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1. Introduction

It is known that many important phenomena such as heat conduction, chemical engineering,

underground water flow and plasma physics can be represented by boundary value problems with

integral boundary conditions for ordinary differential equations. As a result, they have been

widely studied in the last few years [1–3, 5–7, 11, 12]. In [2], by applying fixed point index theory

of strict contraction operators, Hao et al investigated the existence of multiple solutions for the

following nth-order nonlocal boundary value problem (BVP) in Banach spaces.
x(n)(t) + f(t, x(t), x′(t), . . . , x(n−2)(t)) = θ, t ∈ (0, 1),

x(i)(0) = θ, 0 ≤ i ≤ n− 3,

ax(n−2)(0)− bx(n−1)(0) =
∫ 1

0
x(n−2)(s)dA(s),

cx(n−2)(1) + dx(n−1)(1) =
∫ 1

0
x(n−2)(s)dB(s),

(1.1)

where f may be singular at t = 0, t = 1. In [5], Yang established the existence of nontrivial

solutions for the following Sturm-Liouville problem with integral boundary conditions.
−(au′)′ + bu = g(t)f(t, u), t ∈ (0, 1),

(cos γ0)u(0)− (sin γ0)u
′(0) =

∫ 1

0
u(τ)dα(τ),

(cos γ1)u(0) + (sin γ1)u
′(0) =

∫ 1

0
u(τ)dβ(τ),

(1.2)

where g may be singular at t = 0, t = 1. By using topological degree arguments and cone theory,

Kang and Liu [8] established the theory that there exist at least two positive solutions for the
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following boundary value problem{
u′′(t) + f(t, u(t)) + g(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = 0
(1.3)

where f, g ∈ C((0, 1)× (0,+∞),[0,+∞)) may be singular at t = 0, t = 1, u = 0.

Motivated by the above works, the purpose of this paper is to discuss the existence of

multiple solutions for the following BVP
(p(t)(u′(t)))′ = −a(t)f(t, u(t)), t ∈ (0, 1),

αu(0)− βp(0)u′(0) =
∫ 1

0
h(s)u(s)ds,

γu(1) + δp(1)u′(1) =
∫ 1

0
g(s)u(s)ds,

(1.4)

where p(t) ∈ C1[0, 1] and p(t) > 0, t ∈ [0, 1], a(t) ∈ C([0, 1], [0,+∞)) does not vanish identically

on any subinterval of [0, 1], f ∈ C((0, 1) × (0,+∞), [0,+∞)) may be singular at t = 0, t = 1,

u = 0, h(s), g(s) ∈ L(0, 1), are nonnegative, α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ρ = αγe+αδ+βγ > 0

with e =
∫ 1

0
1
p(s)ds. Some ideas of this paper are from [4] and [8]. The main results of these

papers are based on the symmetry of Green function, but the associated Green function in our

paper does not have the property. By employing the Krein-Rutmann theorem, we overcome the

difficulty caused by the dissymmetric Green function. Moreover, by applying the fixed point

index in cone and the fixed point theorem of cone expansion and compression, we obtain the

existence of multiple positive solutions for BVP (1.4).

The paper is organized as follows. In Section 2, we introduce some notations, definitions,

and lemmas. In Section 3, we present and prove our main results about the existence of positive

solutions of BVP (1.4). In Section 4, we present two examples to illustrate the main results.

2. Some preliminaries and lemmas

In this section, we will give some preliminaries for obtaining the main results in the next

section. For the purpose of convenience, we set

ψ(t) = α

∫ t

0

1

p(τ)
dτ + β, ϕ(t) = γ

∫ 1

t

1

p(τ)
dτ + δ,

c1 =
1

ρ

∫ 1

0

ϕ(t)h(t)dt, c2 =
1

ρ

∫ 1

0

ψ(t)h(t)dt, c3 =
1

1− c1
,

c4 =
1

ρ

∫ 1

0

ϕ(t)g(t)dt, c5 =
1

ρ

∫ 1

0

ψ(t)g(t)dt, c6 =
1

1− c5

and list two assumptions to be used throughout this paper.

(I) c1, c5 ∈ [0, 1).

(II) c2c3c4c6 ∈ [0, 1).

