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that every Coleman automorphism of G is an inner automorphism.
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1. Introduction

All groups considered in this paper are finite. Let G be a finite group and let σ be an

automorphism of G. Recall that σ is said to be a Coleman automorphism if the restriction of

σ to any Sylow subgroup of G equals the restriction of some inner automorphism of G. This

concept was introduced by Hertweck and Kimmerle in [1]. Denote by Aut(G) and Inn(G) the

automorphism group and the inner automorphism group of G respectively. Denote by AutCol(G)

the group formed by all Coleman automorphisms of G. It is clear that Inn(G)EAutCol(G). Set

OutCol(G) := AutCol(G)/Inn(G). Recently, lots of results on Coleman automorphisms have

appeared in the literature, see [2,3] for instance.

The aim of the present paper is to investigate Coleman automorphisms of finite groups

having a unique nontrivial normal subgroup. The description of the structure of such groups had

been obtained by Qinhai Zhang and Jianji Cao in [4]. By making use of the structure theorems

therein, we can prove the following main result (Theorem 3.1).

Theorem A Let G be a finite group having a unique nontrivial normal subgroup. Then every

Coleman automorphism of G is inner, i.e., OutCol(G) = 1.

More generally, we have the following result (Theorem 3.2).

Theorem B Let G be a finite group whose nontrivial normal subgroups have the same order.

Then every Coleman automorphism of G is inner, i.e., OutCol(G) = 1.

2. Notation and preliminaries
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In this section, we first fix some nation and then record some lemmas that will be used in

the sequel. Let G be a finite group, σ ∈ Aut(G) and H ≤ G. We write σ|H for the restriction

of σ to H. If H EG and σ fixes H, then we write σ|G/H for the automorphism of the quotient

G/H induced by σ in the natural way. Denote by CG(H) and NG(H) the centralizer and the

normalizer of H in G, respectively. Denote by π(G) the set of all primes dividing the order of

G. Let p ∈ π(G). Denote by Op(G) and Op′(G) the largest normal p-subgroup and p′-subgroup

of G, respectively. Cp always denotes a cyclic group of order p. Denote by F(G) and F∗(G) the

Fitting subgroup and the generalized Fitting subgroup of G, respectively. Denote by Z(G) the

center of G. For a fixed x ∈ G, we write conj(x) for the inner automorphism of G induced by

x via conjugacy, i.e., gconj(x) = gx for any g ∈ G. We refer to [5] for other notations, which are

mostly standard.

Lemma 2.1 ([4, Theorem 1.2]) Let G be a finite solvable group. If G has a unique nontrivial

normal subgroup, then one of the following holds.

(I) G is a cyclic p-group of order p2;

(II) G is a semidirect product G = P oQ, where P is an elementary abelian p-group and

Q is a cyclic group of order q, with p and q being distinct primes. Moreover, the action of Q on

P is irreducible.

Lemma 2.2 ([4, Theorem 1.3]) Let G be a finite non-solvable group. If G has a unique nontrivial

normal subgroup K, then

(I) K is solvable.

(i) If K ≤ Z(G), then G is a covering group of a finite simple group and Z(G) ∼= Cp.

(ii) If K � Z(G), then G/K ∼= D is a finite non-abelian simple group. D acts irreducibly

on K.

(II) K is non-solvable.

(i) Assume that T is a non-abelian simple group. Then K ∼= T if and only if G is almost

simple group and G/K ∼= Cp.

(ii) If K ∼= Tn, where T is a non-abelian simple group and n > 1, then G/K ∼= D, where

D is a simple group.

Lemma 2.3 ([4, Theorem 1.1]) Let G be a finite group. Then all nontrivial normal subgroups

of G have the same order if and only if G is one of the following:

(1) G is a simple group;

(2) G has a unique nontrivial normal subgroup;

(3) G ∼= T × T , where T is a finite simple group;

(4) G ∼= A8 × L3(4);

(5) G ∼= Bn(q)× Cn(q), where n ≥ 3 and q is odd.

Lemma 2.4 ([1, Proposition 1]) Let G be a finite group. Then π(AutCol(G)) ⊆ π(G).

Lemma 2.5 ([1, Corollary 3]) Let N EG and let p be a prime which does not divide the order
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of G/N . Then the following hold.

(i) If σ ∈ AutCol(G), then σ|N ∈ AutCol(N);

(ii) If OutCol(N) is a p′-group, then so is OutCol(G).

