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Abstract In this paper, we propose a stochastic restricted s–K estimator in the linear

model with additional stochastic linear restrictions by combining the ordinary mixed estimator

(OME) with the s–K estimator. It is shown that the proposed estimator is superior to the

OME and the s–K estimator under the mean squared error matrix criterion under some

conditions. Finally, a numerical example and a Monte Carlo simulation study are given to

verify the theoretical results.
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1. Introduction

Consider the following linear regression model

Y = Xβ + ε, (1)

where Y is an n × 1 random vector of response variables, X is the known regressor matrix of

order n×p with full column rank, β is a p×1 vector of unknown parameters, ε is an n×1 vector

of random errors with E(ε) = 0 and Cov(ε) = σ2In, and σ2 is an unknown parameter.

According to the Gauss-Markov theorem, the least squares estimator (LSE) of β is given by

β̂LSE = S−1X ′Y, (2)

where S = X ′X. The LSE plays an important role in the regression analysis theory. However, it

has been shown that the LSE is no longer a good estimator when the problem of multicollinearity

in the model is present. To overcome this problem, various biased estimators as one of remedies

were put forward in the literature, such as the Stein estimator by Stein [1], the ridge estimator

(RE) by Hoerl and Kennard [2] and the Liu estimator (LE) by Liu [3]. Recently, Xu and He [4]

proposed a new kind of biased estimator class, which is called the s–K estimator. The LSE, the

Stein estimator and the RE are all special cases of the s–K estimator.
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Let Q be the orthogonal matrix such that Q′X ′XQ = Λ = diag(λ1, λ2, . . . , λp), where

λ1 ≥ λ2 ≥ · · · ≥ λp > 0 are the ordered eigenvalues of X ′X. Then the s–K estimator is defined

as

β̂s(K) = (sS +QKQ′)−1X ′Y, (3)

where s ≥ 1 and K = diag(k1, k2, . . . , kp) are parameters, and ki ≥ 0, i = 1, 2, . . . , p.

Denote

Fs(K) = (sS +QKQ′)−1S. (4)

Observing that Fs(K) and S−1 are commutative, we can write β̂s(K) as

β̂s(K) = Fs(K)β̂LSE = Fs(K)S−1X ′Y = S−1Fs(K)X ′Y. (5)

Another way to combat multicollinearity is through the collection and use of additional

information, which can be exact or stochastic restrictions, see Rao and Toutenburg [5]. How-

ever, exact restrictions are often appropriate in many applied work such as economic relations,

industrial structures, production planning, and so on. While, as pointed out by Arashi and

Tabatabaey [6] using stochastic linear restriction, one can accomplish an examination and anal-

ysis of one’s own thoughts and feelings. Moreover, one may also have prior information from a

historical sample which usually makes some relations through stochastic restrictions. Therefore,

in addition to model (1), now let us be given some prior information about β in the form of a

set of j independent stochastic linear restrictions as follows:

r = Rβ + υ, E(υ) = 0, Cov(υ) = σ2W, (6)

where r is a j×1 vector, R is a j×p matrix with rank(R) = j, υ is a j×1 vector of disturbances,

W is assumed to be known and positive definite. Besides, it is also assumed that the random

vector υ is independent of ε.

Durbin [7], Theil and Goldberger [8] and Theil [9] proposed the ordinary mixed estimator

(OME) by combining the sample model with the stochastic restrictions, which is defined as

β̂OME = (S +R′W−1R)−1(X ′Y +R′W−1r). (7)

Özkale [10] showed that the OME could be rewritten as

β̂OME = β̂LSE + S−1R′(W +RS−1R′)−1(r −Rβ̂LSE). (8)

For model (1) with the stochastic restrictions (6), Yang and Xu [11] also introduced a

stochastic restricted Liu estimator (SRLE) through replacing the LSE in the OME by the LE.

Yang and Wu [12] proposed a stochastic restricted k–d class estimator which is a generalization

of the k–d class estimator and the SRLE. Some important references on this subject are Li and

Yang [13, 14], Yang and Cui [15] and among others.

In this article, we will introduce a stochastic restricted s–K estimator as an alternative

method to overcome multicollinearity by combining the OME with the s–K estimator. The new

estimator includes the OME and the s–K estimator as special cases. In addition, we will compare
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the new estimator with the OME and the s–K estimator respectively, in the light of the mean

squared error matrix (MSEM) criterion.

The paper is organized as follows. In Section 2, the new estimator is introduced. Some

properties of the new estimator are discussed in Section 3. A numerical example and a Monte

Carlo simulation study are given in Sections 4 and 5, respectively. Some concluding remarks are

presented in Section 6.

