Some Characterizations of Prüfer v-Multiplication Rings

Huayu YIN
College of Mathematics and Software Science, Sichuan Normal University, Sichuan 610068, P. R. China

Abstract

In this paper, we study Prüfer v-multiplication rings (PVMRs) and give some new characterizations of PVMRs. Moreover, we show that a Marot ring R is a PVMR if and only if every w-ideal of R is complete.

Keywords w-ideal; integrally closed; PVMR; complete.
MR(2010) Subject Classification 13A15; 13F99

1. Introduction

Throughout this paper, R denotes a commutative ring with identity, $T(R)$ denotes its total quotient ring, and R^{c} denotes the integral closure of R in $T(R)$. R is called an integrally closed ring if $R=R^{c}$. An overring of R is a ring between R and $T(R)$. An element of R is regular if it is not a zero divisor. An ideal of R that contains a regular element is said to be a regular ideal.

Recall from [1] that an ideal J is called a Glaz-Vasconcelos ideal ($G V$-ideal), denoted by $J \in$ $G V(R)$, if J is finitely generated and the natural homomorphism from R into $J^{*}=\operatorname{Hom}_{R}(J, R)$ is an isomorphism. An R-module M is called a $G V$-torsionfree module if whenever $J x=0$, for some $J \in G V(R)$ and $x \in M$, then $x=0$. A $G V$-torsionfree R-module M is called a w-module if $\operatorname{Ext}_{R}^{1}(R / J, M)=0$ for any $J \in G V(R)$, and the w-envelope of M is defined by $M_{w}=\{x \in E(M) \mid J x \subseteq M$ for some $J \in G V(R)\}$, where $E(M)$ is the injective envelope of $M . M$ is a w-module if and only if $M_{w}=M . M$ is said to be w-finite (or of finite type, when no confusion is likely) if $M_{w}=N_{w}$ for some finitely generated submodule N of M. A maximal w-ideal is an ideal that is maximal among the proper w-ideals. We denote by w - $\max (R)$ the set of maximal w-ideals of R. In this paper, we consider the case w - $\max (R) \neq \emptyset$. In fact, if $w-\max (R)=\emptyset$, and suppose that c is a regular element of R. Then $(c)=(c)_{w}=R$, and so c is a unit, therefore $R=T(R)$. Let $\mathfrak{F}(R)$ be the set of R-submodules of $T(R)$.

Recall that an integral domain R is called a Prüfer v-multiplication domain (PVMD) if each finitely generated ideal is w-invertible. In 1980, Huckaba and Papick [2], and Matsuda [3] extended this notion to rings with zero divisors by declaring that a ring R is said to be a Prüfer v-multiplication ring (PVMR) if each finitely generated regular ideal is w-invertible. For a monographic study on PVMDs, the reader may consult $[4,5]$.

Received May 24, 2013; Accepted November 11, 2013
Supported by the National Natural Science Foundation of China (Grant Nos. 11171240; 10971090) and the Scientific Research Fund of Sichuan Provincial Education Department (Grant Nos. 14ZB0035; 12ZB107).
E-mail address: hyyin520@163.com

In [1], the theory of w-operations was developed for arbitrary commutative rings. The purpose of this paper is to characterize PVMRs by the w-operation.

2. PVMRs and completion of w-ideals

Let S be a multiplicatively closed subset of R. The large quotient ring of R with respect to S, denoted by $R_{[S]}$, is the set $R_{[S]}=\{z \in T(R) \mid s z \in R$ for some $s \in S\}$. If $A \in \mathfrak{F}(R)$, then $[A] R_{[S]}=\{z \in T(R) \mid s z \in A$ for some $s \in S\}$ is an $R_{[S]}$-submodule of $T(R)$. In particular, if I is an ideal of R, then $[I] R_{[S]}$ is an ideal of $R_{[S]}$. For a prime ideal \mathfrak{p}, we write $R_{[\mathfrak{p}]}$ in place of $R_{[R \backslash \mathfrak{p}]}$.

Proposition 2.1 Let $A \in \mathfrak{F}(R)$. Then $[A] R_{[\mathfrak{p}]}$ is a w-module as an R-module for every prime w-ideal \mathfrak{p} of R.

