The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

Lihua YOU*, Xin DONG
School of Mathematical Sciences, South China Normal University, Guangdong 510631, P. R. China

Abstract The Balaban index of a connected graph G is defined as

$$J(G) = \frac{|E(G)|}{\mu + 1} \sum_{e=uv \in E(G)} \frac{1}{\sqrt{D_G(u)D_G(v)}}$$

and the Sum-Balaban index is defined as

$$SJ(G) = \frac{|E(G)|}{\mu + 1} \sum_{e=uv \in E(G)} \frac{1}{D_G(u) + D_G(v)}$$

where $D_G(u) = \sum_{w \in V(G)} d_G(u, w)$, and μ is the cyclomatic number of G. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n vertices are characterized, respectively.

Keywords Balaban index; Sum-Balaban index; unicyclic; maximum.

MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The distance between vertices u and v in G, denoted by $d_G(u, v)$, is the length of the shortest path connecting u and v in G. Let $D_G(u) = \sum_{v \in V(G)} d_G(u, v)$, which is the distance sum of vertex u in G.

Let $|V(G)| = n$ and $|E(G)| = m$. The cyclomatic number μ of G is the minimum number of edges that must be removed from G in order to transform it to an acyclic graph. It is known that $\mu = m - n + 1$ (see [1]).

The Balaban index of a connected graph G is defined as

$$J(G) = \frac{m}{\mu + 1} \sum_{uv \in E(G)} \frac{1}{\sqrt{D_G(u)D_G(v)}}$$

It was proposed by A. T. Balaban [2, 3], which is also called the average distance-sum connectivity index or J index. It appears to be a very useful molecular descriptor with attractive properties.

Received May 5, 2013; Accepted January 28, 2014
Supported by the Zhujiang Technology New Star Foundation of Guangzhou (Grant No. 2011J2200090), and Program on International Cooperation and Innovation, Department of Education, Guangdong Province (Grant No. 2012gjha0007).
* Corresponding author
E-mail address: ylhua@scnu.edu.cn (Lihua YOU); 303903094@qq.com (Xin DONG)
Balaban et al. [4] also proposed the study of the Sum-Balaban index of a connected graph \(G \), which is defined as

\[
SJ(G) = \frac{m}{\mu + 1} \sum_{uv \in E(G)} \frac{1}{\sqrt{D_G(u) + D_G(v)}}
\]

Balaban index and Sum-Balaban index were used subsequently in various QSAR and QSPR studies. It has been shown that Balaban index and Sum-Balaban index have a strong correlation with chemical properties of the chemical compound and other topological indices of octanes and lower benzenoids. Mathematical properties of Balaban index can be found in [5–11]. Mathematical properties of Sum-Balaban index can be found in [10] and [12, 13].

Theorem 1.1 ([5–9, 12, 13]) Let \(T \) be a tree on \(n(\geq 2) \) vertices. Then

\[
J(P_n) \leq J(T) \leq J(S_n), \quad SJ(P_n) \leq SJ(T) \leq SJ(S_n)
\]

with left (or right) equality if and only if \(T = P_n \) (or \(T = S_n \)), where \(P_n \) is the path on \(n \) vertices and \(S_n \) is the star on \(n \) vertices.

In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on \(n \) vertices are characterized, respectively.

2. Preliminaries

In this section, we will introduce two transformations which are useful to the proofs of the main results.

Lemma 2.1 ([7]) Let \(a, a', b, b', w, x, y, z \in R^+ \) such that \(\frac{b}{x} \geq \frac{a}{w}, \frac{b'}{y} \geq \frac{a'}{z}, w \geq x \) and \(z \geq y \). Then

\[
\frac{1}{\sqrt{(w+a)(z+a')}} + \frac{1}{\sqrt{wz}} \geq \frac{1}{\sqrt{wz}} + \frac{1}{\sqrt{(x+b)(y+b')}}, \quad \text{and the equality holds if and only if } b = a, b' = a', w = x \text{ and } z = y.
\]

Lemma 2.2 ([7]) Let \(x, y, a \in R^+ \) such that \(x \geq y + a \). Then

\[
\frac{1}{\sqrt{xy}} \geq \frac{1}{\sqrt{(x-a)(y+a)}}, \quad \text{and the equality holds if and only if } x = y + a.
\]

Lemma 2.3 Let \(x_1, y_1, x_2, y_2 \in R^+ \) such that \(x_1 > y_1 \) and \(x_2 - x_1 = y_2 - y_1 > 0 \). Then

\[
\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}} < \frac{1}{\sqrt{y_1}} + \frac{1}{\sqrt{y_2}}.
\]