Definition 2.1 A function u(t) ∈ C[0, 1] ∩ C1(0, 1) with p(t)u(t) ∈ C1(0, 1) is said to be a

positive solution of the BVP (1.4), if it satisfies BVP (1.4) and u(t) > 0 for t ∈ (0, 1).
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To investigate BVP (1.4), we now consider the following linear BVP
(p(t)u′(t))′ = −y(t), t ∈ (0, 1),

αu(0)− βp(0)u′(0) =
∫ 1

0
h(s)u(s)ds,

γu(1) + δp(1)u′(1) =
∫ 1

0
g(s)u(s)ds.

(2.1)

For BVP (2.1), we can have the following lemmas immediately.

Lemma 2.1 Assume that (I), (II) hold. Then for y ∈ C[0, 1] and y ≥ 0, the BVP (2.1) has a

unique solution u(t) ≥ 0 for t ∈ [0, 1], such that

u(t) =

∫ 1

0

H(t, s)y(s)ds,

where H(t, s) is the associated Green’s function for (2.1), which can be expressed as

H(t, s) = G(t, s) +B(t)

∫ 1

0

G(τ, s)h(τ)dτ + C(t)

∫ 1

0

G(τ, s)g(τ)dτ

with

G(t, s) =
1

ρ

{
ϕ(t)ψ(s), 0 ≤ s ≤ t ≤ 1,

ϕ(s)ψ(t), 0 ≤ t ≤ s ≤ 1,

and

B(t) =
1

ρ(1− c2c3c4c6)
[ϕ(t)c3 + ψ(t)c3c4c6],

C(t) =
1

ρ(1− c2c3c4c6)
[ψ(t)c6 + ϕ(t)c2c3c6].

Proof The proof is similar to that of Lemma 2.1 in [7], so we omit it. �

Lemma 2.2 The associated functions G(t, s), H(t, s) have the following properties.

(a) G(t, s), H(t, s) are continuous on [0, 1] × [0, 1] and G(t, s) > 0, H(t, s) > 0 for any

t, s ∈ (0, 1).

(b) For any t, s ∈ [0, 1], G(t, s) ≤ G(s, s), G(t, s) ≥ v(t)G(s, s), where v(t) = min{ ψ(t)
αe+β ,

ϕ(t)
γe+δ}.

(c) For any t, s ∈ [0, 1], H(t, s) ≤ NG(s, s), where

N = 1 +
c3(γe+ δ) + c3c4c6(αe+ β)

ρ(1− c2c3c4c6)

∫ 1

0

h(s)ds+
c6(αe+ β) + c2c3c6(γe+ δ)

ρ(1− c2c3c4c6)

∫ 1

0

g(s)ds.

(d) For any t, s ∈ [0, 1], H(t, s) ≥ z(t)G(s, s), where

z(t) = v(t) +B(t)

∫ 1

0

v(s)h(s)ds+ C(t)

∫ 1

0

v(s)g(s)ds.

(e) For any t, s, τ ∈ [0, 1], H(t, s) ≥ k(t)H(τ, s), where k(t) = z(t)
N , and k(t) is continuous

on [0, 1] and k(t) > 0, t ∈ (0, 1).

Next we introduce a hypothesis:

(H0) 0 <
∫ 1

0
G(s, s)a(s)frR(s)ds < +∞, for any 0 < r ≤ R, where

frR(t) = max {f(t, u), u ∈ [k(t)r,R]} , t ∈ (0, 1).
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We suppose that (H0) holds throughout the remainder of the paper. We will give examples

of functions satisfying (H0) in Section 4.

Let E = C[0, 1]. Then E is a Banach space with a norm by maxt∈[0,1] |u(t)|, u ∈ E. Define

P = {u ∈ E : u(t) ≥ k(t)∥u∥} .

Then P is a cone in E and
∫ 1

0
H(t, s)ds ∈ P . For u ∈ P\ {θ}, define an operator A by

(Au)(t) =

∫ 1

0

H(t, s)a(s)f(s, u(s))ds. (2.2)

Since u ∈ P\ {θ}, we have ∥u∥ > 0, and k(t)∥u∥ ≤ u(t) ≤ ∥u∥. From (H0), we know A is

well-defined.

Lemma 2.3 If u ∈ P\ {θ}, then we have Au ∈ P .

Proof For any u ∈ P\ {θ}, we have

(Au)(t) =

∫ 1

0

H(t, s)a(s)f(s, u(s))ds ≥ k(t)

∫ 1

0

H(τ, s)a(s)f(s, u(s))ds = k(t)(Au)(τ).

Then, we have Au ∈ P . �
Obviously, that u is a positive solution of BVP (1.4) is equivalent to that Au = u in P\ {θ}

has a fixed point.

