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Abstract In the present paper, we investigate the majorization property for certain new

class of multivalent meromorphic analytic functions defined by Sǎlǎgean operator. Moreover,

we point out some new and interesting applications of our main result to the other classes of

multivalent meromorphic functions.
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1. Introduction

Let Σp,n denote the class of functions of the form

f(z) = z−p +
∞∑

k=n

akz
k, n ≥ p, p ∈ N = {1, 2, . . .}, (1.1)

which are analytic and p-valent in the punctured unit disk ∆∗ = {z ∈ C : 0 < |z| < 1} = ∆\{0},
where ∆ is the open unit disk ∆ = {z ∈ C : |z| < 1}. Also, let Σ1,1 = Σ.

For functions fj ∈ Σp,n given by

fj(z) = z−p +
∞∑

k=n

ak,jz
k, j = 1, 2, (1.2)

we define the Hadamard product (or convolution) of f1 and f2 by

(f1 ∗ f2)(z) := z−p +
∞∑

k=n

ak,1ak,2z
k = (f2 ∗ f1)(z), z ∈ ∆∗.

Let f(z) and g(z) be analytic in ∆. We say that the function f(z) is subordinate to g(z) if

there exists a Schwarz function ω(z), analytic in ∆ with ω(0) = 0 and |ω(z)| < 1 (z ∈ ∆), such

that f(z) = g(ω(z)), z ∈ ∆ (see [1]). We denote this subordination by

f(z) ≺ g(z), z ∈ ∆.
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Indeed it is known that (see for details [2, 3]; see also [4]):

f(z) ≺ g(z) (z ∈ ∆) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).

Let f(z) and g(z) be analytic in ∆. We say that f(z) is majorized by g(z) in ∆ (see [5])

and write

f(z) ≪ g(z), z ∈ ∆ (1.3)

if there exists a function φ(z), analytic in ∆, such that

|φ(z)| ≤ 1 and f(z) = φ(z)g(z), z ∈ ∆. (1.4)

It may be noted here that (1.3) is closely related to the concept of qusi-subordination between

analytic functions.

Let f (q) denote the qth-order ordinary differential operator for a function f ∈ Σp,n, that is,

f (q) = (−1)q
(p+ q − 1)!

(p− 1)!
z−(p+q) +

∞∑
k=n

k!

(k − q)!
akz

k−q, (1.5)

where p > q; p ∈ N; q ∈ N0 = N ∪ {0}, z ∈ ∆∗.

The operator defined by (1.5) has been studied earlier by several researchers [6, 7].

We introduce the generalized Sǎlǎgean operator Dmf (q)(z) as follows

Dmf (q)(z) = (−1)q+m (p+ q − 1)!(p+ q)m

(p− 1)!
z−(p+q) +

∞∑
k=n

k!(k − q)m

(k − q)!
akz

k−q, (1.6)

where n ≥ p, p > q; p ∈ N; m, q ∈ N0 = N ∪ {0}, z ∈ ∆∗.

In view of (1.6), it is clear that D0f (0)(z) = f(z), D1f (0)(z) = zf ′(z) and Dmf (0)(z) =

Dmf(z) is a known Sǎlǎgean operator [8].

Using the operator Dmf (q)(z), we now introduce the following subclass of Σp,n:

Definition 1.1 A function f(z) ∈ Σp,n is said to be in the class Σj,l
p,q,n[A,B;α, γ] of p-valent

meromorphic functions of complex order γ ̸= 0 in ∆∗ if and only if

1+
1

γ

{Djf (q)(z)

Dlf (q)(z)
− (−1)j−l(p+q)j−l

}
−α

∣∣∣ 1
γ

{Djf (q)(z)

Dlf (q)(z)
− (−1)j−l(p+q)j−l

}∣∣∣ ≺ 1 +Az

1 +Bz
(1.7)

z ∈ ∆∗; A,B ∈ C, A ̸= B, |B| ≤ 1; j > l, l, q ∈ N0;α ≥ 0, γ ∈ C∗ = C− {0}.