Proof Let \(a = x_2 - x_1 = y_2 - y_1 > 0 \) and \(f(t) = \frac{1}{\sqrt{t}} - \frac{1}{\sqrt{t+a}} \). It is clear that \(f'(t) < 0 \), then \(f(t) \) is a decreasing function of \(t \). So we have

\[
\frac{1}{\sqrt{x_1}} - \frac{1}{\sqrt{x_1+a}} < \frac{1}{\sqrt{y_1}} - \frac{1}{\sqrt{y_1+a}} \quad \text{by } x_1 > y_1, \quad \text{that is to say, } \frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{x_2}} < \frac{1}{\sqrt{y_1}} + \frac{1}{\sqrt{y_2}}.
\]

The edge-lifting transformation ([5]) Let \(G_1, G_2 \) be two graphs with \(n_1 \geq 2 \) and \(n_2 \geq 2 \) vertices, respectively. If \(G \) is the graph obtained from \(G_1 \) and \(G_2 \) by adding an edge between a vertex \(u_0 \) of \(G_1 \) and a vertex \(v_0 \) of \(G_2 \), \(G' \) is the graph obtained by identifying \(u_0 \) of \(G_1 \) to \(v_0 \) of \(G_2 \) and adding a pendant edge to \(u_0(v_0) \), then \(G' \) is called the edge-lifting transformation of \(G \) (see Figure 1).

Lemma 2.4 ([5, 12]) Let \(G' \) be the edge-lifting transformation of \(G \). Then \(J(G) < J(G') \) and
Let T_1, T_2, \ldots, T_k be k rooted trees with $|V(T_i)| \geq 2$ ($1 \leq i \leq k$) and roots u_1, u_2, \ldots, u_k, respectively. Let C_r be a cycle with length r ($r \geq 3$). Define $G(n, r, 0) = C_n$. For $1 \leq k \leq r \leq n$, define $G(n, r, k)$ to be a unicyclic graph on n vertices obtained from $C_r, T_1, T_2, \ldots, T_k$, by attaching k rooted trees T_1, T_2, \ldots, T_k to k distinct vertices of the cycle C_r, that is to say, $G(n, r, k)$ is a unicyclic graph on n vertices by identifying some vertex of C_r with the root u_i of T_i for each i ($1 \leq i \leq k$), where $|V(T_i)| \geq 2$ ($1 \leq i \leq k$). Clearly, $3 \leq r \leq n - k$.

Let $S = \{ S \mid S$ is a rooted star and the root is its center $\}$. Let $G^*(n, r, k)$ be the set of all unicyclic graphs on n vertices obtained from C_r by attaching k rooted stars in S to k distinct vertices of C_r (see Figure 2).

By Lemma 2.4, we can repeat the edge-lifting transformation to the rooted trees of $G(n, r, k)$, and we have

Lemma 2.5 Let n, r, k be positive integers with $1 \leq k \leq r$ and $3 \leq r \leq n - k$, $G(n, r, k)$ be defined as above, and $G^*(n, r, k) \in G^*(n, r, k)$ obtained from $G(n, r, k)$ by repeating edge-lifting transformation. Then

$$J(G(n, r, k)) \leq J(G^*(n, r, k)), \quad SJ(G(n, r, k)) \leq SJ(G^*(n, r, k)),$$

and the equality holds if and only if $G(n, r, k) \cong G^*(n, r, k)$.

Figure 3 shows an example how to obtain $G^*(n, r, 1) \in G^*(n, r, 1)$ by repeating edge-lifting transformation from graph $G(n, r, 1)$.

\[S J(G) < S J(G') \]

\[G_1 \quad u_0 \quad G_2 \]

\[G' \]

Figure 1 The edge-lifting transformation

A rooted graph has one of its vertices, called the root, distinguished from the others.

Let T_1, T_2, \ldots, T_k be k rooted trees with $|V(T_i)| \geq 2$ ($1 \leq i \leq k$) and roots u_1, u_2, \ldots, u_k, respectively. Let C_r be a cycle with length r ($r \geq 3$).

Define $G(n, r, 0) = C_n$. For $1 \leq k \leq r \leq n$, define $G(n, r, k)$ to be a unicyclic graph on n vertices obtained from $C_r, T_1, T_2, \ldots, T_k$, by attaching k rooted trees T_1, T_2, \ldots, T_k to k distinct vertices of the cycle C_r, that is to say, $G(n, r, k)$ is a unicyclic graph on n vertices by identifying some vertex of C_r with the root u_i of T_i for each i ($1 \leq i \leq k$), where $|V(T_i)| \geq 2$ ($1 \leq i \leq k$). Clearly, $3 \leq r \leq n - k$.