2. The new estimator

In this section, we introduce a new stochastic restricted estimator, which is obtained by sub-

stituting the s–K estimator for the LSE in the OME. The new estimator is called the stochastic

restricted s–K estimator, which is defined as

β̂∗
s (K) = β̂s(K) + S−1R′(W +RS−1R′)−1(r −Rβ̂s(K))

= S−1Fs(K)X ′Y + S−1R′(W +RS−1R′)−1(r −RS−1Fs(K)X ′Y )

= [S−1 − S−1R′(W +RS−1R′)−1RS−1]Fs(K)X ′Y + S−1R′(W +RS−1R′)−1r

= (S +R′W−1R)−1Fs(K)X ′Y + S−1R′[W−1 −W−1R(S +R′W−1R)−1R′W−1]r

= (S +R′W−1R)−1Fs(K)X ′Y + [S−1R′W−1 − S−1R′W−1R(S +R′W−1R)−1R′W−1]r

= (S +R′W−1R)−1Fs(K)X ′Y + [S−1 − S−1R′W−1R(S +R′W−1R)−1]R′W−1r

= (S +R′W−1R)−1Fs(K)X ′Y + [S−1 − S−1(S +R′W−1R− S)(S +R′W−1R)−1]R′W−1r

= (S +R′W−1R)−1Fs(K)X ′Y + (S +R′W−1R)−1R′W−1r

= (S +R′W−1R)−1[Fs(K)X ′Y +R′W−1r]. (9)

Now, we can see that β̂∗
s (K) is a general estimator which includes the s–K estimator and the

OME as special cases: if R = 0, β̂∗
s (K) = β̂s(K); if s = 1 and K = 0, β̂∗

s (K) = β̂OME.

For the sake of convenience, we list here some notations and important lemmas needed in

the following discussions. For an n × n symmetric matrix M , M ≥ 0 means that M is positive

semidefinite, and M > 0 means that M is positive definite.

Note that for any estimator β̂ of β, its MSEM can be written as

MESM(β̂) = E[(β̂ − β)(β̂ − β)′] = Cov(β̂) + Bias(β̂)Bias(β̂)′,

where Bias(β̂) = E(β̂)− β is bias of β̂.

Lemma 2.1 Let M > 0, α be some vector. Then M − αα′ > 0 if and only if α′M−1α < 1.

Proof See Farebrother [16]. �

Lemma 2.2 Let β̂1 = A1Y , β̂2 = A2Y be two homogeneous linear estimators of β such that

D = A1A
′
1 −A2A

′
2 > 0. Then

MSEM(β̂1)−MSEM(β̂2) = σ2D + b1b
′
1 − b2b

′
2 > 0
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if and only if

b′2(σ
2D + b1b

′
1)

−1b2 < 1,

where bi = Bias(β̂i) = (AiX − I)β, i = 1, 2.

Proof Lemma 2.2 is a consequence of Lemma 2.1.

Lemma 2.3 Suppose that M , N are n × n matrices and M > 0, N ≥ 0. Then M > N ⇐⇒
λmax(NM−1) < 1.

Proof See Wang et al. [17]. �

3. The superiority of the new estimator

The expectation, the bias and the covariance matrix of the stochastic restricted s–K esti-

mator are given, respectively, by

E(β̂∗
s (K)) = (S +R′W−1R)−1(Fs(K)S +R′W−1R)β

= (S +R′W−1R)−1Fs(K)Sβ + (S +R′W−1R)−1(S +R′W−1R− S)β

= (S +R′W−1R)−1Fs(K)Sβ + [I − (S +R′W−1R)−1S]β

= β + (S +R′W−1R)−1(Fs(K)− I)Sβ, (10)

b1 := Bias(β̂∗
s (K)) = E(β̂∗

s (K))− β = (S +R′W−1R)−1(Fs(K)− I)Sβ, (11)

Cov(β̂∗
s (K)) := σ2B, (12)

where

B = (S +R′W−1R)−1(A+R′W−1R)(S +R′W−1R)−1, A = Fs(K)SFs(K)′. (13)

From (11) and (12), we can obtain that

MSEM(β̂∗
s (K)) = Cov(β̂∗

s (K)) + Bias(β̂∗
s (K))Bias(β̂∗

s (K))′ = σ2B + b1b
′
1. (14)

Similarly, we can get

MSEM(β̂s(K)) := σ2C + b2b
′
2, (15)

MSEM(β̂OME) = σ2(S +R′W−1R)−1, (16)

where

C = Fs(K)S−1F ′
s(K), b2 = (Fs(K)− Ip)β. (17)

In order to compare β̂∗
s (K) with β̂s(K) and β̂OME in the MSEM sense, we now investigate

the differences

∆1 = MSEM(β̂OME)−MSEM(β̂∗
s (K)) = σ2(S +R′W−1R)−1 − σ2B − b1b

′
1

:= σ2D1 − b1b
′
1, (18)

and

∆2 = MSEM(β̂s(K))−MSEM(β̂∗
s (K)) = σ2C + b2b

′
2 − σ2B − b1b

′
1
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:= σ2D2 + b2b
′
2 − b1b

′
1, (19)

where

D1 = (S +R′W−1R)−1(S −A)(S +R′W−1R)−1, D2 = C −B. (20)

In the following theorems, we will give the necessary and sufficient conditions for the new

estimator to be superior to the OME and the s–K estimator in the MSEM sense.