Lemma 2.4 For any R2 > R1 > 0, A : PR2\PR1 −→ P is completely continuous, where

Pr = {u ∈ P, ∥u∥ < r}, Pr = {u ∈ P, ∥u∥ ≤ r} (r > 0).

Proof For any u ∈ PR2\PR1 , then k(t)R1 ≤ u(t) ≤ R2. From Lemma 2.2(c), we have

∥Au∥ ≤ N

∫ 1

0

G(s, s)a(s)fR1R2(s)ds ,M.

Thus ∥Au∥ ≤M , which implies that A is bounded on PR2\PR1 .

Next, we prove that {(Au)(t), u ∈ V } is equicontinuous on [0, 1], for all V ⊂ PR2\PR1 .

Notice that (Au)(t) can be expressed as (Au)(t) = (A1u)(t)+ (A2u)(t), where (A1u)(t), (A2u)(t)

have the expressions

(A1u)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s))ds,

and

(A2u)(t) =B(t)

∫ 1

0

∫ 1

0

G(τ, s)h(τ)a(s)f(s, u(s))dτds+

C(t)

∫ 1

0

∫ 1

0

G(τ, s)g(τ)a(s)f(s, u(s))dτds.

Then, to prove that {(Au)(t), u ∈ V } is equicontinuous on [0, 1], we only need to show that

{(A1u)(t), u ∈ V } and {(A2u)(t), u ∈ V } are equicontinuous on [0, 1].

First, we will show {(A1u)(t), u ∈ V } is equicontinuous. The proof can be divided into four

cases.
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Case 1 βδ ̸= 0, then ∫ 1

0

a(s)fR1R2(s)ds < +∞. (2.3)

For any t1, t2 ∈ [0, 1], t1 < t2,

|(A1u)(t1)− (A1u)(t2)|

=
∣∣∣ ∫ 1

0

G(t1, s)a(s)f(s, u(s))ds−
∫ 1

0

G(t2, s)a(s)f(s, u(s))ds
∣∣∣

≤
∫ 1

0

|G(t1, s)−G(t2, s)|a(s)f(s, u(s))ds

≤
∫ 1

0

|G(t1, s)−G(t2, s)|a(s)fR1R2(s)ds.

This, together with the uniform continuity of G(t, s) on [0, 1]× [0, 1] and (2.3), guarantees that

{(A1u)(t), u ∈ V } is equicontinuous on [0, 1].

Case 2 β = 0, δ ̸= 0, then ∫ 1

0

ψ(s)a(s)fR1R2(s)ds < +∞. (2.4)

We first show that limt→0+ A1u = 0 uniformly with respect to u ∈ V .

Notice that

(A1u)(t) =

∫ 1

0

G(t, s)a(s)f(s, u(s))ds

=
1

ρ

∫ t

0

ϕ(t)ψ(s)a(s)f(s, u(s))ds+
1

ρ

∫ 1

t

ϕ(s)ψ(t)a(s)f(s, u(s))ds.

Since

1

ρ

∫ t

0

ϕ(t)ψ(s)a(s)f(s, u(s))ds ≤ 1

ρ

∫ t

0

ϕ(s)ψ(s)a(s)f(s, u(s))ds

≤ 1

ρ

∫ t

0

ϕ(s)ψ(s)a(s)fR1R2(s)ds,

and (2.4), we deduce that

lim
t→0+

1

ρ

∫ t

0

ϕ(t)ψ(s)a(s)f(s, u(s))ds = 0 (2.5)

uniformly with respect to u ∈ V .

On the other hand, for any given ε > 0, by (H0) there exists ξ > 0 such that

1

ρ

∫ ξ

t

ϕ(s)ψ(s)a(s)fR1R2(s)ds < ε, t ∈ (0, ξ). (2.6)

In view of

1

ρ

∫ 1

t

ϕ(s)ψ(t)a(s)f(s, u(s))ds

=
1

ρ

∫ ξ

t

ϕ(s)ψ(t)a(s)f(s, u(s))ds+
1

ρ

∫ 1

ξ

ϕ(s)ψ(t)a(s)f(s, u(s))ds
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≤ 1

ρ

∫ ξ

t

ϕ(s)ψ(s)a(s)fR1R2(s)ds+
1

ρ

ψ(t)

ψ(ξ)

∫ 1

ξ

ϕ(s)ψ(s)a(s)fR1R2(s)ds,

(2.4), (2.6) and limt→0+ ψ(t) = 0, we have

lim
t→0+

1

ρ

∫ 1

t

ϕ(s)ψ(t)a(s)f(s, u(s))ds = 0 (2.7)

uniformly with respect to u ∈ V.