Let $S = \{ S \mid S$ is a rooted star and the root is its center $\}$. Let $G^*(n, r, k)$ be the set of all unicyclic graphs on n vertices obtained from C_r by attaching k rooted stars in S to k distinct vertices of C_r (see Figure 2).

\[G_1 \quad u_0 \quad G_2 \]

\[G' \]

Figure 2 A graph $G^*(n, r, k)$ in the set $G^*(n, r, k)$
Lemma 2.6 Let $G = G^*(n, r, k) \in \mathcal{G}^*(n, r, k)$ be defined as above. For convenience, let $m = \lceil \frac{n}{2} \rceil$. If r is even, define $C_r = v_1v_2 \cdots v_m u_{m+1} u_m \cdots u_1v_1$; if r is odd, define $C_r = v_1v_2 \cdots v_{m+1} u_{m+1} u_m \cdots u_1v_1$. Then G' is obtained from G by deleting the pendent edge u_iw and adding the pendent edge v_iw for any $i \in \{1, 2, \ldots, m\}$ (if there exists the pendent edge u_iw), where $w \in V(G) \setminus V(C_r)$. We say G' is obtained from G by branch transformation (see Figure 4, where $p_i \geq 0$, $q_i \geq 0$ for any $i \in \{1, 2, \ldots, m\}$).

Let G be a graph and $U(\neq \emptyset) \subseteq V(G)$. The subgraph with vertex set U and edge set consisting of those pairs of vertices that are edges in G is called the induced subgraph of G, denoted by $G[U]$, and for any vertex $u \in V(G)$, we define $D_G(u, U) = \sum_{v \in U} d_G(u, v)$.

Lemma 2.6 Let n, r, k be positive integers with $2 \leq k \leq r$, $3 \leq r \leq n - k$, $G = G^*(n, r, k) \in \mathcal{G}^*(n, r, k)$, G' be the graph obtained from G by branch transformation. Then $J(G) < J(G')$.

Proof Let $U_0 = \{u_1, u_2, \ldots, u_m\}$, $U_1 = \{w| u_iw \in E(G) \land \deg(w) = 1, 1 \leq i \leq m\}$, $V_0 = \{v_1, v_2, \ldots, v_m\}$, and $V_1 = \{w| v_iw \in E(G) \land \deg(w) = 1, 1 \leq i \leq m\}$ for $r = 2m$ is even, $V_4 = \{w| v_iw \in E(G) \land \deg(w) = 1, 1 \leq i \leq m + 1\}$ \cup $\{v_{m+1}\}$ for $r = 2m + 1$ is odd.

Figure 3 An example

Figure 4 The branch transformation
For any \(s \) with \(1 \leq s \leq m \), it is clear that \(u_s \in U_0 \) and \(v_s \in V_0 \), and
\[
D_G(u_s) = D_G(u_s, U_0) + D_G(u_s, U_1) + D_G(u_s, V_0) + D_G(u_s, V_1),
\]
(2.1)
and
\[
D_{G'}(v_s) = D_{G'}(v_s, V_0) + D_{G'}(v_s, U_1) + D_{G'}(v_s, V_0) + D_{G'}(v_s, V_1).
\]
(2.2)
Noting that \(G[U_0] \cong G'[V_0] \), \(G[V_0] \cong G'[V_0] \) and \(G[U_0 \cup U_1] \cong G'[V_0 \cup U_1] \), so
\[
D_G(u_s, U_0) = D_{G'}(v_s, V_0), D_G(u_s, V_0) = D_{G'}(v_s, U_0),
\]
and \(D_G(u_s, U_1) = D_{G'}(v_s, U_1), D_G(u_s, V_1) = D_{G'}(v_s, V_1) \). Thus we have
\[
D_G(u_s) - D_{G'}(v_s) = D_G(u_s, V_1) - D_{G'}(v_s, V_1) > 0.
\]
(2.3)
Similarly, we have
\[
D_G(v_s) = D_G(v_s, U_0) + D_G(v_s, U_1) + D_G(v_s, V_0) + D_G(v_s, V_1),
\]
(2.4)
and
\[
D_{G'}(u_s) = D_{G'}(u_s, U_0) + D_{G'}(u_s, U_1) + D_{G'}(u_s, V_0) + D_{G'}(u_s, V_1).
\]
(2.5)
Thus
\[
D_{G'}(u_s) - D_G(u_s) = D_{G'}(u_s, V_1) - D_G(u_s, V_1) > 0.
\]
(2.6)
Noting that \(D_G(u_s, V_1) = D_{G'}(u_s, V_1) \) and \(D_{G'}(v_s, V_1) = D_G(v_s, V_1) \), by (2.3) and (2.6), we have
\[
D_G(u_s) - D_{G'}(v_s) = D_G(u_s, V_1) - D_{G'}(v_s, V_1) > 0.
\]
(2.7)
By (2.1), (2.2), (2.4) and (2.5), we have
\[
D_{G'}(u_s) - D_G(u_s) = D_{G'}(v_s) - D_G(v_s) > 0.
\]
(2.8)
For any edge \(u_s u_t \in E(G[U_0]) \) and \(v_s v_t \in E(G[V_0]) \), take \(x = D_{G'}(v_s), y = D_{G'}(v_t), w = D_G(u_s), z = D_G(u_t), a = D_{G'}(u_s) - D_G(u_s), a' = D_{G'}(u_t) - D_G(u_t), b = D_G(v_s) - D_{G'}(v_t), b' = D_{G'}(v_t) - D_G(v_t) \). Then \(b = a > 0, b' = a' > 0 \) by (2.8). It is obvious that
\[
a, a', b, b', w, x, y, z \in R^+, w > x, z > y \text{ by (2.7). Then } \frac{a}{w}, \frac{a'}{y} > \frac{b'}{z}. \text{ Thus by Lemma 2.1, we have}
\]
\[
\frac{1}{\sqrt{D_{G'}(u_s)D_{G'}(u_t)}} + \frac{1}{\sqrt{D_{G'}(v_s)D_{G'}(v_t)}} > \frac{1}{\sqrt{D_G(u_s)D_G(u_t)}} + \frac{1}{\sqrt{D_G(v_s)D_G(v_t)}}.
\]
(2.9)
Similarly, for any vertex \(w \in U_1 \cup V_1 \), we can show \(D_G(w) \geq D_{G'}(w) \), where equality holds if and only if \(r = 2m + 1 \) is odd, \(w = v_{m+1} \) or \(r = 2m + 1 \) is odd, \(w \) is pendent vertex and adjacent to \(v_{m+1} \). Then it implies that the following inequalities (2.10)–(2.12) hold.

