Journal of Mathematical Research with Applications May, 2014, Vol. 34, No. 3, pp. 301–306 DOI:10.3770/j.issn:2095-2651.2014.03.006 Http://jmre.dlut.edu.cn

Coleman Automorphisms of Finite Groups with a Unique Nontrivial Normal Subgroup

Zhengxing LI*, Jinke HAI, Shuxian YANG

College of Mathematics, Qingdao University, Shandong 266071, P. R. China

Abstract Let G be a finite group with a unique nontrivial normal subgroup. It is shown that every Coleman automorphism of G is an inner automorphism.

Keywords Coleman automorphism; minimal normal subgroup.

MR(2010) Subject Classification 20D45; 20E22; 20C05

1. Introduction

All groups considered in this paper are finite. Let G be a finite group and let σ be an automorphism of G. Recall that σ is said to be a Coleman automorphism if the restriction of σ to any Sylow subgroup of G equals the restriction of some inner automorphism of G. This concept was introduced by Hertweck and Kimmerle in [1]. Denote by $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ the automorphism group and the inner automorphism group of G respectively. Denote by $\operatorname{Aut}_{\operatorname{Col}}(G)$ the group formed by all Coleman automorphisms of G. It is clear that $\operatorname{Inn}(G) \leq \operatorname{Aut}_{\operatorname{Col}}(G)$. Set $\operatorname{Out}_{\operatorname{Col}}(G) := \operatorname{Aut}_{\operatorname{Col}}(G)/\operatorname{Inn}(G)$. Recently, lots of results on Coleman automorphisms have appeared in the literature, see [2,3] for instance.

The aim of the present paper is to investigate Coleman automorphisms of finite groups having a unique nontrivial normal subgroup. The description of the structure of such groups had been obtained by Qinhai Zhang and Jianji Cao in [4]. By making use of the structure theorems therein, we can prove the following main result (Theorem 3.1).

Theorem A Let G be a finite group having a unique nontrivial normal subgroup. Then every Coleman automorphism of G is inner, i.e., $Out_{Col}(G) = 1$.

More generally, we have the following result (Theorem 3.2).

Theorem B Let G be a finite group whose nontrivial normal subgroups have the same order. Then every Coleman automorphism of G is inner, i.e., $Out_{Col}(G) = 1$.

2. Notation and preliminaries

Received June 10, 2013; Accepted September 11, 2013

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant Nos. 11171169; 11071155) and the Doctorial Foundation of Shandong Province (Grant No. BS2012SF003).

E-mail address: lzxlws@163.com (Zhengxing LI); haijinke2002@yahoo.com.cn (Jinke HAI); yangshuxian@qdu.ed-u.cn (Shuxian YANG)

In this section, we first fix some nation and then record some lemmas that will be used in the sequel. Let G be a finite group, $\sigma \in \operatorname{Aut}(G)$ and $H \leq G$. We write $\sigma|_H$ for the restriction of σ to H. If $H \leq G$ and σ fixes H, then we write $\sigma|_{G/H}$ for the automorphism of the quotient G/H induced by σ in the natural way. Denote by $C_G(H)$ and $N_G(H)$ the centralizer and the normalizer of H in G, respectively. Denote by $\pi(G)$ the set of all primes dividing the order of G. Let $p \in \pi(G)$. Denote by $O_p(G)$ and $O_{p'}(G)$ the largest normal p-subgroup and p'-subgroup of G, respectively. C_p always denotes a cyclic group of order p. Denote by F(G) and $F^*(G)$ the Fitting subgroup and the generalized Fitting subgroup of G, respectively. Denote by Z(G) the center of G. For a fixed $x \in G$, we write $\operatorname{conj}(x)$ for the inner automorphism of G induced by x via conjugacy, i.e., $g^{\operatorname{conj}(x)} = g^x$ for any $g \in G$. We refer to [5] for other notations, which are mostly standard.

Lemma 2.1 ([4, Theorem 1.2]) Let G be a finite solvable group. If G has a unique nontrivial normal subgroup, then one of the following holds.

(I) G is a cyclic p-group of order p^2 ;

(II) G is a semidirect product $G = P \rtimes Q$, where P is an elementary abelian p-group and Q is a cyclic group of order q, with p and q being distinct primes. Moreover, the action of Q on P is irreducible.

Lemma 2.2 ([4, Theorem 1.3]) Let G be a finite non-solvable group. If G has a unique nontrivial normal subgroup K, then

- (I) K is solvable.
- (i) If $K \leq Z(G)$, then G is a covering group of a finite simple group and $Z(G) \cong C_p$.