From (2.5) and (2.7) it follows that limt→0+ A1u = 0 uniformly with respect to u ∈ V .

Now we are in position to show that for any a ∈ (0, 1/2), {(A1u)(t), u ∈ V } is equicontinuous
on [a, 1− a].

In fact, for any t1, t2 ∈ [a, 1− a], t1 < t2

|(A1u)(t1)− (A1u)(t2)|

=
∣∣∣ ∫ 1

0

G(t1, s)a(s)f(s, u(s))ds−
∫ 1

0

G(t2, s)a(s)f(s, u(s))ds
∣∣∣

≤
∣∣∣ ∫ a

0

G(t1, s)a(s)f(s, u(s))ds−
∫ a

0

G(t2, s)a(s)f(s, u(s))ds
∣∣∣+∣∣∣ ∫ 1−a

a

G(t1, s)a(s)f(s, u(s))ds−
∫ 1−a

a

G(t2, s)a(s)f(s, u(s))ds
∣∣∣+∣∣∣ ∫ 1

1−a
G(t1, s)a(s)f(s, u(s))ds−

∫ 1

1−a
G(t2, s)a(s)f(s, u(s))ds

∣∣∣
≤ |ϕ(t1)− ϕ(t2)|

∫ a

0

ψ(s)a(s)f(s, u(s))ds+∣∣∣ ∫ 1−a

a

G(t1, s)a(s)f(s, u(s))ds−
∫ 1−a

a

G(t2, s)a(s)f(s, u(s))ds
∣∣∣+

|ψ(t1)− ψ(t2)|
∫ 1

1−a
ϕ(s)a(s)f(s, u(s))ds

≤ |ϕ(t1)− ϕ(t2)|
∫ a

0

ψ(s)a(s)f(s, u(s))ds+∣∣∣ ∫ 1−a

a

G(t1, s)a(s)f(s, u(s))ds−
∫ 1−a

a

G(t2, s)a(s)f(s, u(s))ds
∣∣∣+

|ψ(t1)− ψ(t2)|
1

ψ(1− a)

∫ 1

1−a
ϕ(s)ψ(s)a(s)f(s, u(s))ds

≤ |ϕ(t1)− ϕ(t2)|
∫ 1

0

ψ(s)a(s)fR1R2(s)ds+∫ 1−a

a

|G(t1, s)−G(t2, s)|a(s)f(s, u(s))ds+

|ψ(t1)− ψ(t2)|
1

ϕ(1− a)

∫ 1

0

ϕ(s)ψ(s)a(s)fR1R2(s)ds.

Let m = mint∈[a,1−a] k(t). Then u(t) ∈ [mR1, R2], so there exists D > 0, such that

maxt∈[a,1−a] |a(t)f(t, u(t))| ≤ D, which implies

|(A1u)(t1)− (A1u)(t2)| ≤|ϕ(t1)− ϕ(t2)|
∫ 1

0

ψ(s)a(s)fR1R2(s)ds+
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|ψ(t1)− ψ(t2)|
1

ϕ(1− a)

∫ 1

0

ϕ(s)ψ(s)a(s)fR1R2(s)ds+

D

∫ 1−a

a

|G(t1, s)−G(t2, s)|ds.

By (2.4), it is easy to see that {(A1u)(t), u ∈ V } is equicontinuous on [a, 1− a].

Finally, for any given ε > 0, by (H0), there exists b > 0, which satisfies

1

ρ

∫ 1

b

ϕ(s)ψ(s)a(s)fR1R2(s)ds < ε. (2.8)

Then, we will show that {(A1u)(t), u ∈ V } is equicontinuous on [b, 1].