For any edge \(u_s w \in E(G) \) with \(u_s \in U_0 \) where \(1 \leq s \leq m \) and \(w \in U_1 \), the corresponding edge is \(v_s w \in E(G') \), we have
\[
\frac{1}{\sqrt{D_{G'}(v_s)D_{G'}(w)}} > \frac{1}{\sqrt{D_G(u_s)D_G(w)}}.
\]
(2.10)
For any edge $v_sw \in E(G)$ with $v_s \in V_0$ where $1 \leq s \leq m$ and $w \in V_1$, we have
\[
\frac{1}{\sqrt{D_G'(v_s)D_G'(w)}} > \frac{1}{\sqrt{D_G(v_s)D_G(w)}}.
\] (2.11)

When $r = 2m + 1$ is odd, then for any edge $v_{m+1}w \in E(G)$ with $w \in V_1$, we have
\[
\frac{1}{\sqrt{D_G'(v_{m+1})D_G'(w)}} = \frac{1}{\sqrt{D_G(v_{m+1})D_G(w)}}.
\] (2.12)

For edge u_1v_1, by (2.8) and Lemma 2.3, we have
\[
\frac{1}{\sqrt{D_G(u_1)D_G(v_1)}} > \frac{1}{\sqrt{D_G'(u_1)D_G'(v_1)}}.
\] (2.13)

From (2.9) to (2.13), we obtain $J(G') > J(G)$ by the definition of Balaban index. \(\square \)

Lemma 2.7 Let n, r, k be positive integers with $2 \leq k \leq r$ and $3 \leq r \leq n - k$, $G = G^*(n, r, k) \in \mathbb{G}^*(n, r, k)$, G' be the graph obtained from G by branch transformation. Then $SJ(G) < SJ(G')$.

Proof Let U_0, U_1, V_0, V_1, a, a', b, b' be defined as Lemma 2.6. Let $f(x) = \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}$. Then $f(x)$ is a decreasing function of x since $f'(x) < 0$. Noting that $D_G(u_s) + D_G(u_t) > D_G'(v_s) + D_G'(v_t) = D_G(v_s) + D_G(v_t) - a - a'$, we have
\[
\frac{1}{\sqrt{D_G(u_s) + D_G(u_t)}} \cdot \frac{1}{\sqrt{D_G(v_s) + D_G(v_t)}} > \frac{1}{\sqrt{D_G(u_s) + D_G(u_t) + a + a'}} \cdot \frac{1}{\sqrt{D_G(v_s) + D_G(v_t)}}.
\]

Thus
\[
\frac{1}{\sqrt{D_G(u_s) + D_G(u_t)} + \sqrt{D_G'(v_s) + D_G'(v_t)}} > \frac{1}{\sqrt{D_G(u_s) + D_G(u_t)} + \sqrt{D_G'(v_s) + D_G'(v_t)}}.
\] (2.14)

Similarly, for any vertex $w \in U_1 \cup V_1$, we can show $D_G(w) \geq D_G'(w)$, where equality holds if and only if $r = 2m + 1$ is odd, $w = v_{m+1}$ or $r = 2m + 1$ is odd, w is pendant vertex and adjacent to v_{m+1}. Then it implies that the following inequalities (2.15)–(2.17) hold.