(ii) If $K \nleq Z(G)$, then $G/K \cong D$ is a finite non-abelian simple group. D acts irreducibly on K.

(II) K is non-solvable.

(i) Assume that T is a non-abelian simple group. Then $K \cong T$ if and only if G is almost simple group and $G/K \cong C_p$.

(ii) If $K \cong T^n$, where T is a non-abelian simple group and n > 1, then $G/K \cong D$, where D is a simple group.

Lemma 2.3 ([4, Theorem 1.1]) Let G be a finite group. Then all nontrivial normal subgroups of G have the same order if and only if G is one of the following:

- (1) G is a simple group;
- (2) G has a unique nontrivial normal subgroup;
- (3) $G \cong T \times T$, where T is a finite simple group;

$$(4) \ G \cong A_8 \times L_3(4);$$

(5) $G \cong B_n(q) \times C_n(q)$, where $n \ge 3$ and q is odd.

Lemma 2.4 ([1, Proposition 1]) Let G be a finite group. Then $\pi(\operatorname{Aut}_{\operatorname{Col}}(G)) \subseteq \pi(G)$.

Lemma 2.5 ([1, Corollary 3]) Let $N \leq G$ and let p be a prime which does not divide the order

Coleman automorphisms of finite groups with a unique nontrivial normal subgroup

of G/N. Then the following hold.

- (i) If $\sigma \in \operatorname{Aut}_{\operatorname{Col}}(G)$, then $\sigma|_N \in \operatorname{Aut}_{\operatorname{Col}}(N)$;
- (ii) If $\operatorname{Out}_{\operatorname{Col}}(N)$ is a p'-group, then so is $\operatorname{Out}_{\operatorname{Col}}(G)$.

Lemma 2.6 ([1, Corollary 16]) Let G be a quasinilpotent group. Then $Out_{Col}(G) = 1$.

Recall that a finite group G is said to be *p*-constrained group if $C_{\bar{G}}(O_p(\bar{G})) \leq O_p(\bar{G})$, where $\bar{G} := G/O_{p'}(G)$. Recall that an automorphism σ of G is said to be a *p*-central automorphism of G if the restriction of σ to a Sylow *p*-subgroup of G is trivial.

Lemma 2.7 ([6, Corollary 2.4]) Let G be a p-constrained group with $O_{p'}(G) = 1$ for some prime p. Then p-central automorphisms of G are inner automorphisms, given by conjugation with element from $Z(O_p(G))$.

Lemma 2.8 ([1, Theorem 14]) Let G be a simple group. Then there is a prime $p \in \pi(G)$ such that p-central automorphisms of G are inner automorphisms.

Lemma 2.9 ([7, Lemma 2]) Let p be a prime, and φ be a p-power order automorphism of a finite group G. Suppose that there is a normal subgroup N of G such that φ fixes all elements of N, and that φ induces the identity on the quotient group G/N. Then φ induces the identity on $G/O_p(\mathbb{Z}(N))$. Further, if φ fixes element-wise a Sylow p-subgroup of G, then φ is an inner automorphism of G.

Lemma 2.10 ([1, Lemma 19]) Assume that no chief factor of $G/F^*(G)$ is isomorphic to C_p , and let $\sigma \in Aut(G)$ be of p-power order. If σ induces the identity on G/N for some $N \leq G$ with $N^{\sigma} = N$ and Q is a Sylow subgroup of N with $\sigma|_Q = conj(x)|_Q$ for some $x \in G$, then there is $g \in O_p(G)N$ such that $\sigma|_Q = conj(g)|_Q$.

3. Proofs of Theorems A and B

In this section, we present proofs for Theorems A and B. For convenience, we record Theorem A here as

Theorem 3.1 Let G be a finite group having a unique nontrivial normal subgroup. Then every Coleman automorphism of G is an inner automorphism, i.e., $Out_{Col}(G) = 1$.

Proof The proof of Theorem 3.1 splits into two cases according to the solvability of G.

Case 1 G is solvable.

According to Lemma 2.1, the proof of this case splits into two subcases.

Subcase 1.1 G is a cyclic p-group of order p^2 .

Since G is a p-group, the assertion holds trivially.

Subcase 1.2 G is a semidirect product of an elementary abelian p-group P and a cyclic group Q of order q with p, q distinct primes.