By specializing the parameter p, q, n, j, l, A,B, α, γ, we obtain the following classes of mul-

tivalently meromorphic functions,

(1) Σj,l
p,q,n[A,B; 0, γ] = Σj,l

p,q,n[A,B; γ]

=
{
f(z) ∈ Σp,n : 1 +

1

γ

{Djf (q)(z)

Dlf (q)(z)
− (−1)j−l(p+ q)j−l

}
≺ 1 +Az

1 +Bz

}
;

(2) Σ1,0
p,0,n[A,B; 0, 1] = S∗[p,A,B] =

{
f(z) ∈ Σp,n : 1 + p+

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz

}
;

(3) Σ2,1
p,0,n[A,B; 0, 1] = K[p,A,B] =

{
f(z) ∈ Σp,n : 1 + p+

(zf ′(z))′

f ′(z)
≺ 1 +Az

1 +Bz

}
;

(4) Σ1,0
p,0,n[1− 2β,−1;α, γ] = ΣUSn(p, α, β, γ)
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=
{
f(z) ∈ Σp,n : ℜ

{
1 +

1

γ
(
zf ′(z)

f(z)
+ p)− α| 1

γ
(
zf ′(z)

f(z)
+ p)|

}
> β

}
(α ≥ 0, 0 ≤ β < 1, γ ∈ C∗);

(5) Σ2,1
p,0,n[1− 2β,−1;α, γ] = ΣUKn(p, α, β, γ)

=
{
f(z) ∈ Σp,n : ℜ

{
1 +

1

γ
(
(zf ′(z))′

f ′(z)
+ p)− α| 1

γ
(
(zf ′(z))′

f ′(z)
+ p)|

}
> β

}
(α ≥ 0, 0 ≤ β < 1, γ ∈ C∗).

Meromorphically multivalent functions have been extensively studied (for example) by many

researchers such as Aouf [9, 10], Cho et al. [11], Liu and Srivastava [12], Mogra [13, 14], Srivastava

et al. [15], Owa et al. [16], Raina and Srivastava [17], Kumar et al. [18] and El-Ashwah et al. [19].

Majorization problems for the normalized classes of starlike functions have been investigated

by MacGregor [5] and Altinas et al. [20]. Recently, Goyal et al. [21] studied majorization prop-

erties for meromorphic classes. Further, Goyal and Goswami [22], Prajapat, Aouf [23], Goyal

et al. [24], Goswami and Wang [25], Pranay Goswami and Aouf [26], Goswami et al. [27] and Li

et al. [28] studied majorization properties for different classes. In the present paper, we inves-

tigate a majorization problem for the class Σj,l
p,q,n[A,B;α, γ]. Further, we point out some new

and interesting applications of our main result to the other classes of multivalent meromorphic

functions.

In order to obtain our main theorem, we need the following lemma:

Lemma 1.2 ([29]) Let φ(z) be analytic in ∆ satisfying |φ(z)| < 1 for z ∈ ∆. Then

|φ′(z)| ≤ 1− |φ(z)|2

1− |z|2
, z ∈ ∆. (1.8)

2. Majorization problem for the class Σj,l
p,q,n[A,B;α, γ]

We begin by proving the following result.

Theorem 2.1 Let the function f ∈ Σp,n and suppose that g ∈ Σj,l
p,q,n[A,B;α, γ]. If Djf (q)(z)

is majorized by Dlg(q)(z) in ∆∗ and[ |A−B||γ|
|1− α|

+ (p+ q)j−l|B|
]
δ ≤ (p+ q)j−l,

then

|Dj+1f (q)(z)| ≤ |Dl+1g(q)(z)|, |z| ≤ r0, (2.1)

where r0 = r0(p, q, α, γ, j, l, A,B) is the smallest positive root of the equation[ |A−B||γ|
|1− α|

+ (p+ q)j−l|B|
]
r3 −

[
(p+ q)j−l + 2|B|

]
r2−[ |A−B||γ|

|1− α|
+ (p+ q)j−l|B|+ 2

]
r + (p+ q)j−l = 0 (2.2)

z ∈ ∆∗;A,B ∈ C, A ̸= B, |B| ≤ 1; j > l; p, j ∈ N; l, q ∈ N0; 0 ≤ α ̸= 1, γ ∈ C∗; 0 ≤ δ ≤ r0.
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Proof Suppose that g ∈ Σj,l
p,q,n[A,B;α, γ]. Then, making use of the fact that

ϖ − α|ϖ − 1| ≺ 1 +Az

1 +Bz
⇔ ϖ(1− αe−iϕ) + αe−iϕ ≺ 1 +Az

1 +Bz
, ϕ ∈ R

and letting

ϖ = 1 +
1

γ

{Djg(q)(z)

Dlg(q)(z)
− (−1)j−l(p+ q)j−l

}
in (1.7), we obtain{

1 +
1

γ

[Djg(q)(z)

Dlg(q)(z)
− (−1)j−l(p+ q)j−l

]}
(1− αe−iϕ) + αe−iϕ ≺ 1 +Az

1 +Bz
,

or, equivalently,

1 +
1

γ

{Djg(q)(z)

Dlg(q)(z)
− (−1)j−l(p+ q)j−l

}
≺

1 + [A−αBe−iϕ

1−αe−iϕ ]z

1 +Bz
(2.3)

which holds true for all z ∈ ∆∗.