For any edge $u_s w \in E(G)$ with $u_s \in U_0$ where $1 \leq s \leq m$ and $w \in U_1$, the corresponding edge is $v_s w \in E(G')$, we have
\[
\frac{1}{\sqrt{D_G'(v_s) + D_G'(w)}} > \frac{1}{\sqrt{D_G(v_s) + D_G(w)}}.
\] (2.15)

For any edge $v_s w \in E(G)$ with $v_s \in V_0$ where $1 \leq s \leq m$ and $w \in V_1$, we have
\[
\frac{1}{\sqrt{D_G(v_s) + D_G(w)}} > \frac{1}{\sqrt{D_G'(v_s) + D_G'(w)}}.
\] (2.16)

When $r = 2m + 1$ is odd, then for any edge $v_{m+1} w \in E(G)$ with $w \in V_1$, we have
\[
\frac{1}{\sqrt{D_G'(v_{m+1}) + D_G'(w)}} = \frac{1}{\sqrt{D_G(v_{m+1}) + D_G(w)}}.
\] (2.17)
For edge u_1v_1, by (2.8), we have

$$\frac{1}{\sqrt{D_{G^*}(u_1)+D_{G^*}(v_1)}} = \frac{1}{\sqrt{D_G(u_1)+D_G(v_1)}}.$$ (2.18)

From (2.14) to (2.18), we obtain $SJ(G^*) > SJ(G)$ by the definition of Sum-Balaban index.

\[\square\]

Lemma 2.8 Let n, r, k be positive integers with $1 \leq k \leq r$ and $3 \leq r \leq n - k$, $G = G^*(n, r, k) \in \mathbb{G}^*(n, r, k)$, and G' obtained from G by repeating the branch transformation, and we cannot get other graph from G' by repeating branch transformation. Then

1. $G' \in \mathbb{G}^*(n, r, 1)$ (see Figure 5).
2. $J(G) \leq J(G')$, and the equality holds if and only if $G \cong G'$.
3. $SJ(G) \leq SJ(G')$, and the equality holds if and only if $G \cong G'$.

![Figure 5](image)

Figure 5 graph $G^*(n, r, 1) \in \mathbb{G}^*(n, r, 1)$

3. The maximum Balaban index of unicyclic graphs

In this section, we will show that $G^*(n, 3, 1)$ is the graph which has the maximum Balaban index among all unicyclic graphs on n vertices.

Let G be a unicyclic graph on n vertices. Then $|E(G)| = n, \mu = 1$, and thus

$$J(G) = \frac{n}{2} \sum_{u \in E(G)} \frac{1}{\sqrt{D_G(u)D_G(v)}}.$$

Lemma 3.1 Let n, r be positive integers with $3 \leq r \leq n$, $G = G^*(n, r, 1) \in \mathbb{G}^*(n, r, 1)$ (see Figure 5). Then

$$\frac{2J(G)}{n} = \begin{cases} \frac{n-r}{\sqrt{\frac{r}{2}(2n-r+2n-1)(2n-r)}} + \sum_{i=1}^{r-1} \frac{2}{\sqrt{\left\lfloor \frac{r}{2} + i(n-r) \right\rfloor} \left\lfloor \frac{r}{2} + (i+1)(n-r) \right\rfloor}} & r \text{ is even}; \\
\frac{2}{\sqrt{\frac{r}{2} - 2n-1}} + \sum_{i=1}^{r-1} \frac{2}{\sqrt{D_G(u_i)D_G(u_{i+1})}} \cdot \frac{r-i+1}{2n-r-1} & r \text{ is odd}; \end{cases}$$

where $D_G(u_i) = \frac{r-i+1}{2} + i(n-r)$ for r is odd and $1 \leq i \leq \frac{r+1}{2}$.

Proof We calculate $D_G(u)$ for any vertex $u \in V(G)$.

Case 1 r is even.

Subcase 1.1 $u \in V(G) \setminus V(C_r)$.

$$D_G(u) = 2(n-r-1) + (1 + 2 + \cdots + \frac{r}{2}) + (2 + 3 + \cdots + \frac{r+2}{2}) = \frac{r^2}{4} - r + 2n - 2.$$

Subcase 1.2 $u = u_i \in V(C_r)$ where $1 \leq i \leq r$.

Noting that $D_G(u_i) = D_G(u_{r+2-i})$, we only need to calculate $D_G(u_i)$ for $1 \leq i \leq \frac{r+2}{2}$. Clearly, when $1 \leq i \leq \frac{r+2}{2}$, we have

$$D_G(u_i) = (1 + 2 + \cdots + \frac{r}{2}) + (1 + 2 + \cdots + \frac{r-2}{2}) + i(n-r) = \frac{r^2}{4} + i(n-r).$$

Case 2 r is odd.

