R_{[\mathfrak{p}]}$, there exists an element $s \in R \setminus \mathfrak{p}$ such that $sx \in A_w$. Then there exists $J \in GV(R)$ such that $Jsx \subseteq A$. Thus $Jx \subseteq [A]R_{[\mathfrak{p}]}$, and so $x \in [A]R_{[\mathfrak{p}]}$, as required. \Box

Proposition 2.2 If $A \in \mathfrak{F}(R)$, then $A_w = \bigcap_{\mathfrak{m} \in w - \max(R)} A_w R_{[\mathfrak{m}]} = \bigcap_{\mathfrak{m} \in w - \max(R)} [A_w] R_{[\mathfrak{m}]}$.

Proof Clearly, $A_w \subseteq \bigcap_{\mathfrak{m} \in w^- \max(R)} A_w R_{[\mathfrak{m}]} \subseteq \bigcap_{\mathfrak{m} \in w^- \max(R)} [A_w] R_{[\mathfrak{m}]}$.

Let $x \in \bigcap_{\mathfrak{m} \in w\text{-}\max(R)} [A_w] R_{[\mathfrak{m}]}$. Then $I = (A_w :_R x) = \{r \in R \mid rx \in A_w\}$ is a w-ideal of R. For each $\mathfrak{m} \in w\text{-}\max(R)$, there exists $s \in R \setminus \mathfrak{m}$ such that $sx \in A_w$. Thus $I \not\subseteq \mathfrak{m}$, and so I = R. Therefore, $x \in A_w$. \Box

Corollary 2.2 Let R be a ring. Then $R = \bigcap_{\mathfrak{m} \in w - \max(R)} R_{[\mathfrak{m}]}$.

Lemma 2.1 The following are equivalent for a ring *R*:

(1) R is integrally closed.

(2) If a is a regular element of R and I is a finitely generated regular ideal of R such that $I^2 = Ia$, then $I_w = (a)$.

(3) If a is a regular element of R and I is a finitely generated regular ideal of R such that $I^2 = Ia$, then $I_w \subseteq (a)$.

Some characterizations of Prüfer v-multiplication rings

- **Proof** (1) \Rightarrow (2). By [6, Proposition 24.1], I = (a). Thus $I_w = (a)$. (2) \Rightarrow (3) is clear.
 - (3) \Rightarrow (1). It follows from [6, Proposition 24.1] since $I \subseteq I_w \subseteq (a)$. \Box

Lemma 2.2 Let R be an integrally closed ring. Suppose that $a, b \in R$ with a regular. If there exists n > 1 such that $a^{n-1}b \in (a^n, b^n)_w$, then (a, b) is w-invertible.

Proof We prove this by an induction on n. Assume that n = 2. Then there exists $J = (c_1, c_2, \ldots, c_m) \in GV(R)$ such that $Jab \subseteq (a^2, b^2)$. For each $1 \leq i \leq m$, $c_i ab = x_i a^2 + y_i b^2$, where $x_i, y_i \in R$. Multiplying this equation by $\frac{y_i}{a^2}$, we have $(\frac{y_i b}{a})^2 - c_i(\frac{y_i b}{a}) + x_i y_i = 0$. Thus $\frac{y_i b}{a}$ is integral over R, and is therefore in R. Write $z_i = \frac{y_i b}{a}$. Note that

$$c_i a \in (a, b)(y_i, c_i - z_i) = (ay_i, az_i, a(c_i - z_i), ax_i) \subseteq (a).$$

Set $I = (y_1, c_1 - z_1) + \dots + (y_m, c_m - z_m)$. Then $Ja \subseteq (a, b)I \subseteq (a)$. Hence $J \subseteq (a, b)Ia^{-1} \subseteq R$, and therefore, $((a, b)Ia^{-1})_w = R$.