Theorem 3.1 When s > 1, then the stochastic restricted s–K estimator β̂∗
s (K) is better than

the OME estimator β̂OME in the MSEM sense if and only if b′1D
−1
1 b1 < σ2.

Proof It follows from Q′SQ = Λ that

Fs(K) = QΛ(sΛ +K)−1Q′,

which yields

A = Fs(K)SFs(K)′ = QΛ3(sΛ +K)−2Q′.

Consequently,

S −A = QΛQ′ −QΛ3(sΛ +K)−2Q′ = Qdiag(τ1, τ2, . . . , τp)Q
′,

where τi = λi − λ3
i

(sλi+ki)2
, i = 1, 2, . . . , p. Note that s > 1, we get τi > 0, i = 1, 2, . . . , p, which

implies that S − A > 0. Thus, we have D1 > 0. Then by Lemma 2.2 and expression (18), we

obtain that ∆1 > 0 if and only if b′1D
−1
1 b1 < σ2. �

Theorem 3.2 When λmax(BC−1) < 1, then the necessary and sufficient condition for the new

estimator β̂∗
s (K) to be superior to the s–K estimator β̂s(K) in the MSEM sense is

b′1(σ
2D2 + b2b

′
2)

−1b1 < 1.

Proof It is straightforward that B > 0 and C > 0. Thus when λmax(BC−1) < 1, we can get

D2 > 0 by applying Lemma 2.3. Consequently, it follows from Lemma 2.2 and expression (19)

that ∆2 > 0 if and only if b′1(σ
2D2 + b2b

′
2)

−1b1 < 1. �

4. Numerical example

In this section, we apply the proposed estimator to the well known data set on Total National

Research and Development Expenditures as a per cent of Gross National Product by Country,

which was discussed in Gruber [18]. The data has then been widely analyzed in literature by

Akdeniz and Erol [19], Li and Yang [13], and Chang and Yang [20]. We assemble the data as
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follows:

X =



1.9 2.2 1.9 3.7

1.8 2.2 2.0 3.8

1.8 2.4 2.1 3.6

1.8 2.4 2.2 3.8

2.0 2.5 2.3 3.8

2.1 2.6 2.4 3.7

2.1 2.6 2.6 3.8

2.2 2.6 2.6 4.0

2.3 2.8 2.8 3.7

2.3 2.7 2.8 3.8


, Y =



2.3

2.2

2.2

2.3

2.4

2.5

2.6

2.6

2.7

2.7


.

From the data, we can obtain the following results:

(i) The eigenvalues of X ′X: 302.96, 0.7283, 0.0446, 0.0345.

(i) The LSE of β: (0.6455, 0.0896, 0.1436, 0.1526)′.

(ii) The LSE of σ2: σ̂2 = 0.0015.

(iv) The condition number of X ′X: 5537.7.

Following Li and Yang [13], we consider the following stochastic linear restriction:

r = Rβ + e, R = (1,−2,−2,−2), e ∼ N(0, σ̂2).

Now let us compare the MSE of the proposed estimator with that of the OME and the s–K

estimator. The estimated MSE values are obtained by replacing all the unknown parameters

with the corresponding LSE. Here, we select s = 1.01 and 1.1. For the sake of convenience,

we choose K = kI, where k = 0, 0.001, 0.005, 0.009, 0.01, 0.02 and 0.1. All the results are

computed by R2.8.0, which are listed in Tables 1–2.

k=0 k=0.001 k=0.005 k=0.009 k=0.01 k=0.02 k=0.1

β̂OME 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445

β̂s(K) 0.0777 0.0741 0.0643 0.0595 0.0589 0.0597 0.1249

β̂∗
s (K) 0.0437 0.0415 0.0342 0.0288 0.0282 0.0194 0.0058

Table 1 Estimated MSE values of the OME, the s–K estimator

and the new estimator with s = 1.01.

k=0 k=0.001 k=0.005 k=0.009 k=0.01 k=0.02 k=0.1

β̂OME 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445

β̂s(K) 0.0693 0.0673 0.0621 0.0603 0.0602 0.0642 0.1293

β̂∗
s (K) 0.0412 0.0395 0.0338 0.0295 0.0286 0.0218 0.0102

Table 2 Estimated MSE values of the OME, the s–K estimator

and the new estimator with s = 1.1.