Lemma 2.6 ([1, Corollary 16]) Let G be a quasinilpotent group. Then OutCol(G) = 1.

Recall that a finite group G is said to be p-constrained group if CḠ(Op(Ḡ)) ≤ Op(Ḡ), where

Ḡ := G/Op′(G). Recall that an automorphism σ of G is said to be a p-central automorphism of

G if the restriction of σ to a Sylow p-subgroup of G is trivial.

Lemma 2.7 ([6, Corollary 2.4]) Let G be a p-constrained group with Op′(G) = 1 for some

prime p. Then p-central automorphisms of G are inner automorphisms, given by conjugation

with element from Z(Op(G)).

Lemma 2.8 ([1, Theorem 14]) Let G be a simple group. Then there is a prime p ∈ π(G) such

that p-central automorphisms of G are inner automorphisms.

Lemma 2.9 ([7, Lemma 2]) Let p be a prime, and φ be a p-power order automorphism of a

finite group G. Suppose that there is a normal subgroup N of G such that φ fixes all elements

of N , and that φ induces the identity on the quotient group G/N . Then φ induces the identity

on G/Op(Z(N)). Further, if φ fixes element-wise a Sylow p-subgroup of G , then φ is an inner

automorphism of G.

Lemma 2.10 ([1, Lemma 19]) Assume that no chief factor of G/F∗(G) is isomorphic to Cp,

and let σ ∈ Aut(G) be of p-power order. If σ induces the identity on G/N for some N EG with

Nσ = N and Q is a Sylow subgroup of N with σ|Q = conj(x)|Q for some x ∈ G, then there is

g ∈ Op(G)N such that σ|Q = conj(g)|Q.

3. Proofs of Theorems A and B

In this section, we present proofs for Theorems A and B. For convenience, we record Theorem

A here as

Theorem 3.1 Let G be a finite group having a unique nontrivial normal subgroup. Then every

Coleman automorphism of G is an inner automorphism, i.e., OutCol(G) = 1.

Proof The proof of Theorem 3.1 splits into two cases according to the solvability of G.

Case 1 G is solvable.

According to Lemma 2.1, the proof of this case splits into two subcases.

Subcase 1.1 G is a cyclic p-group of order p2.

Since G is a p-group, the assertion holds trivially.

Subcase 1.2 G is a semidirect product of an elementary abelian p-group P and a cyclic group

Q of order q with p, q distinct primes.
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Since p does not divide |Q|, it follows from Lemmas 2.4 and 2.5 that OutCol(G) is a q-

group. Thus to confirm the assertion in this case, it suffices to show that σ ∈ Inn(G) for any

Coleman automorphism σ of q-power order. Since σ ∈ AutCol(G), it follows from the definition

of Coleman automorphism that there exists some g ∈ G such that σ|P = conj(g)|P . Without

loss of generality, we may assume that

σ|P = id|P . (3.1)

Note that σ acts naturally on the set Sylq(G) of all Sylow q-subgroup of G. Since the order of

σ and the cardinality of Sylq(G) are coprime, it follows that σ fixes a Sylow q-subgroup of G.

Without loss of generality, we may assume that σ fixes Q, i.e.,

Qσ = Q. (3.2)

Since σ ∈ AutCol(G), there exists some x ∈ G such that

σ|Q = conj(x)|Q. (3.3)

Without loss of generality, we may assume that x is a q-element. Then, by (3.2) and (3.3), one

obtains x ∈ NG(Q) and hence x ∈ Q. But note that Q is cyclic, so we must have

σ|Q = conj(x)|Q = id|Q. (3.4)

Since G = P oQ, it follows from (3.1) and (3.4) that σ = id.

Case 2 G is non-solvable.

Let K be the unique nontrivial normal subgroup of G. According to Lemma 2.2, the proof

of this case splits into two subcases:

Subcase 2.1 K is solvable.

Firstly, we consider the case in which K ≤ Z(G). By Lemma 2.2, K = Z(G) ∼= Cp and G

is a covering group of a simple group, i.e., G/Z(G) is isomorphic to a non-abelian simple group.