Subcase 2.1 $u \in V(G) \setminus V(C_r)$.

$$D_G(u) = 2(n-r-1) + (1 + 2 + \cdots + \frac{r+1}{2}) + (2 + 3 + \cdots + \frac{r+1}{2}) = \frac{r^2}{4} - r + 2n - \frac{9}{4}.$$

Subcase 2.2 $u = u_i \in V(C_r)$ where $1 \leq i \leq r$.

Noting that $D_G(u_i) = D_G(u_{r+2-i})$, we only need to calculate $D_G(u_i)$ for $1 \leq i \leq \frac{r+1}{2}$. Clearly, when $1 \leq i \leq \frac{r+1}{2}$, we have

$$D_G(u_i) = (1 + 2 + \cdots + \frac{r-1}{2}) + (1 + 2 + \cdots + \frac{r-1}{2}) + i(n-r) = \frac{r^2-1}{4} + i(n-r).$$

Combine the previous arguments and let $w \in V(G) \setminus V(C_r)$, then we can show (3.1) by the following equation

$$J(G) = \frac{n}{2} \sum_{u \in E(G)} \frac{1}{\sqrt{D_G(u)D_G(v)}}$$

$$= \begin{cases} \frac{n}{2} \left(\sum_{1 \leq i \leq \frac{r}{2}} \frac{1}{\sqrt{D_G(u_i)D_G(u_{i+1})}} + \frac{1}{\sqrt{D_G(u_1)D_G(w)}} \right), & \text{if } r \text{ is even;} \\ \frac{n}{2} \left(\sum_{1 \leq i \leq \frac{r-1}{2}} \frac{1}{\sqrt{D_G(u_i)D_G(u_{i+1})}} + \frac{1}{\sqrt{D_G(u_{\frac{r}{2}})D_G(u_{\frac{r+1}{2}})}} + \frac{n-r}{\sqrt{D_G(u_1)D_G(w)}} \right), & \text{if } r \text{ is odd.} \end{cases}$$

Theorem 3.2 Let n, r be integers with $n \geq 4$, $3 \leq r \leq n$, $G \cong G_n$ be a connected unicyclic graph on n vertices, the length of unique cycle of G be r. Then

$$J(G) \leq J(G^*(n, 3, 1)) = \frac{n}{2} \left(\frac{1}{2n-4} + \frac{2}{\sqrt{(2n-4)(n-1)}} + \frac{n-3}{\sqrt{(2n-3)(n-1)}} \right),$$

where the equality holds if and only if $G \cong G^*(n, 3, 1)$.

Proof Since $G \not\cong G_n$, there exists positive integer k such that $1 \leq k \leq r \leq n$ and $G = G(n, r, k)$. By Lemma 2.5, there exists G_1 such that $G_1 \in G^*(n, r, k)$ and G_1 is obtained from G by repeating edge-lifting transformation. Then $J(G) \leq J(G_1)$, where the equality holds if and only if $G = G(n, r, k) \equiv G_1$.

By Lemma 2.8, $G_2 = G^*(n, r, 1) \in G^*(n, r, 1)$ can be obtained from G_1 by repeating branch transformation such that $J(G_1) \leq J(G_2)$, where the equality holds if and only if $G_1 \equiv G_2$.

Now by Lemma 3.1, we will show $J(G^*(n, r, 1)) \leq \max\{J(G^*(n, 3, 1)), J(G^*(n, 4, 1))\}$ by the following two cases.

Case 1 r is even.

Let $f(r) = (\frac{r^2}{4} - r + 2n - 2)(\frac{r^2}{4} + n - r)$, and $g_i(r) = [\frac{r^2}{4} + i(n-r)][\frac{r^2}{4} + (i+1)(n-r)]$ for $1 \leq i \leq \frac{r}{2}$.

It is obvious that \(f'(r) > 0, g'_1(r) > 0, g'_2(r) > 0, \ldots, \) and \(g'_2(r) > 0. \) So \(J(G^*(n,r,1)) = \frac{2}{n} \cdot \left(\frac{n-r}{\sqrt{f(r)}} + \sum_{1 \leq i \leq \frac{r}{2}} \frac{2}{\sqrt{g_i(r)}} \right) \) is a decreasing function of \(r \) when \(r \) is even. Thus we have

\[
J(G^*(n,4,1)) > J(G^*(n,6,1)) > \cdots > J(G^*(n,2\left\lfloor \frac{n-1}{2} \right\rfloor,1)).
\]

Case 2 \(r \) is odd.