In fact, for any t1, t2 ∈ [b, 1], t1 < t2,

|(A1u)(t1)− (A1u)(t2)|

=
∣∣∣ ∫ 1

0

G(t1, s)a(s)f(s, u(s))ds−
∫ 1

0

G(t2, s)a(s)f(s, u(s))ds
∣∣∣

=
∣∣∣1
ρ

∫ t1

0

ϕ(t1)ψ(s)a(s)f(s, u(s))ds+
1

ρ

∫ 1

t1

ϕ(s)ψ(t1)a(s)f(s, u(s))ds−

1

ρ

∫ t2

0

ϕ(t2)ψ(s)a(s)f(s, u(s))ds−
1

ρ

∫ 1

t2

ϕ(s)ψ(t2)a(s)f(s, u(s))ds
∣∣∣

≤
∣∣∣1
ρ

∫ t1

0

ϕ(t1)ψ(s)a(s)f(s, u(s))ds−
1

ρ

∫ t2

0

ϕ(t2)ψ(s)a(s)f(s, u(s))ds
∣∣∣+

1

ρ

∫ 1

t1

ϕ(s)ψ(t1)a(s)f(s, u(s))ds+
1

ρ

∫ 1

t2

ϕ(s)ψ(t2)a(s)f(s, u(s))ds

≤ 1

ρ
|ϕ(t1)− ϕ(t2)|

∫ t1

0

ψ(s)a(s)f(s, u(s))ds+
ϕ(t2)

ρ

∫ t2

t1

ψ(s)a(s)f(s, u(s))ds+

1

ρ

∫ 1

t1

ϕ(s)ψ(t1)a(s)f(s, u(s))ds+
1

ρ

∫ 1

t2

ϕ(s)ψ(t2)a(s)f(s, u(s))ds

≤ 1

ρ
|ϕ(t1)− ϕ(t2)|

∫ t1

0

ψ(s)a(s)f(s, u(s))ds+
ϕ(t2)

ρ

∫ t2

t1

ψ(s)a(s)f(s, u(s))ds+

1

ρ

∫ 1

t1

ϕ(s)ψ(s)a(s)f(s, u(s))ds+
1

ρ

∫ 1

t2

ϕ(s)ψ(s)a(s)f(s, u(s))ds

≤ 1

ρ
|ϕ(t1)− ϕ(t2)|

∫ 1

0

ψ(s)a(s)fR1R2
(s)ds+

ϕ(t2)

ρ

∫ t2

t1

ψ(s)a(s)fR1R2
(s)ds+

1

ρ

∫ 1

b

ϕ(s)ψ(s)a(s)fR1R2
(s)ds+

1

ρ

∫ 1

b

ϕ(s)ψ(s)a(s)fR1R2
(s)ds.

This, together with (2.4), (2.8) and uniform continuity of ϕ(t) on [0, 1], guarantees that {(A1u)(t), u ∈ V }
is equicontinuous on [b, 1]. Therefore, {(A1u)(t), u ∈ V } is equicontinuous on [0, 1].

Case 3 β ̸= 0, δ = 0, then
∫ 1

0
ϕ(s)a(s)fR1R2(s)ds < +∞.

The proof of Case 3 is similar to that in Case 2. We just list the main steps: Firstly,

we prove limt→1− A1u = 0 uniformly with respect to u ∈ V . Secondly, for any a ∈ (0, 1/2),

{(A1u)(t), u ∈ V } is equicontinuous on [a, 1− a]. Thirdly, there exists b > 0 small enough, such
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that {(A1u)(t), u ∈ V } is equicontinuous on [0, b]. Therefore, {(A1u)(t), u ∈ V } is equicontinuous

on [0, 1].

Case 4 β = 0, δ = 0, then
∫ 1

0
ϕ(s)ψ(s)a(s)fR1R2(s)ds < +∞.

The case can be proved by justifying limt→0+ A1u = 0 and limt→1− A1u = 0 uniformly with

respect to u ∈ V , which then implies that for any a ∈ (0, 1/2), {(A1u)(t), u ∈ V } is equicontinuous
on [a, 1− a].

Through above discussions, we know that {(A1u)(t), u ∈ V } is equicontinuous on [0, 1]. The

equicontinuity of {(A2u)(t), u ∈ V } on [0, 1] can be proved easily. Therefore, {(Au)(t), u ∈ V } is

equicontinuous on [0, 1].

In addition, according to the Lebesgue dominated convergence theorem and∫ 1

0

G(s, s)a(s)fR1R2(s)ds < +∞,

we can easily get the continuity of A. Thus A : PR2\PR1 −→ P is completely continuous. The

proof is completed. �

Lemma 2.5 (Krein-Rutmann [9]) Let E be a real Banach space, E∗ the dual space, P a total

cone in E and P ∗ the dual cone of P . Let L : E −→ E be a positive, completely continuous,

linear operator, r(L) the spectral radius of L and L∗ the dual operator of L. If there exist

ψ ∈ E\(−P ) and a positive constant c such that cL(ψ) ≥ ψ, then the spectral radius r(L) ̸= 0

and there are p ∈ P \ {θ} and w ∈ P ∗ \ {θ} such that Lp = r(L)p and L∗w = r(L)w.