Proof First, we prove that $[A] R_{[\mathfrak{p}]}$ is a $G V$-torsionfree R-module. Let $J x=0$ for some $J \in$ $G V(R)$ and $x \in[A] R_{[\mathfrak{p}]}$. There exists a regular element $b \in R$ such that $b x \in R$. Thus $J b x=0$, and so $b x=0$. Therefore, $x=0$.

Let $J x \subseteq[A] R_{[\mathfrak{p}]}$ for some $J \in G V(R)$ and $x \in E(R)$. Then there exists an element $s_{1} \in R \backslash \mathfrak{p}$ such that $J s_{1} x \subseteq A$. Note that $J \nsubseteq \mathfrak{p}$. So there exists an element $s_{2} \in J$, but $s_{2} \notin \mathfrak{p}$ such that $s_{1} s_{2} x \in A$. Thus $x \in[A] R_{[\mathfrak{p}]}$.

Note that for every prime ideal \mathfrak{p} of $R, R_{[\mathfrak{p}]}$ is a w-module as an R-module. In fact, let $J x \subseteq R_{[\mathfrak{p}]}$ for some $J \in G V(R)$ and $x \in E(R)$. There exists an element $s \in R \backslash \mathfrak{p}$ such that $J s x \subseteq R$. Thus $s x \in R$ since R is a w-module. It follows that $x \in R_{[\mathfrak{p}]}$.

Corollary 2.1 Let $A \in \mathfrak{F}(R)$. Then $\left[A_{w}\right] R_{[\mathfrak{p}]}=[A] R_{[\mathfrak{p}]}$ for every prime w-ideal \mathfrak{p} of R.
Proof For $x \in\left[A_{w}\right] R_{[\mathfrak{p}]}$, there exists an element $s \in R \backslash \mathfrak{p}$ such that $s x \in A_{w}$. Then there exists $J \in G V(R)$ such that $J s x \subseteq A$. Thus $J x \subseteq[A] R_{[\mathfrak{p}]}$, and so $x \in[A] R_{[\mathfrak{p}]}$, as required.

Proposition 2.2 If $A \in \mathfrak{F}(R)$, then $A_{w}=\bigcap_{\mathfrak{m} \in w-\max (R)} A_{w} R_{[\mathfrak{m}]}=\bigcap_{\mathfrak{m} \in w-\max (R)}\left[A_{w}\right] R_{[\mathfrak{m}]}$.
Proof Clearly, $A_{w} \subseteq \bigcap_{\mathfrak{m} \in w^{-\max (R)}} A_{w} R_{[\mathfrak{m}]} \subseteq \bigcap_{\mathfrak{m} \in w-\max (R)}\left[A_{w}\right] R_{[\mathfrak{m}]}$.
Let $x \in \bigcap_{\mathfrak{m} \in w-\max (R)}\left[A_{w}\right] R_{[\mathfrak{m}]}$. Then $I=\left(A_{w}:_{R} x\right)=\left\{r \in R \mid r x \in A_{w}\right\}$ is a w-ideal of R.
For each $\mathfrak{m} \in w-\max (R)$, there exists $s \in R \backslash \mathfrak{m}$ such that $s x \in A_{w}$. Thus $I \nsubseteq \mathfrak{m}$, and so $I=R$. Therefore, $x \in A_{w}$.

Corollary 2.2 Let R be a ring. Then $R=\bigcap_{\mathfrak{m} \in w-\max (R)} R_{[\mathfrak{m}]}$.
Lemma 2.1 The following are equivalent for a ring R :
(1) R is integrally closed.
(2) If a is a regular element of R and I is a finitely generated regular ideal of R such that $I^{2}=I a$, then $I_{w}=(a)$.
(3) If a is a regular element of R and I is a finitely generated regular ideal of R such that $I^{2}=I a$, then $I_{w} \subseteq(a)$.

Proof $(1) \Rightarrow(2)$. By [6, Proposition 24.1], $I=(a)$. Thus $I_{w}=(a)$.
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$. It follows from $\left[6\right.$, Proposition 24.1] since $I \subseteq I_{w} \subseteq(a)$.
Lemma 2.2 Let R be an integrally closed ring. Suppose that $a, b \in R$ with a regular. If there exists $n>1$ such that $a^{n-1} b \in\left(a^{n}, b^{n}\right)_{w}$, then (a, b) is w-invertible.