Suppose that this lemma is true for the integer n-1. Let $a^{n-1}b \in (a^n, b^n)_w$. Then $c_i a^{n-1}b = x_i a^n + y_i b^n$, where $J = (c_1, c_2, \ldots, c_m) \in GV(R)$ and $x_i, y_i \in R$ $(1 \leq i \leq m)$. We also have $\frac{y_i b}{a}$ is integral over R, and therefore is in R. Write $z_i = \frac{y_i b}{a}$. Then $c_i a^{n-1}b = x_i a^n + az_i b^{n-1}$. Thus $c_i a^{n-2}b = x_i a^{n-1} + z_i b^{n-1} \in (a^{n-1}, b^{n-1})$. Therefore $Ja^{n-2}b \subseteq (a^{n-1}, b^{n-1})$. It follows that $a^{n-2}b \subseteq (a^{n-1}, b^{n-1})_w$. The induction hypothesis then shows that (a, b) is *w*-invertible. \Box

Recall that a valuation is a map ν from a ring T onto a totally ordered Abelian group (G, +)and a symbol ∞ with $g < \infty$, $g + \infty = \infty + \infty = \infty$ for all $g \in G$, such that for all $x, y \in T$:

- (1) $\nu(xy) = \nu(x) + \nu(y).$
- (2) $\nu(x+y) \ge \min\{\nu(x), \nu(y)\}.$
- (3) $\nu(1) = 0$ and $\nu(0) = \infty$.

Lemma 2.3 [7, Proposition 1] Let R be a subring of the ring T, and let \mathfrak{p} be a prime ideal of R. Then the following are equivalent:

(1) If B is a subring of T containing R and if Q is an ideal of B such that $Q \cap R = \mathfrak{p}$, then B = R.

(2) If $x \in T \setminus R$, then there exists $x' \in \mathfrak{p}$ with $xx' \in R \setminus \mathfrak{p}$.

(3) There is a valuation on T such that $R = \{x \in T \mid \nu(x) \ge 0\}$ and $\mathfrak{p} = \{x \in T \mid \nu(x) > 0\}$.

If the above conditions hold, then (R, \mathfrak{p}) is called a valuation pair of T and R is said to be a valuation ring of T. When T = T(R), we simply say that (R, \mathfrak{p}) is a valuation pair.

Theorem 2.1 The following are equivalent for a ring *R*:

- (1) R is a PVMR.
- (2) Every regular ideal generated by two elements is w-invertible.
- (3) Every w-finite regular ideal is w-invertible.
- (4) $(R_{[\mathfrak{m}]}, [\mathfrak{m}]R_{[\mathfrak{m}]})$ is a valuation pair for every maximal w-ideal \mathfrak{m} .

(5) If A, B and C are ideals of R with A finitely generated and regular, then AB = AC implies that $B_w = C_w$.

(6) R is integrally closed and there exists a positive integer n > 1 such that $((a, b)^n)_w = (a^n, b^n)_w$ for all $a, b \in \mathbb{R}$ with a regular.

(7) R is integrally closed and there exists a positive integer n > 1 such that $a^{n-1}b \in (a^n, b^n)_w$ for all $a, b \in R$ with a regular.

Proof $(1) \Rightarrow (2)$. Trivial.

 $(2) \Rightarrow (4)$. We appeal to Lemma 2.3. For $\mathfrak{m} \in w\operatorname{-max}(R)$, let $x \in T(R) \setminus R_{[\mathfrak{m}]}$. Then there exists a regular element $b \in R$ such that $bx \in R$. Thus $((b, bx)I)_w = R$ for some $I \in \mathfrak{F}(R)$. For any $a \in I$, $ab \in \mathfrak{m}$. Otherwise, $abx \in R$ implies $x \in R_{[\mathfrak{m}]}$, a contradiction. Since $((b, bx)I)_w \not\subseteq \mathfrak{m}$, there exists $a \in I$ such that $abx \in R \setminus \mathfrak{m}$, as required.

 $(4) \Rightarrow (1)$. Let I be a finitely generated regular ideal of R. Assume that $I \subseteq \mathfrak{m}$, where $\mathfrak{m} \in w\operatorname{-max}(R)$. Since the prime at infinity of $(R_{[\mathfrak{m}]}, [\mathfrak{m}]R_{[\mathfrak{m}]})$ is not regular, it does not contain I. Hence there exists an element $t \in T(R)$ such that tI is in $R_{[\mathfrak{m}]}$ but is not contained in $[\mathfrak{m}]R_{[\mathfrak{m}]}$. Thus there exists an element $s \in R \setminus \mathfrak{m}$ such that $stI \subseteq R \setminus \mathfrak{m}$, and therefore, $II^{-1} \not\subseteq \mathfrak{m}$.

 $(1) \Leftrightarrow (3)$ is clear.

(1) \Rightarrow (5). Since $(AA^{-1}B)_w = (AA^{-1}C)_w, B_w = C_w$.