We find from (2.3) that

1 +
1

γ

{Djg(q)(z)

Dlg(q)(z)
− (−1)j−l(p+ q)j−l

}
=

1 + [A−αBe−iϕ

1−αe−iϕ ]ω(z)

1 +Bω(z)
, (2.4)

where ω(z) = c1z + c2z
2 + · · · , ω ∈ P, P denotes the well-known class of the bounded analytic

functions in ∆ and satisfies the conditions

ω(0) = 0 and |ω(z)| ≤ |z|, z ∈ ∆.

From (2.4), we get

Djg(q)(z)

Dlg(q)(z)
=

(−1)j−l(p+ q)j−l +
[

(A−B)γ
1−αe−iϕ + (−1)j−l(p+ q)j−lB

]
ω(z)

1 +Bω(z)
. (2.5)

By virtue of (2.5), we get

|Dlg(q)(z)| ≤ 1 + |B||z|
(p+ q)j−l − | (A−B)γ

1−αe−iϕ + (−1)j−l(p+ q)j−lB||z|
|Djg(q)(z)|

≤ 1 + |B||z|
(p+ q)j−l − [ |A−B||γ|

|1−α| + (p+ q)j−l|B|]|z|
|Djg(q)(z)|. (2.6)

Next, since Djf (q)(z) is majorized by Dlg(q)(z) in the punctured unit disk ∆∗, from (1.4),

we have

Djf (q)(z) = φ(z)Dlg(q)(z).

Differentiating the above equality with respect to z and multiplying by z, we get

Dj+1f (q)(z) = zφ′(z)Dlg(q)(z) + φ(z)Dl+1g(q)(z). (2.7)

Thus, by Lemma 1.2, the Schwarz function φ(z) satisfies the inequality in (1.8) and using (2.6)

in (2.7), we get

|Dj+1f (q)(z)| ≤
[
|φ(z)|+ 1− |φ(z)|2

1− |z|2
· (1 + |B||z|)|z|
[(p+ q)j−l − ( |A−B||γ|

|1−α| + (p+ q)j−l|B|)|z|]

]
·
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|Dl+1g(q)(z)|, (2.8)

which upon setting

Djf (q)(z) = φ(z)Dlg(q)(z), |z| = r and |φ(z)| = ρ, 0 ≤ ρ ≤ 1

leads us to the inequality

|Dj+1f (q)(z)| ≤
[ Ψ(ρ, r)

(1− r2)[(p+ q)j−l − ( |A−B||γ|
|1−α| + (p+ q)j−l|B|)r]

]
|Dl+1g(q)(z)|,

where

Ψ(ρ, r) =− r(1 + |B|r)ρ2 + (1− r2)
[
(p+ q)j−l −

( |A−B||γ|
|1− α|

+ (p+ q)j−l|B|
)
r
]
ρ+

r(1 + |B|r) (2.9)

takes its maximum value at ρ = 1, with r0 = r0(p, q, α, γ, j, l, A,B), where r0 is the smallest

positive root of Eq. (2.2). Furthermore, if 0 ≤ δ ≤ r0(p, q, α, γ, j, l, A,B), then the function

Ψ(ρ, δ) defined by

Ψ(ρ, δ) =− δ(1 + |B|δ)ρ2 + (1− δ2)
[
(p+ q)j−l −

( |A−B||γ|
|1− α|

+ (p+ q)j−l|B|
)
δ
]
ρ+

(1 + |B|δ)δ (2.10)

is an increasing function on the interval 0 ≤ ρ ≤ 1, so that

Ψ(ρ, δ) ≤ Ψ(1, δ) = (1− δ2)
[
(p+ q)j−l −

( |A−B||γ|
|1− α|

+ (p+ q)j−l|B|
)
δ
]
, (2.11)

0 ≤ ρ ≤ 1; 0 ≤ δ ≤ r0(p, q, α, γ, j, l, A,B).