Define K = {u ∈ E, u(t) ≥ 0, t ∈ [0, 1]}, then K is a cone in E. Let the dual space of E and

the dual cone of K be denoted by E∗ and K∗, respectively. They are represented by

E∗={v: v is right continuous on [0,1) and is of bounded variation on [0, 1] with v(0) = 0}
K∗ = {u ∈ E∗, v is nondecreasing on [0, 1]}.

Moreover, the bounded linear functional on E can be represented in the Riemann-Stieltjes integral

⟨v, u⟩ =
∫ 1

0

u(t)dv(t), u ∈ E, v ∈ E∗.

Define

(Lu)(t) =

∫ 1

0

H(t, s)a(s)u(s)ds, u ∈ E.

It is easy to see that L : E −→ E is a completely continuous, linear operator, satisfying L(K) ⊂
K. That is, L is a positive, completely continuous, linear operator. It is easy to know that

(L∗v)(s) =

∫ s

0

∫ 1

0

H(t, τ)a(τ)dv(t)dτ, v ∈ E∗,

where L∗ : K∗ −→ K∗ is the dual operator of L.

Lemma 2.6 The spectral radius of L is positive and there exists q ∈ K \ {θ} such that

r(L)q(s) =
∫ 1

0
H(t, s)a(s)q(t)dt and

∫ 1

0
q(t)dt = 1. Furthermore there exists ω > 0, such that∫ 1

0
u(t)q(t)dt ≥ ω∥u∥, for u ∈ P .

Proof From Lemma 2.2(a) we know that there exists [t1, t2] ⊂ (0, 1) such that H(t, s) > 0, for
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t, s ∈ [t1, t2]. Take u(t) ∈ E, such that u(t) ≥ 0, for t ∈ [0, 1], and u(t3) > 0, and u(t) = 0 for

t /∈ [t1, t2]. Then for t ∈ [t1, t2], we have

(Lu)(t) =

∫ 1

0

H(t, s)a(s)u(s)ds =

∫ t2

t1

H(t, s)a(s)u(s)ds > 0.

So there exists a constant c > 0 such that c(Lu)(t) ≥ u(t) for all t ∈ [0, 1]. From Lemma

2.5, we know that the spectral radius r(L) ̸= 0 and there are p ∈ K \ {θ} and w ∈ K∗ \ {θ}
such that Lp = r(L)p, L∗w = r(L)w with w(1) = 1. Let q(t) = w′(t). Then q ∈ K \ {θ},
r(L)q(s) =

∫ 1

0
H(t, s)a(s)q(t)dt and

∫ 1

0
q(t)dt = 1.

Notice that for u ∈ P , we have u(t) ≥ k(t)∥u∥, so
∫ 1

0
u(t)q(t)dt ≥

∫ 1

0
k(t)q(t)dt∥u∥. Let

ω =
∫ 1

0
k(t)q(t)dt. We have ω > 0 and

∫ 1

0
u(t)q(t)dt ≥ ω∥u∥. �

Lemma 2.7 ([10]) Suppose that E is a real Banach space and P ⊂ E is a cone. Let A :

PR3\PR1 −→ P be a completely continuous operator with R1 < R2 < R3. Suppose the following

three conditions hold

(i) ∥Ax∥ ≥ ∥x∥, ∀x ∈ ∂PR1 ;

(ii) ∥Ax∥ < ∥x∥, ∀x ∈ ∂PR2 ;

(iii) ∥Ax∥ ≥ ∥x∥, ∀x ∈ ∂PR3 ,

where ∂Pr = {u ∈ P, ∥u∥ = r}. Then A has at least two fixed points in PR2\PR1 ∪ PR3\PR2 .

Lemma 2.8 ([10]) Let E be a real Banach space, and P ⊂ E be a cone. Suppose that

A : Pr −→ P is a completely continuous operator. If Aφ ̸= µφ, ∀φ ∈ ∂Pr, µ ≥ 1, then the fixed

point index i(A,Pr, P ) = 1.

Lemma 2.9 ([10]) Let E be a real Banach space, P ⊂ E be a cone. Suppose that A : Pr −→ P

is a completely continuous operator. If there exists φ0 ∈ P\{θ} such that φ − Aφ ̸= µφ0,

∀φ ∈ ∂Pr, µ ≥ 0, then the fixed point index i(A,Pr, P ) = 0.