Proof We prove this by an induction on n. Assume that $n=2$. Then there exists $J=$ $\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in G V(R)$ such that $J a b \subseteq\left(a^{2}, b^{2}\right)$. For each $1 \leqslant i \leqslant m, c_{i} a b=x_{i} a^{2}+y_{i} b^{2}$, where $x_{i}, y_{i} \in R$. Multiplying this equation by $\frac{y_{i}}{a^{2}}$, we have $\left(\frac{y_{i} b}{a}\right)^{2}-c_{i}\left(\frac{y_{i} b}{a}\right)+x_{i} y_{i}=0$. Thus $\frac{y_{i} b}{a}$ is integral over R, and is therefore in R. Write $z_{i}=\frac{y_{i} b}{a}$. Note that

$$
c_{i} a \in(a, b)\left(y_{i}, c_{i}-z_{i}\right)=\left(a y_{i}, a z_{i}, a\left(c_{i}-z_{i}\right), a x_{i}\right) \subseteq(a) .
$$

Set $I=\left(y_{1}, c_{1}-z_{1}\right)+\cdots+\left(y_{m}, c_{m}-z_{m}\right)$. Then $J a \subseteq(a, b) I \subseteq(a)$. Hence $J \subseteq(a, b) I a^{-1} \subseteq R$, and therefore, $\left((a, b) I a^{-1}\right)_{w}=R$.

Suppose that this lemma is true for the integer $n-1$. Let $a^{n-1} b \in\left(a^{n}, b^{n}\right)_{w}$. Then $c_{i} a^{n-1} b=x_{i} a^{n}+y_{i} b^{n}$, where $J=\left(c_{1}, c_{2}, \ldots, c_{m}\right) \in G V(R)$ and $x_{i}, y_{i} \in R(1 \leqslant i \leqslant m)$. We also have $\frac{y_{i} b}{a}$ is integral over R, and therefore is in R. Write $z_{i}=\frac{y_{i} b}{a}$. Then $c_{i} a^{n-1} b=x_{i} a^{n}+a z_{i} b^{n-1}$. Thus $c_{i} a^{n-2} b=x_{i} a^{n-1}+z_{i} b^{n-1} \in\left(a^{n-1}, b^{n-1}\right)$. Therefore $J a^{n-2} b \subseteq\left(a^{n-1}, b^{n-1}\right)$. It follows that $a^{n-2} b \subseteq\left(a^{n-1}, b^{n-1}\right)_{w}$. The induction hypothesis then shows that (a, b) is w-invertible.

Recall that a valuation is a map ν from a ring T onto a totally ordered Abelian group $(G,+)$ and a symbol ∞ with $g<\infty, g+\infty=\infty+\infty=\infty$ for all $g \in G$, such that for all $x, y \in T$:
(1) $\nu(x y)=\nu(x)+\nu(y)$.
(2) $\nu(x+y) \geq \min \{\nu(x), \nu(y)\}$.
(3) $\nu(1)=0$ and $\nu(0)=\infty$.

Lemma 2.3 [7, Proposition 1] Let R be a subring of the ring T, and let \mathfrak{p} be a prime ideal of R. Then the following are equivalent:
(1) If B is a subring of T containing R and if Q is an ideal of B such that $Q \bigcap R=\mathfrak{p}$, then $B=R$.
(2) If $x \in T \backslash R$, then there exists $x^{\prime} \in \mathfrak{p}$ with $x x^{\prime} \in R \backslash \mathfrak{p}$.
(3) There is a valuation on T such that $R=\{x \in T \mid \nu(x) \geq 0\}$ and $\mathfrak{p}=\{x \in T \mid \nu(x)>0\}$.

If the above conditions hold, then (R, \mathfrak{p}) is called a valuation pair of T and R is said to be a valuation ring of T. When $T=T(R)$, we simply say that (R, \mathfrak{p}) is a valuation pair.