Let \(f(r) = (\frac{r^2}{4} - r + 2n - \frac{n}{4})(\frac{r^2}{4} + n - r), g_i(r) = [\frac{r^2}{4} + i(n-r)][\frac{r^2}{4} + (i+1)(n-r)] \) for \(1 \leq i \leq \frac{r-1}{2} \), and \(h(r) = \frac{r^2}{4} + \frac{r}{2}(n-r) \).

It is obvious that \(f'(r) > 0, g'_1(r) > 0, g'_2(r) > 0, \ldots, g'_{\frac{r-1}{2}}(r) > 0 \) and \(h'(r) > 0. \) So \(J(G^*(n,r,1)) = \frac{2}{n} \cdot \left(\frac{n-r}{\sqrt{f(r)}} + \sum_{1 \leq i \leq \frac{r-1}{2}} \frac{2}{\sqrt{g_i(r)}} + \frac{1}{h(r)} \right) \) is a decreasing function of \(r \) when \(r \) is odd.

Thus we have \(J(G^*(n,3,1)) > J(G^*(n,5,1)) > \cdots > J(G^*(n,2\left\lfloor \frac{n-2}{2} \right\rfloor + 1,1)). \)

On the other hand, by calculation, we have

\[
\frac{2}{n} \cdot (J(G^*(n,3,1)) - J(G^*(n,4,1)))
= \frac{1}{2n-4} + \frac{2}{\sqrt{(2n-4)(n-1)}} + \frac{n-3}{\sqrt{(2n-3)(n-1)}} - \left(\frac{2}{\sqrt{n(2n-4)}} + \frac{2}{\sqrt{(2n-4)(3n-8)}} + \frac{n-4}{\sqrt{n(2n-2)}} \right)
= \frac{1}{2n-4} - \frac{1}{\sqrt{(2n-4)(3n-8)}} + \frac{2}{\sqrt{(2n-4)(n-1)}} - \frac{2}{\sqrt{n(2n-4)}} + \left(\frac{n-4}{\sqrt{(2n-3)(n-1)}} - \frac{1}{\sqrt{n(2n-2)}} \right) > 0.
\]

From above arguments, we have

\[
J(G) \leq J(G_1) \leq J(G_2) \leq \max\{J(G^*(n,3,1)), J(G^*(n,4,1))\} = J(G^*(n,3,1)). \quad \square
\]

If \(G = C_n \), then for any vertex \(u \in V(C_n) \), \(D_G(u) = \frac{n^2}{4} \) for even \(n \) and \(D_G(u) = \frac{n^2-1}{4} \) for odd \(n \). Thus we have

Proposition 3.3 Let \(n \geq 3 \). Then \(J(C_n) = \left\{ \begin{array}{ll} 2, & \text{if } n \text{ is even;} \\ 2n^2, & \text{if } n \text{ is odd.} \end{array} \right. \)

Theorem 3.4 Let \(n,r \) be integers with \(n \geq 4, 3 \leq r \leq n, G \) be a connected unicyclic graph on \(n \) vertices, the length of unique cycle of \(G \) be \(r \). Then

\[
J(G) \leq J(G^*(n,3,1)) = \frac{n}{2} \cdot \left(\frac{1}{2n-4} + \frac{2}{\sqrt{(2n-4)(n-1)}} + \frac{n-3}{\sqrt{(2n-3)(n-1)}} \right),
\]

where the equality holds if and only if \(G \in G^*(n,3,1). \)

Proof By Theorem 3.2 and Proposition 3.3, we only need to show \(J(G^*(n,3,1)) > J(C_n) \).

Case 1 \(n = 4. \)

\[
J(G^*(4,3,1)) - J(C_4) = 2(\frac{1}{4} + \frac{2}{\sqrt{12}} + \frac{1}{\sqrt{15}}) - 2 > 0.
\]

Case 2 \(n \geq 5. \)
4. The maximum Sum-Balaban index of unicyclic graphs

In this section, we will show that \(G^*(n, 3, 1) \) is the graph which has the maximum Sum-Balaban index among all unicyclic graphs on \(n \) vertices.

Let \(G \) be a unicyclic graph on \(n \) vertices. Then \(|E(G)| = n, \mu = 1 \), and thus

\[
SJ(G) = \frac{n}{2} \sum_{uv \in E(G)} \frac{1}{\sqrt{D_G(u) + D_G(v)}}.
\]

Similarly to Section 3, we can obtain the following results immediately.