3. The main results

In this section, we shall discuss that BVP (1.4) has at last two positive solutions under some

conditions. For convenience, we list the following conditions

(H1) There exist b(t) ∈ C([0, 1], [0,+∞)), which does not vanish identically on any subin-

terval of [0, 1], and ε0 > 0, such that f(t, u) ≥ (λ1 + ε0)u− b(t), for t ∈ (0, 1), where λ1r(L) = 1.

(H2) There exist r1 > 0 and ε1 > 0, such that f(t, u) ≥ (λ1+ε1)u, for 0 ≤ u ≤ r1, t ∈ (0, 1).

(H3) There exists R0 > 0, such that
∫ 1

0
G(s, s)a(s)fR0R0(s)ds < R0/N.

(H4) There exist [c, d] ⊂ [0, 1] and l > 0, such that f(t, u) ≥ nu, for t ∈ [c, d], u ∈ [l,+∞),

where n = 1∫ d
c
H( 1

2 ,s)a(s)k(s)ds
.

(H5) There exist r2 > 0 and φ(t) ∈ L(0, 1) such that f(t, u) ≥ φ(t) for t ∈ (0, 1), u ∈ (0, r2],

and
∫ 1

0
G(s, s)a(s)φ(s)ds > 0.

In terms of these conditions, we can show the main result about BVP (1.4) in the next

theorem.
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Theorem 3.1 If (I), (II) (H0)–(H3) are satisfied, then BVP (1.4) has at least two positive

solutions.

Proof Let β = r(L)
∫ 1

0
q(t)b(t)dt, R > max{ β

ε0ωr(L)
, R0}. Then, for φ ∈ ∂PR and µ ≥ 0, we

have φ−Aφ ̸= µp0, where p0 =
∫ 1

0
H(t, s)ds. Otherwise, there exist φ0 ∈ ∂PR, and µ0 ≥ 0, such

that φ0 −Aφ0 = µ0p0, thus, by H1, we have

φ0 = Aφ0 + µ0p0 ≥ Aφ0 =

∫ 1

0

H(t, s)a(s)f(s, φ0(s))ds

≥ (λ1 + ε0)

∫ 1

0

H(t, s)a(s)φ0(s)ds−
∫ 1

0

H(t, s)a(s)b(s)ds,

which implies∫ 1

0

q(t)φ0(t)dt ≥ (λ1 + ε0)

∫ 1

0

q(t)

∫ 1

0

H(t, s)a(s)φ0(s)dsdt−
∫ 1

0

q(t)

∫ 1

0

H(t, s)a(s)b(s)dsdt.

= (λ1 + ε0)

∫ 1

0

φ0(s)

∫ 1

0

H(t, s)a(s)q(t)dtds−
∫ 1

0

b(s)

∫ 1

0

H(t, s)a(s)q(t)dtds.

= (λ1 + ε0)r(L)

∫ 1

0

φ0(s)q(s)ds− β.

= (1 + ε0r(L))

∫ 1

0

φ0(s)q(s)ds− β.

So, β ≥ ε0r(L))
∫ 1

0
φ0(s)q(s)ds ≥ ε0r(L))ω∥φ0∥ = ε0r(L))ωR, which is a contradiction with the

assumption of R. Then we have i(A,PR, P ) = 0.

Let r < min{R0, r1}. Then for φ ∈ ∂Pr, and τ ≥ 0, we have φ − Aφ ̸= τp0. Otherwise,

there exist φ0 ∈ ∂Pr, and τ0 ≥ 0, such that φ0 −Aφ0 = τ0p0, thus, by (H2), we have

φ0 =Aφ0 + τ0p0 ≥ Aφ0 =

∫ 1

0

H(t, s)a(s)f(s, φ0(s))ds

≥(λ1 + ε1)

∫ 1

0

H(t, s)a(s)φ0(s)ds,

which implies ∫ 1

0

q(t)φ0(t)dt ≥ (λ1 + ε1)

∫ 1

0

q(t)

∫ 1

0

H(t, s)a(s)φ0(s)dsdt,

= (λ1 + ε1)r(L)

∫ 1

0

φ0(t)q(t)dt,

=

∫ 1

0

φ0(t)q(t)dt+ ε1r(L)

∫ 1

0

φ0(t)q(t)dt.

So, 0 ≥
∫ 1

0
φ0(t)q(t)dt > 0, which is a contradiction. Then we have i(A,Pr, P ) = 0.