Since p does not divide |Q|, it follows from Lemmas 2.4 and 2.5 that $\operatorname{Out}_{\operatorname{Col}}(G)$ is a qgroup. Thus to confirm the assertion in this case, it suffices to show that $\sigma \in \operatorname{Inn}(G)$ for any Coleman automorphism σ of q-power order. Since $\sigma \in \operatorname{Aut}_{\operatorname{Col}}(G)$, it follows from the definition of Coleman automorphism that there exists some $g \in G$ such that $\sigma|_P = \operatorname{conj}(g)|_P$. Without loss of generality, we may assume that

$$\sigma|_P = \mathrm{id}|_P. \tag{3.1}$$

Note that σ acts naturally on the set $\operatorname{Syl}_q(G)$ of all Sylow q-subgroup of G. Since the order of σ and the cardinality of $\operatorname{Syl}_q(G)$ are coprime, it follows that σ fixes a Sylow q-subgroup of G. Without loss of generality, we may assume that σ fixes Q, i.e.,

$$Q^{\sigma} = Q. \tag{3.2}$$

Since $\sigma \in Aut_{Col}(G)$, there exists some $x \in G$ such that

$$\sigma|_Q = \operatorname{conj}(x)|_Q. \tag{3.3}$$

Without loss of generality, we may assume that x is a q-element. Then, by (3.2) and (3.3), one obtains $x \in N_G(Q)$ and hence $x \in Q$. But note that Q is cyclic, so we must have

$$\sigma|_Q = \operatorname{conj}(x)|_Q = \operatorname{id}|_Q. \tag{3.4}$$

Since $G = P \rtimes Q$, it follows from (3.1) and (3.4) that $\sigma = id$.

Case 2 G is non-solvable.

Let K be the unique nontrivial normal subgroup of G. According to Lemma 2.2, the proof of this case splits into two subcases:

Subcase 2.1 K is solvable.

Firstly, we consider the case in which $K \leq Z(G)$. By Lemma 2.2, $K = Z(G) \cong C_p$ and G is a covering group of a simple group, i.e., G/Z(G) is isomorphic to a non-abelian simple group. Note that $F^*(G) \geq K = Z(G)$, so we must have $F^*(G) = G$. In effect, assume that $F^*(G) < G$, then $F^*(G) = K = Z(G)$, which implies that $C_G(F^*(G)) = C_G(Z(G)) = G > F^*(G)$. However, this cannot occur since $F^*(G)$ is self-centralized for any finite group G. Hence we must have $F^*(G) = G$. This shows that G is a quasinilpotent group and thus by Lemma 2.6 the assertion holds.

Secondly, we consider the case in which $K \nleq Z(G)$. On the one hand, it is clear that $C_G(K)$ is proper normal subgroup of G. On the other hand, since K is solvable, it follows that K is ableian and hence $C_G(K)$ is a nontrivial proper normal subgroup of G containing K. Consequently, we must have $C_G(K) = K$ since by hypothesis K is the unique nontrivial normal subgroup. In addition, note that $K = O_p(G)$ for some prime $p \in \pi(G)$, so $O_{p'}(G) = 1$. This shows that G is a p-constrained group and hence by Lemma 2.7 every p-central automorphism of G is inner. In particular, $Out_{Col}(G) = 1$.

Subcase 2.2 K is non-solvable.

Firstly, we consider the case in which K is a non-abelian simple group and $G/K \cong C_p$. Let $\sigma \in \operatorname{Aut}_{\operatorname{Col}}(G)$. We have to show that $\sigma \in \operatorname{Inn}(G)$. By Lemmas 2.4 and 2.5, we may assume that σ is of p-power order. By Lemma 2.8, there exists some $q \in \pi(K)$ such that qcentral automorphisms of K are inner. Thus, modifying σ by some inner automorphism, we may assume that $\sigma|_K \in \operatorname{Inn}(K)$. So there exists some $k \in K$ such that

$$\sigma|_K = \operatorname{conj}(k)|_K. \tag{3.5}$$

Without loss of generality, we may assume that

$$\sigma|_K = \mathrm{id}|_K. \tag{3.6}$$

Note that G/K is a cyclic group of order p, so we have

$$\sigma|_{G/K} = \mathrm{id}|_{G/K}.\tag{3.7}$$

Consequently, by Lemma 2.9, $\sigma|_{G/O_p(Z(K))} = \mathrm{id}|_{G/O_p(Z(K))}$, which implies that $\sigma = \mathrm{id}$ since $O_p(Z(K)) = 1$.