Hence, upon setting ρ = 1, in (2.10), we conclude that (2.1) of Theorem 2.1 holds true for

|z| ≤ r0 = r0(p, q, α, γ, j, l, A,B), which completes the proof of Theorem 2.1. �
Setting α = 0 in Theorem 2.1, we get the following result.

Corollary 2.2 Let the function f ∈ Σp,n and suppose that g ∈ Σj,l
p,q,n[A,B; γ]. If Djf (q)(z) is

majorized by Dlg(q)(z) in ∆∗ and (p+ q)j−l ≥ [|A−B||γ|+ (p+ q)j−l|B|]δ, then

|Dj+1f (q)(z)| ≤ |Dl+1g(q)(z)|, |z| ≤ r0,

where r0 = r0(p, q, γ, j, l, A,B) is the smallest positive root of the equation

[|A−B||γ|+ (p+ q)j−l|B|]r3 − [(p+ q)j−l + 2|B|]r2−

[|A−B||γ|+ (p+ q)j−l|B|+ 2]r + (p+ q)j−l = 0

z ∈ ∆∗;A,B ∈ C, A ̸= B, |B| ≤ 1; j > l; p, j ∈ N; l, q ∈ N0; γ ∈ C∗; 0 ≤ δ ≤ r0.

Putting q = 0, j = 1, l = 0 and γ = 1 in Corollary 2.2, we obtain the following result.

Corollary 2.3 Let the function f ∈ Σp,n and suppose that g ∈ S∗[p,A,B]. IfDf(z) is majorized

by g(z) in ∆∗ and [|A−B|+ p|B|]δ ≤ p, then

|D2f(z)| ≤ |Dg(z)|, |z| ≤ r0,



Majorization properties for certain new classes of multivalent meromorphic functions 321

where r0 = r0(p,A,B) is the smallest positive root of the equation

[|A−B|+ p|B|]r3 − [p+ 2|B|]r2 − [|A−B|+ p|B|+ 2]r + p = 0,

z ∈ ∆∗;A,B ∈ C, A ̸= B, |B| ≤ 1; p ∈ N; 0 ≤ δ ≤ r0.

Also, putting q = 0, j = 2, l = 1 and γ = 1 in Corollary 2.2, we obtain the following result.

Corollary 2.4 Let the function f ∈ Σp,n and suppose that g ∈ K[p,A,B]. If D2f(z) is

majorized by Dg(z) in ∆∗ and [|A−B|+ p|B|]δ ≤ p, then

|D3f(z)| ≤ |D2g(z)|, |z| ≤ r0,

where r0 = r0(p,A,B) is the smallest positive root of the equation

[|A−B|+ p|B|]r3 − [p+ 2|B|]r2 − [|A−B|+ p|B|+ 2]r + p = 0,

z ∈ ∆∗;A,B ∈ C, A ̸= B, |B| ≤ 1; p ∈ N; 0 ≤ δ ≤ r0.

The following two results can also be obtained from Theorem 2.1:

Corollary 2.5 Let the function f ∈ Σp,n and suppose that g ∈ ΣUSn(p, α, β, γ). If Df(z) is

majorized by g(z) in ∆∗ and [2(1− β)|γ|
|1− α|

+ p
]
δ ≤ p,

then

|D2f(z)| ≤ |Dg(z)|, |z| ≤ r0,

where r0 = r0(p, α, β, γ) is the smallest positive root of the equation[2(1− β)|γ|
|1− α|

+ p
]
r3 − [p+ 2]r2 −

[2(1− β)|γ|
|1− α|

+ p+ 2
]
r + p = 0,

z ∈ ∆∗; p ∈ N; 0 ≤ α ̸= 1; 0 ≤ β < 1; γ ∈ C∗; 0 ≤ δ ≤ r0.

Corollary 2.6 Let the function f ∈ Σp,n and suppose that g ∈ ΣUKn(p, α, β, γ). If D
2f(z) is

majorized by Dg(z) in ∆∗ and [2(1− β)|γ|
|1− α|

+ p
]
δ ≤ p,

then

|D3f(z)| ≤ |D2g(z)|, |z| ≤ r0,

where r0 = r0(p, α, β, γ) is the smallest positive root of the equation[2(1− β)|γ|
|1− α|

+ p
]
r3 − [p+ 2]r2 −

[2(1− β)|γ|
|1− α|

+ p+ 2
]
r + p = 0,

z ∈ ∆∗; p ∈ N; 0 ≤ α ̸= 1; 0 ≤ β < 1; γ ∈ C∗; 0 ≤ δ ≤ r0.
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