Theorem 2.1 The following are equivalent for a ring R :
(1) R is a PVMR.
(2) Every regular ideal generated by two elements is w-invertible.
(3) Every w-finite regular ideal is w-invertible.
(4) $\left(R_{[\mathfrak{m}]},[\mathfrak{m}] R_{[\mathfrak{m}]}\right)$ is a valuation pair for every maximal w-ideal \mathfrak{m}.
(5) If A, B and C are ideals of R with A finitely generated and regular, then $A B=A C$ implies that $B_{w}=C_{w}$.
(6) R is integrally closed and there exists a positive integer $n>1$ such that $\left((a, b)^{n}\right)_{w}=$ $\left(a^{n}, b^{n}\right)_{w}$ for all $a, b \in R$ with a regular.
(7) R is integrally closed and there exists a positive integer $n>1$ such that $a^{n-1} b \in$ $\left(a^{n}, b^{n}\right)_{w}$ for all $a, b \in R$ with a regular.

Proof (1) \Rightarrow (2). Trivial.
$(2) \Rightarrow(4)$. We appeal to Lemma 2.3. For $\mathfrak{m} \in w$ - $\max (R)$, let $x \in T(R) \backslash R_{[\mathfrak{m}]}$. Then there exists a regular element $b \in R$ such that $b x \in R$. Thus $((b, b x) I)_{w}=R$ for some $I \in \mathfrak{F}(R)$. For any $a \in I, a b \in \mathfrak{m}$. Otherwise, $a b x \in R$ implies $x \in R_{[\mathfrak{m}]}$, a contradiction. Since $((b, b x) I)_{w} \nsubseteq \mathfrak{m}$, there exists $a \in I$ such that $a b x \in R \backslash \mathfrak{m}$, as required.
(4) \Rightarrow (1). Let I be a finitely generated regular ideal of R. Assume that $I \subseteq \mathfrak{m}$, where $\mathfrak{m} \in w-\max (R)$. Since the prime at infinity of $\left(R_{[\mathfrak{m}]},[\mathfrak{m}] R_{[\mathfrak{m}]}\right)$ is not regular, it does not contain I. Hence there exists an element $t \in T(R)$ such that $t I$ is in $R_{[\mathfrak{m}]}$ but is not contained in $[\mathfrak{m}] R_{[\mathfrak{m}]}$. Thus there exists an element $s \in R \backslash \mathfrak{m}$ such that $s t I \subseteq R \backslash \mathfrak{m}$, and therefore, $I I^{-1} \nsubseteq \mathfrak{m}$.
$(1) \Leftrightarrow(3)$ is clear.
$(1) \Rightarrow(5)$. Since $\left(A A^{-1} B\right)_{w}=\left(A A^{-1} C\right)_{w}, B_{w}=C_{w}$.
$(5) \Rightarrow(6)$. By Lemma 2.1, R is integrally closed. Since $(a, b)^{3}=\left(a^{3}, a^{2} b, a b^{2}, b^{3}\right)=$ $(a, b)\left(a^{2}, b^{2}\right),\left((a, b)^{2}\right)_{w}=\left(a^{2}, b^{2}\right)_{w}$ for all $a, b \in R$ with a regular.
$(6) \Rightarrow(7)$. Trivial.
$(7) \Rightarrow(2)$. By Lemma 2.2.
A ring R is said to be a Marot ring if each regular ideal of R is generated by its set of regular elements.

Remark 2.1 Let R be a Marot ring. Assume that (5), (6) and (7) are respectively replaced by the following
$\left(5^{\prime}\right)$ If A, B and C are finitely generated regular ideals of R, then $A B=A C$ implies that $B_{w}=C_{w}$.
$\left(6^{\prime}\right) R$ is integrally closed and there exists a positive integer $n>1$ such that $\left((a, b)^{n}\right)_{w}=$ $\left(a^{n}, b^{n}\right)_{w}$ for all $a, b \in R$ with a, b regular.
$\left(7^{\prime}\right) R$ is integrally closed and there exists a positive integer $n>1$ such that $a^{n-1} b \in$ $\left(a^{n}, b^{n}\right)_{w}$ for all $a, b \in R$ with a, b regular.
Then (1), (2), (3), (4), (5 $\left.5^{\prime}\right),\left(6^{\prime}\right)$ and $\left(7^{\prime}\right)$ are equivalent. We only need to show that $\left(7^{\prime}\right) \Rightarrow(2)$. In fact, let I be a regular ideal generated by two elements. Then I admits a finite system of regular elements as generators by [8, Theorem 7.1]. Note that [6, Proposition 22.2] holds when replacing the phase "invertible" with " w-invertible". Therefore, I is w-invertible.