Secondly, we consider the case in which K is a direct product of n copies of a non-abelian simple group and $G/K \cong C_p$, where n > 1. The proof of this case is similar to that of the previous case in which K is a non-abelian simple group and $G/K \cong C_p$, so we omit it.

Finally, we consider the case in which K is a direct product of n copies of a non-abelian simple group and G/K is isomorphic to a non-abelian simple group, where n > 1. Let $p \in \pi(G)$ and let $\sigma \in \operatorname{Aut}_{\operatorname{Col}}(G)$ be an arbitrary Coleman automorphism of p-power order. Note that K is the unique minimal normal subgroup of G, so F(G) = 1 and thus $F^*(G) = K$. Since by hypothesis $G/F^*(G) = G/K$ is a non-abelian simple group, it follows that $G/F^*(G)$ has no chief factor isomorphic to C_p . Note that $\sigma \in \operatorname{Aut}_{\operatorname{Col}}(G)$ implies that $\sigma|_{G/K} \in \operatorname{Aut}_{\operatorname{Col}}(G/K)$. But G/K is simple, so by Lemma 2.8 we have $\sigma|_{G/K} \in \operatorname{Inn}(G/K)$. Without loss of generality, we may assume that

$$\sigma|_{G/K} = \mathrm{id}|_{G/K}.\tag{3.8}$$

Let Q be a Sylow subgroup of K. Then $\sigma|_Q = \operatorname{conj}(x)|_Q$ for some $x \in G$ since $\sigma \in \operatorname{Aut}_{\operatorname{Col}}(G)$. Consequently, by Lemma 2.10, there exists some $g \in O_p(G)K = K$ with $\sigma|_Q = \operatorname{conj}(g)|_Q$. As Q is arbitrary Sylow subgroup of K, we have $\sigma|_K \in \operatorname{Aut}_{\operatorname{Col}}(K)$. Remember that K is a direct product of n copies of a non-abelian simple group, so we have $\operatorname{Aut}_{\operatorname{Col}}(K) = \operatorname{Inn}(K)$. It follows that there exists some $k \in K$ such that $\sigma|_K = \operatorname{conj}(k)|_K$. Replacing σ with $\sigma \operatorname{conj}(k^{-1})$, we may assume that

$$\sigma|_K = \mathrm{id}|_K. \tag{3.9}$$

Again, by Lemma 2.9, $\sigma|_{O_p(Z(K))} = id|_{O_p(Z(K))}$, which implies that $\sigma = id$. This completes the proof of Theorem 3.1. \Box

More generally, we have the following result (Theorem B).

Theorem 3.2 Let G be a finite group whose nontrivial normal subgroups have the same order. Then every Coleman automorphism of G is inner, i.e., $Out_{Col}(G) = 1$. **Proof** Since by hypothesis G is a finite group whose nontrivial normal subgroups have the same order, it follows from Lemma 2.3 that G is a simple group, a direct product of two simple groups or G has a unique nontrivial normal subgroup. If it is the first or second case, then by Lemma 2.8 $\operatorname{Out}_{\operatorname{Col}}(G) = 1$. If it is the third case, then the assertion follows immediately from Theorem 3.1. Therefore, in any case, we have $\operatorname{Out}_{\operatorname{Col}}(G) = 1$. We are done. \Box

Acknowledgements The authors would like to thank the referee(s) for useful and insightful comments and suggestions. Special thanks are due to Professor S. F. Kamornikov for his encouraging comments.

References

- M. HERTWECK, W. KIMMERLE. Coleman automorphisms of finite groups. Math. Z., 2002, 242(2): 203–215.
- [2] Zhengxing LI, Jinke HAI. Coleman automorphisms of standard wreath products of nilpotent groups by groups with prescribed Sylow 2-subgroups, J. Algebra Appl., 2014, 13(5): 1350156 (9 pages).
- [3] Zhengxing LI, Jinke HAI. Coleman automorphisms of standard wreath products of finite abelian groups by 2-closed groups, Publ. Math. Debrecen, 2013, 82(3-4), 599–605.
- [4] Qinhai ZHANG, Jianli CAO. Finite groups whose nontrivial normal subgroups have the same order. J. Math. Res. Exposition, 2008, 28(4): 807–812.
- [5] J. S. ROSE. A Course on Group Theory. Cambridge University Press, Cambridge-New York-Melbourne, 1978.
- [6] F. GROSS. Automorphisms which centralize a Sylow p-subgroup. J. Algebra, 1982, 77(1): 202–233.
- [7] M. HERTWECK. Class-preserving automorphisms of finite groups. J. Algebra, 2001, 241(1): 1–26.