 $(5) \Rightarrow (6)$. By Lemma 2.1, R is integrally closed. Since $(a,b)^3 = (a^3, a^2b, ab^2, b^3) = (a,b)(a^2,b^2), ((a,b)^2)_w = (a^2,b^2)_w$ for all $a, b \in R$ with a regular.

 $(6) \Rightarrow (7)$. Trivial.

 $(7) \Rightarrow (2)$. By Lemma 2.2. \Box

A ring R is said to be a Marot ring if each regular ideal of R is generated by its set of regular elements.

Remark 2.1 Let R be a Marot ring. Assume that (5), (6) and (7) are respectively replaced by the following

(5') If A, B and C are finitely generated regular ideals of R, then AB = AC implies that $B_w = C_w$.

(6') R is integrally closed and there exists a positive integer n > 1 such that $((a, b)^n)_w = (a^n, b^n)_w$ for all $a, b \in R$ with a, b regular.

(7') R is integrally closed and there exists a positive integer n > 1 such that $a^{n-1}b \in (a^n, b^n)_w$ for all $a, b \in R$ with a, b regular.

Then (1), (2), (3), (4), (5'), (6') and (7') are equivalent. We only need to show that $(7') \Rightarrow (2)$. In fact, let *I* be a regular ideal generated by two elements. Then *I* admits a finite system of regular elements as generators by [8, Theorem 7.1]. Note that [6, Proposition 22.2] holds when replacing the phase "invertible" with "*w*-invertible". Therefore, *I* is *w*-invertible.

Lemma 2.4 Let R be a Marot ring, and $a, b \in R$ with a and b regular. If n is an integer greater than 1 such that $(a^n, b^n)_w = \bigcap_{\lambda \in \Gamma} I_\lambda$, where $\{I_\lambda \mid \lambda \in \Gamma\}$ is a set of ideals of R such that $I_\lambda = I_\lambda V_\lambda \bigcap R$ for some valuation overring V_λ of R, then

$$(a^n, b^n)_w = (a^n, a^{n-1}b, \dots, ab^{n-1}, b^n)_w = ((a, b)^n)_w.$$

Proof If i, j are positive integers with their sum n, then

$$(a^{i}b^{j})^{n} = (a^{n})^{i}(b^{n})^{j} \in (a^{n}, b^{n})^{n} \subseteq ((a^{n}, b^{n})_{w})^{n} \subseteq (I_{\lambda})^{n}$$

for each $\lambda \in \Gamma$. Thus $a^i b^j \in I_{\lambda}$. If not, then $a^i b^j \notin I_{\lambda} V_{\lambda}$. Set $c_{ij} = a^i b^j$. Moreover, if we show that $c_{ij}^n \notin (I_{\lambda} V_{\lambda})^n$, then $c_{ij}^n \notin (I_{\lambda})^n$, which is a contradiction. Therefore, without loss of generality we may assume that $R = V_{\lambda}$. Note that I_{λ} is generated by its set of regular elements. For each regular generator $x \in I_{\lambda}$, $\frac{c_{ij}}{x} \notin R$, and so $\frac{x}{c_{ij}} \in R$. Thus $I_{\lambda} \subset (c_{ij})$. Then $(I_{\lambda})^n \subseteq I_{\lambda}(c_{ij})^{n-1} \subset (c_{ij})^n$. Therefore, $c_{ij}^n \notin (I_{\lambda})^n$. It follows that $a^i b^j \in (a^n, b^n)_w = \bigcap_{\lambda \in \Gamma} I_{\lambda}$. Therefore, $(a^n, b^n) \subseteq (a^n, a^{n-1}b, \ldots, ab^{n-1}, b^n) = (a, b)^n \subseteq (a^n, b^n)_w$, as required. \Box

For $A \in \mathfrak{F}(R)$, define the completion of A by $A' = \bigcap AV_{\lambda}$, where $\{V_{\lambda}\}$ is the set of valuation overrings of R. A is said to be complete if A = A'. Gilmer [6] showed that a ring R is a Prüfer domain if and only if each ideal of R is complete. The completion of a flat ideal over an integrally closed domain was studied by Sally and Vasconcelos [9] and they showed that a flat ideal over a GCD domain, a Krull domain or an integrally closed coherent domain is complete. The completeness of flat ideals was also discussed by Glaz and Vasconcelos [10]. In [11], Wang discussed the completion of w-ideals and indicated that every w-ideal of a PVMD is complete, which generalized the work of Sally and Vasconcelos since flat ideals are w-ideals and GCD domains, Krull domains and integrally closed coherent domains are PVMDs. For the definition of completeness of an ideal over an integral domain, the reader may consult Gilmer [6].