Lemma 2.4 Let R be a Marot ring, and $a, b \in R$ with a and b regular. If n is an integer greater than 1 such that $\left(a^{n}, b^{n}\right)_{w}=\bigcap_{\lambda \in \Gamma} I_{\lambda}$, where $\left\{I_{\lambda} \mid \lambda \in \Gamma\right\}$ is a set of ideals of R such that $I_{\lambda}=I_{\lambda} V_{\lambda} \bigcap R$ for some valuation overring V_{λ} of R, then

$$
\left(a^{n}, b^{n}\right)_{w}=\left(a^{n}, a^{n-1} b, \ldots, a b^{n-1}, b^{n}\right)_{w}=\left((a, b)^{n}\right)_{w}
$$

Proof If i, j are positive integers with their sum n, then

$$
\left(a^{i} b^{j}\right)^{n}=\left(a^{n}\right)^{i}\left(b^{n}\right)^{j} \in\left(a^{n}, b^{n}\right)^{n} \subseteq\left(\left(a^{n}, b^{n}\right)_{w}\right)^{n} \subseteq\left(I_{\lambda}\right)^{n}
$$

for each $\lambda \in \Gamma$. Thus $a^{i} b^{j} \in I_{\lambda}$. If not, then $a^{i} b^{j} \notin I_{\lambda} V_{\lambda}$. Set $c_{i j}=a^{i} b^{j}$. Moreover, if we show that $c_{i j}^{n} \notin\left(I_{\lambda} V_{\lambda}\right)^{n}$, then $c_{i j}^{n} \notin\left(I_{\lambda}\right)^{n}$, which is a contradiction. Therefore, without loss of generality we may assume that $R=V_{\lambda}$. Note that I_{λ} is generated by its set of regular elements. For each regular generator $x \in I_{\lambda}, \frac{c_{i j}}{x} \notin R$, and so $\frac{x}{c_{i j}} \in R$. Thus $I_{\lambda} \subset\left(c_{i j}\right)$. Then $\left(I_{\lambda}\right)^{n} \subseteq I_{\lambda}\left(c_{i j}\right)^{n-1} \subset\left(c_{i j}\right)^{n}$. Therefore, $c_{i j}^{n} \notin\left(I_{\lambda}\right)^{n}$. It follows that $a^{i} b^{j} \in\left(a^{n}, b^{n}\right)_{w}=\bigcap_{\lambda \in \Gamma} I_{\lambda}$. Therefore, $\left(a^{n}, b^{n}\right) \subseteq\left(a^{n}, a^{n-1} b, \ldots, a b^{n-1}, b^{n}\right)=(a, b)^{n} \subseteq\left(a^{n}, b^{n}\right)_{w}$, as required.

For $A \in \mathfrak{F}(R)$, define the completion of A by $A^{\prime}=\bigcap A V_{\lambda}$, where $\left\{V_{\lambda}\right\}$ is the set of valuation overrings of R. A is said to be complete if $A=A^{\prime}$. Gilmer [6] showed that a ring R is a Prüfer domain if and only if each ideal of R is complete. The completion of a flat ideal over an integrally closed domain was studied by Sally and Vasconcelos [9] and they showed that a flat ideal over a GCD domain, a Krull domain or an integrally closed coherent domain is complete. The completeness of flat ideals was also discussed by Glaz and Vasconcelos [10]. In [11], Wang discussed the completion of w-ideals and indicated that every w-ideal of a PVMD is complete, which generalized the work of Sally and Vasconcelos since flat ideals are w-ideals and GCD domains, Krull domains and integrally closed coherent domains are PVMDs. For the definition of completeness of an ideal over an integral domain, the reader may consult Gilmer [6].