For u ∈ ∂PR0 , we have Au ̸= µu, µ ≥ 1. Otherwise, there exist u0 ∈ ∂PR0 , and µ0 ≥ 1,

such that Au0 = µ0u0. By (H3), we have

µ0u0 = Au0 =

∫ 1

0

H(t, s)a(s)f(s, u0(s))ds
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≤ N

∫ 1

0

G(s, s)a(s)fR0R0(s)ds < R0.

Thus µ0R0 < R0, which is a contradiction, so we have i(A,PR0 , P ) = 1.

So, i(A,PR0\Pr, P ) = 1 and i(A,PR\PR0 , P ) = −1. Therefore, BVP (1.4) has at least two

positive solutions. �
It is interesting that, from different conditions, we can show the same result as in Theorem

3.1, which is summarized in the following theorem.

Theorem 3.2 If (I), (II), (H0), (H3)–(H5) are satisfied, then BVP (1.4) has at least two positive

solutions.

Proof Let k0 = mint∈[c,d] k(t). Then u(t) ≥ k0∥u∥. Suppose ∥u∥ = R1 large enough, such that

u(t) ≥ k0∥u∥ = k0R1 ≥ l, so, by (H4), we have

∥Au∥ ≥ Au(1/2) =

∫ 1

0

H(1/2, s)a(s)f(s, u(s))ds

≥
∫ d

c

H(1/2, s)a(s)f(s, u(s))ds ≥ n

∫ d

c

H(1/2, s)a(s)u(s)ds

≥ n

∫ d

c

H(1/2, s)a(s)k(s)ds∥u∥ = ∥u∥.

Let ∥u∥ = r small enough such that r < min{
∫ 1

0
H(1/2, s)a(s)φ(s)ds, r2, R0}. Then by

(H5),

∥Au∥ ≥ Au(1/2) =

∫ 1

0

H(1/2, s)a(s)f(s, u(s))ds

≥
∫ 1

0

H(1/2, s)a(s)φ(s)ds ≥ ∥u∥.

For u ∈ ∂PR0 , by (H3), we have

∥Au∥ ≤ N

∫ 1

0

G(s, s)a(s)fR0R0(s)ds < R0 = ∥u∥.

To sum up, by Lemma 2.7, our conclusion follows.

Corollary 3.1 If (I), (II), (H0), (H1), (H3), (H5) are satisfied, then BVP (1.4) has at least two

positive solutions.

Corollary 3.2 If (I), (II), (H0), (H2), (H3), (H4) are satisfied, then BVP(1.4) has at least two

positive solutions.

Remark Under the assumptions of (I), (II), if (H0), (H1), (H3) or (H0), (H2), (H3) or (H0),

(H3), (H4) or (H0), (H3), (H5) are satisfied, then BVP (1.4) has at least one positive solution.

Two examples are presented in Section 4 to illustrate how our main results can be used in

practice.

4. Examples
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Example 4.1 Consider the singular integral boundary value problem u′′(t) = − 1

9
√
t(1−t)

( 1√
u(t)

+ (u(t))2), t ∈ (0, 1),

u(0) =
∫ 1

0
1
2u(s)ds, u(1) =

∫ 1

0
1
2u(s)ds.

(4.1)

Then BVP (4.1) has at least two positive solutions.

Proof BVP(4.1) can be regarded as a BVP of the form (1.4), where p(t) = a(t) = 1, f(t, u) =
1

9
√
t(1−t)

( 1√
u
+ u2), h(s) = g(s) = 1

2 , α = γ = 1, β = δ = 0 and e = 1, ρ = 1. Let R0 = 1. We

can easily find that the conditions of Theorem (3.1) are satisfied, so it has at least two positive

solutions. �

Example 4.2 Consider the singular integral boundary value problem u′′(t) = − 1

3
√
t(1−t)

( 1
u(t) + u(t)), t ∈ (0, 1),

u(0) =
∫ 1

0
1
2u(s)ds, u(1) =

∫ 1

0
1
2u(s)ds.

(4.2)

Then BVP (4.2) has at least two positive solutions.

Proof BVP(4.2) can be regarded as a BVP of the form (1.4), where p(t) = a(t) = 1, f(t, u) =
1

3
√
t(1−t)

( 1u + u), h(s) = g(s) = 1
2 , α = γ = 1, β = δ = 0 and e = 1, ρ = 1. Let R0 = 3,

φ(t) = 1√
t(1−t)

. We can easily find that the conditions of Theorem (3.2) are satisfied, so it has

at least two positive solutions. �
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