Note that F∗(G) ≥ K = Z(G), so we must have F∗(G) = G. In effect, assume that F∗(G) < G,

then F∗(G) = K = Z(G), which implies that CG(F
∗(G)) = CG(Z(G)) = G > F∗(G). However,

this cannot occur since F∗(G) is self-centralized for any finite group G. Hence we must have

F∗(G) = G. This shows that G is a quasinilpotent group and thus by Lemma 2.6 the assertion

holds.

Secondly, we consider the case in which K � Z(G). On the one hand, it is clear that

CG(K) is proper normal subgroup of G. On the other hand, since K is solvable, it follows

that K is ableian and hence CG(K) is a nontrivial proper normal subgroup of G containing K.

Consequently, we must have CG(K) = K since by hypothesis K is the unique nontrivial normal

subgroup. In addition, note that K = Op(G) for some prime p ∈ π(G), so Op′(G) = 1. This

shows that G is a p-constrained group and hence by Lemma 2.7 every p-central automorphism

of G is inner. In particular, OutCol(G) = 1.

Subcase 2.2 K is non-solvable.



Coleman automorphisms of finite groups with a unique nontrivial normal subgroup 305

Firstly, we consider the case in which K is a non-abelian simple group and G/K ∼= Cp.

Let σ ∈ AutCol(G). We have to show that σ ∈ Inn(G). By Lemmas 2.4 and 2.5, we may

assume that σ is of p-power order. By Lemma 2.8, there exists some q ∈ π(K) such that q-

central automorphisms of K are inner. Thus, modifying σ by some inner automorphism, we may

assume that σ|K ∈ Inn(K). So there exists some k ∈ K such that

σ|K = conj(k)|K . (3.5)

Without loss of generality, we may assume that

σ|K = id|K . (3.6)

Note that G/K is a cyclic group of order p, so we have

σ|G/K = id|G/K . (3.7)

Consequently, by Lemma 2.9, σ|G/Op(Z(K)) = id|G/Op(Z(K)), which implies that σ = id since

Op(Z(K)) = 1.

Secondly, we consider the case in which K is a direct product of n copies of a non-abelian

simple group and G/K ∼= Cp, where n > 1. The proof of this case is similar to that of the

previous case in which K is a non-abelian simple group and G/K ∼= Cp, so we omit it.

Finally, we consider the case in which K is a direct product of n copies of a non-abelian

simple group and G/K is isomorphic to a non-abelian simple group, where n > 1. Let p ∈ π(G)

and let σ ∈ AutCol(G) be an arbitrary Coleman automorphism of p-power order. Note that

K is the unique minimal normal subgroup of G, so F(G) = 1 and thus F∗(G) = K. Since by

hypothesis G/F∗(G) = G/K is a non-abelian simple group, it follows that G/F∗(G) has no chief

factor isomorphic to Cp. Note that σ ∈ AutCol(G) implies that σ|G/K ∈ AutCol(G/K). But

G/K is simple, so by Lemma 2.8 we have σ|G/K ∈ Inn(G/K). Without loss of generality, we

may assume that

σ|G/K = id|G/K . (3.8)

Let Q be a Sylow subgroup of K. Then σ|Q = conj(x)|Q for some x ∈ G since σ ∈ AutCol(G).

Consequently, by Lemma 2.10, there exists some g ∈ Op(G)K = K with σ|Q = conj(g)|Q. As

Q is arbitrary Sylow subgroup of K, we have σ|K ∈ AutCol(K). Remember that K is a direct

product of n copies of a non-abelian simple group, so we have AutCol(K) = Inn(K). It follows

that there exists some k ∈ K such that σ|K = conj(k)|K . Replacing σ with σconj(k−1), we may

assume that

σ|K = id|K . (3.9)

Again, by Lemma 2.9, σ|Op(Z(K)) = id|Op(Z(K)), which implies that σ = id. This completes the

proof of Theorem 3.1. �
More generally, we have the following result (Theorem B).

Theorem 3.2 Let G be a finite group whose nontrivial normal subgroups have the same order.

Then every Coleman automorphism of G is inner, i.e., OutCol(G) = 1.
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Proof Since by hypothesis G is a finite group whose nontrivial normal subgroups have the same

order, it follows from Lemma 2.3 that G is a simple group, a direct product of two simple groups

or G has a unique nontrivial normal subgroup. If it is the first or second case, then by Lemma

2.8 OutCol(G) = 1. If it is the third case, then the assertion follows immediately from Theorem

3.1. Therefore, in any case, we have OutCol(G) = 1. We are done. �
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