For rings with zero divisors, it was shown that a Marot ring R is a Prüfer ring if and only if every ideal of R is complete [8, Theorem 21.3]. In the final theorem, we take a step forward in this direction and establish that a Marot ring R is a PVMR if and only if every w-ideal of R is complete. Here we have

Theorem 2.2 Let R be a Marot ring. Then the following are equivalent:
(1) R is a $P V M R$.
(2) For any nonzero ideal I of $R, I^{\prime} \subseteq I_{w}$.
(3) Every w-ideal of R is complete.
(4) Every finite type w-ideal of R is complete.
(5) For every finite type w-ideal A of $R, A=\bigcap_{\lambda \in \Gamma} B_{\lambda}$, where $\left\{B_{\lambda} \mid \lambda \in \Gamma\right\}$ is a set of ideals of R such that $B_{\lambda}=B_{\lambda} V_{\lambda} \bigcap R$ for some valuation overring V_{λ} of R.

Proof $(1) \Rightarrow(2)$. By Proposition 3, we have $I_{w}=\bigcap_{\mathfrak{m} \in w^{-\max (R)}} I_{w} R_{[\mathfrak{m}]}$. By Theorem 2.1, $R_{[\mathfrak{m}]}$ is a valuation ring for every $\mathfrak{m} \in w-\max (R)$. Thus $I^{\prime} \subseteq I_{w}$.
$(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$ are clear.
$(5) \Rightarrow(1)$. We first show that R is an integrally closed ring. If not, then there exists $\frac{x}{y} \in R^{c}$, but $\frac{x}{y} \notin R$, where $x, y \in R$ with y regular. By [8, Theorems 7.7 and 9.1], we have

$$
(y)=\bigcap_{\lambda \in \Gamma}\left(y V_{\lambda} \bigcap R\right)=y\left(\bigcap_{\lambda \in \Gamma} V_{\lambda}\right) \bigcap R=y R^{c} \bigcap R .
$$

Then $x=y\left(\frac{x}{y}\right) \in(y)$, a contradiction.

By Remark 2.1, to complete the proof, we need to show that for any regular elements a, b of R, there exists an integer n for which $\left((a, b)^{n}\right)_{w}=\left(a^{n}, b^{n}\right)_{w}$. Since $\left(a^{n}, b^{n}\right)_{w}$ is a finite type w-ideal for any positive integer $n>1,\left(a^{n}, b^{n}\right)_{w}=\bigcap_{\lambda \in \Gamma} I_{\lambda}$, where $\left\{I_{\lambda} \mid \lambda \in \Gamma\right\}$ is a set of ideals of R such that $I_{\lambda}=I_{\lambda} V_{\lambda} \bigcap R$ for some valuation overring V_{λ} of R. By Lemma 2.4, the result follows.

Acknowledgements The author would like to thank the referee for a thorough report and many helpful suggestions, which have greatly improved this paper.

References

[1] Huayu YIN, Fanggui WANG, Xiaosheng ZHU, et al. w-Modules over commutative rings. J. Korean Math. Soc., 2011, 48(1): 207-222.
[2] J. A. HUCKABA, I. J. PAPICK. Quotient rings of polynomial rings. Manuscripta Math., 1980, 31(1-3): 167-196.
[3] R. MATSUDA. Notes on Prüfer v-multiplication rings. Bull. Fac. Sci. Ibaraki Univ., 1980, 12: 9-15.
[4] S. El BAGHDADI, S. GABELLI. Ring-theoretic properties of PvMDs. Comm. Algebra, 2007, 35: 16071625.
[5] J. L. MOTT, M. ZAFRULLAH. On Prüfer v-multiplication domains. Manuscripta Math., 1981, 35: 1-26.
[6] R. GILMER. Multiplicative Ideal Theory. Marcel Dekker, New York, 1972.
[7] M. E. MANIS. Valuations on a commutative ring. Proc. Amer. Math. Soc., 1969, 20: 193-198.
[8] J. A. HUCKABA. Commutative Rings with Zero Divisors. Marcel Dekker, New York, 1988.
[9] J. D. SALLY, W. V. VASCONCELOS. Flat ideals (I). Comm. Algebra, 1975, 3: 531-543.
[10] S. GLAZ, W. V. VASCONCELOS. Flat ideals (II). Manuscripta Math., 1977, 22: 325-341.
[11] Fanggui WANG. w-dimension of domains. Comm. Algebra, 1999, 27(5): 2267-2276.