From Tables 1–2, we can observe the following: when s is slightly bigger than 1 and k is

relatively small, then the estimated MSE values of the new estimator are indeed smaller than
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those of the OME and the s–K estimator, which agrees with the theoretical findings in Theorems

3.1–3.2.

5. Monte Carlo simulation study

In this section, we carry out a Monte Carlo simulation study to further illustrate the per-

formance of the new estimator. In the simulation, the explanatory variables and the dependent

variables are generated respectively by

xij = (1− γ2)1/2ωij + γωi,p, i = 1, 2, . . . , n, j = 1, 2, . . . , p− 1,

yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi, εi ∼ N(0, 1), i = 1, 2, . . . , n,

where p = 5, n = 100, and ωi,j , i = 1, . . . , n, j = 1, . . . , p are generated from independent

standard normal distributions, εi, i = 1, . . . , n are independent standard normal pseudo-random

numbers, and γ is specified so that the correlation between any two explanatory variables is

given by γ2. Following Liu [21], four sets of correlation are considered here, which are γ = 0.9,

γ = 0.99, γ = 0.999 and γ = 0.9999. The resulting condition numbers of X ′X are 13.3, 125.9,

1251.4, 12494.4. We choose the normalized eigenvector corresponding to the largest eigenvalue

of X ′X as the parameter vector β suggested by Chang and Yang [3]. For simplicity, we choose

K = kI, where k =0.001, 0.01 and 0.1. In addition, the following stochastic linear constraint to

the model is considered:

r = Rβ + e, R = (1,−2,−2,−2), e ∼ N(0, 1).

For each choice of γ, the experiment is replicated 10000 times by generating new error terms

while X and β are fixed. Then, the estimated MSE for any estimator β̃ of β is calculated as

follows:

MSE(β̃) =
1

N

N∑
m=1

(β̃(m) − β)′(β̃(m) − β),

where β̃(m) is the estimator of β in the mth replication of the experiment, and N = 10000. The

simulation results are summarized in Tables 3–6.

s=1.1 s=1.15 s=1.2

k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1

β̂OME 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666 0.1666

β̂s(K) 0.1624 0.1601 0.1599 0.1585 0.1574 0.1547 0.1589 0.1583 0.1566

β̂∗
s (K) 0.1487 0.1464 0.1460 0.1483 0.1462 0.1434 0.1496 0.1494 0.1489

Table 3 Estimated MSE values of the three estimators with γ = 0.9
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s=1.1 s=1.15 s=1.2

k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1

β̂OME 1.2524 1.2524 1.2524 1.2524 1.2524 1.2524 1.2524 1.2524 1.2524

β̂s(K) 1.4589 1.4663 1.3245 1.3550 1.3315 1.2459 1.2400 1.2426 1.1445

β̂∗
s (K) 1.0637 1.0586 0.9752 1.0005 0.9894 0.9359 0.9435 0.9382 0.8756

Table 4 Estimated MSE values of the three estimators with γ = 0.99

s=1.1 s=1.15 s=1.2

k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1

β̂OME 11.489 11.489 11.489 11.489 11.489 11.489 11.489 11.489 11.489

β̂s(K) 14.421 13.074 6.0899 13.193 12.083 5.7394 12.179 11.223 5.4544

β̂∗
s (K) 9.4382 8.5644 4.1622 8.6449 7.8918 3.9398 8.0563 7.4471 3.7631

Table 5 Estimated MSE values of the three estimators with γ = 0.999

s=1.1 s=1.15 s=1.2

k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1 k=0.001 k=0.01 k=0.1

β̂OME 113.08 113.08 113.08 113.08 113.08 113.08 113.08 113.08 113.08

β̂s(K) 129.21 60.364 3.6971 119.66 57.867 3.6405 111.47 54.373 3.6184

β̂∗
s (K) 82.352 40.475 2.6868 77.493 38.409 2.7029 71.842 35.497 2.6739

Table 6 Estimated MSE values of the three estimators with γ = 0.9999

From the simulation results shown in Tables 3–6, we can see that with the increase of the

levels of multicollinearity, the estimated MSE values of the OME, the s–K estimator and the

proposed estimator increase in general. Moreover, under the cases considered, the new estimator

has smaller MSE values than those of the OME and the s–K estimator. In particular, the more

severe the multicollinearity is, the more pronounced the superiority of the new estimator is.

Therefore, the proposed estimator is meaningful in practice.

6. Conclusion

In this paper, we introduce a stochastic restricted s–K estimator for the vector of parameters

in a linear regression model when additional stochastic linear restrictions are assumed to hold.

Necessary and sufficient conditions are derived for the proposed estimator to be superior to the

s–K estimator and the OME in the sense of the MSEM criterion. Finally, we illustrate our

theoretical results by a numerical example and a Monte Carlo simulation.
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