For rings with zero divisors, it was shown that a Marot ring R is a Prüfer ring if and only if every ideal of R is complete [8, Theorem 21.3]. In the final theorem, we take a step forward in this direction and establish that a Marot ring R is a PVMR if and only if every w-ideal of R is complete. Here we have

Theorem 2.2 Let R be a Marot ring. Then the following are equivalent:

- (1) R is a PVMR.
- (2) For any nonzero ideal I of R, $I' \subseteq I_w$.
- (3) Every w-ideal of R is complete.
- (4) Every finite type w-ideal of R is complete.

(5) For every finite type w-ideal A of R, $A = \bigcap_{\lambda \in \Gamma} B_{\lambda}$, where $\{B_{\lambda} \mid \lambda \in \Gamma\}$ is a set of ideals of R such that $B_{\lambda} = B_{\lambda}V_{\lambda} \bigcap R$ for some valuation overring V_{λ} of R.

Proof (1) \Rightarrow (2). By Proposition 3, we have $I_w = \bigcap_{\mathfrak{m} \in w^- \max(R)} I_w R_{[\mathfrak{m}]}$. By Theorem 2.1, $R_{[\mathfrak{m}]}$ is a valuation ring for every $\mathfrak{m} \in w^- \max(R)$. Thus $I' \subseteq I_w$.

 $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are clear.

 $(5) \Rightarrow (1)$. We first show that R is an integrally closed ring. If not, then there exists $\frac{x}{y} \in R^c$, but $\frac{x}{y} \notin R$, where $x, y \in R$ with y regular. By [8, Theorems 7.7 and 9.1], we have

$$(y) = \bigcap_{\lambda \in \Gamma} (yV_{\lambda} \bigcap R) = y(\bigcap_{\lambda \in \Gamma} V_{\lambda}) \bigcap R = yR^{c} \bigcap R.$$

Then $x = y(\frac{x}{y}) \in (y)$, a contradiction.

By Remark 2.1, to complete the proof, we need to show that for any regular elements a, bof R, there exists an integer n for which $((a, b)^n)_w = (a^n, b^n)_w$. Since $(a^n, b^n)_w$ is a finite type w-ideal for any positive integer n > 1, $(a^n, b^n)_w = \bigcap_{\lambda \in \Gamma} I_\lambda$, where $\{I_\lambda \mid \lambda \in \Gamma\}$ is a set of ideals of R such that $I_\lambda = I_\lambda V_\lambda \bigcap R$ for some valuation overring V_λ of R. By Lemma 2.4, the result follows. \Box

Acknowledgements The author would like to thank the referee for a thorough report and many helpful suggestions, which have greatly improved this paper.

References

- Huayu YIN, Fanggui WANG, Xiaosheng ZHU, et al. w-Modules over commutative rings. J. Korean Math. Soc., 2011, 48(1): 207–222.
- [2] J. A. HUCKABA, I. J. PAPICK. Quotient rings of polynomial rings. Manuscripta Math., 1980, 31(1-3): 167–196.
- [3] R. MATSUDA. Notes on Prüfer v-multiplication rings. Bull. Fac. Sci. Ibaraki Univ., 1980, 12: 9–15.
- [4] S. El BAGHDADI, S. GABELLI. Ring-theoretic properties of PvMDs. Comm. Algebra, 2007, 35: 1607– 1625.
- [5] J. L. MOTT, M. ZAFRULLAH. On Prüfer v-multiplication domains. Manuscripta Math., 1981, 35: 1–26.
- [6] R. GILMER. Multiplicative Ideal Theory. Marcel Dekker, New York, 1972.
- [7] M. E. MANIS. Valuations on a commutative ring. Proc. Amer. Math. Soc., 1969, 20: 193-198.
- [8] J. A. HUCKABA. Commutative Rings with Zero Divisors. Marcel Dekker, New York, 1988.
- [9] J. D. SALLY, W. V. VASCONCELOS. Flat ideals (I). Comm. Algebra, 1975, 3: 531-543.
- [10] S. GLAZ, W. V. VASCONCELOS. Flat ideals (II). Manuscripta Math., 1977, 22: 325–341.
- [11] Fanggui WANG. w-dimension of domains. Comm. Algebra, 1999, 27(5): 2267-2276.