Lemma 4.1 Let \(n, r \) be positive integers with \(3 \leq r \leq n \), \(G = G^*(n, r, 1) \in G^*(n, r, 1) \) (see Figure 5). Then

\[
\frac{2SJ(G)}{n} = \begin{cases}
\frac{n-r}{2\sqrt{r^2 - 2r + 3n - 2}} + \sum_{1 \leq i \leq \frac{n-r}{2}} \frac{2}{\sqrt{r^2 + (2i+1)(n-r)}} & \text{if } r \text{ is even;} \\
\frac{n-r}{2\sqrt{r^2 - 2r + 3n - 2}} + \sum_{1 \leq i \leq \frac{n-r}{2}} \frac{2}{\sqrt{r^2 + (2i+1)(n-r)}} + \frac{1}{\sqrt{n^2 - 2r + 3n - 2}} & \text{if } r \text{ is odd.}
\end{cases}
\]

Theorem 4.2 Let \(n, r \) be integers with \(n \geq 4, 3 \leq r \leq n \), \(G \not\cong C_n \) be a connected unicyclic graph on \(n \) vertices, the length of unique cycle of \(G \) be \(r \). Then

\[
SJ(G) \leq SJ(G^*(n, 3, 1)) = \frac{n}{2} \cdot \left(\frac{1}{\sqrt{4n-8}} + \frac{2}{\sqrt{3n-5}} + \frac{n-3}{\sqrt{3n-4}} \right),
\]

where the equality holds if and only if \(G \cong G^*(n, 3, 1) \).

Proof Note that

\[
SJ(G^*(n, 3, 1)) - SJ(G^*(n, 4, 1)) = \frac{n}{2} \cdot \left[\left(\frac{1}{\sqrt{4n-8}} + \frac{2}{\sqrt{3n-5}} + \frac{n-3}{\sqrt{3n-4}} \right) - \left(\frac{2}{\sqrt{3n-4}} + \frac{2}{\sqrt{5n-12}} + \frac{n-4}{\sqrt{3n-2}} \right) \right] = \frac{n}{2} \cdot \left[\left(\frac{1}{\sqrt{4n-8}} - \frac{1}{\sqrt{5n-12}} \right) + \left(\frac{2}{\sqrt{3n-4}} - \frac{2}{\sqrt{3n-2}} \right) + \left(\frac{n-4}{\sqrt{3n-4}} - \frac{n-4}{\sqrt{3n-2}} \right) \right] > 0.
\]

Thus similarly to the proof of Theorem 3.2, we have

\[
SJ(G) \leq SJ(G_1) \leq SJ(G_2) \leq \max\{SJ(G^*(n, 3, 1)), SJ(G^*(n, 4, 1))\} = SJ(G^*(n, 3, 1)). \quad \Box
\]
Proposition 4.3 Let $n \geq 3$. Then $SJ(C_n) = \begin{cases} \sqrt{\frac{2n}{n^2}}, & \text{if } n \text{ is even;} \\ \sqrt{\frac{2n^2}{n^2-1}}, & \text{if } n \text{ is odd.} \end{cases}$

Theorem 4.4 Let n, r be integers with $n \geq 4$, $3 \leq r \leq n$, G be a connected unicyclic graph on n vertices, the length of unique cycle of G be r. Then

$$SJ(G) \leq SJ(G^*(n, 3, 1)) = \frac{n}{2} \cdot \left(\frac{1}{\sqrt{4n} - 8} + \frac{2}{\sqrt{3n} - 5} + \frac{n - 3}{\sqrt{3n} - 4} \right),$$

where the equality holds if and only if $G \in G^*(n, 3, 1)$.

Proof By Theorem 4.2 and Proposition 4.3, we only need to show $SJ(G^*(n, 3, 1)) > SJ(C_n)$.

Case 1 $n = 4$.

$$SJ(G^*(4, 3, 1)) - SJ(C_4) = 2\left(\frac{2}{\sqrt{8}} + \frac{2}{\sqrt{7}} \right) - 2\sqrt{2} = \frac{4\sqrt{7}}{7} - \sqrt{2} > 0.$$

Case 2 $n \geq 5$.

$$SJ(G^*(n, 3, 1)) - SJ(C_n) \geq \frac{n}{2} \cdot \left(\frac{1}{\sqrt{4n} - 8} + \frac{2}{\sqrt{3n} - 5} + \frac{n - 3}{\sqrt{3n} - 4} \right) - \frac{\sqrt{2n^2}}{2\sqrt{n^2 - 1}}$$

$$= \frac{n}{2} \cdot \left[\frac{1}{\sqrt{4n} - 8} - \frac{1}{\sqrt{n^2 - 1}} \right] + \left(\frac{2}{\sqrt{3n} - 5} - \frac{2}{\sqrt{n^2} - 2} \right) + \left(\frac{n - 3}{\sqrt{3n} - 4} - \frac{n - 3}{\sqrt{n^2} - 2} \right] > 0.$$

Combining the above two cases, we complete the proof. □

Acknowledgements The authors would like to thank the referees for their valuable comments, corrections, and suggestions, which lead to an improvement of the original paper.

References

[10] Lihua YOU, Han HAN. The maximum Balaban index (Sum-Balaban index) of trees with given diameter. Ars Combin., 2013, 112: 115–128.

