The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

Lihua YOU*, Xin DONG
School of Mathematical Sciences, South China Normal University, Guangdong 510631, P. R. China

Abstract The Balaban index of a connected graph G is defined as

$$
J(G)=\frac{|E(G)|}{\mu+1} \sum_{e=u v \in E(G)} \frac{1}{\sqrt{D_{G}(u) D_{G}(v)}}
$$

and the Sum-Balaban index is defined as

$$
S J(G)=\frac{|E(G)|}{\mu+1} \sum_{e=u v \in E(G)} \frac{1}{\sqrt{D_{G}(u)+D_{G}(v)}}
$$

where $D_{G}(u)=\sum_{w \in V(G)} d_{G}(u, w)$, and μ is the cyclomatic number of G. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n vertices are characterized, respectively.
Keywords Balaban index; Sum-Balaban index; unicyclic; maximum.
MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The distance between vertices u and v in G, denoted by $d_{G}(u, v)$, is the length of the shortest path connecting u and v in G. Let $D_{G}(u)=\sum_{v \in V(G)} d_{G}(u, v)$, which is the distance sum of vertex u in G.

Let $|V(G)|=n$ and $|E(G)|=m$. The cyclomatic number μ of G is the minimum number of edges that must be removed from G in order to transform it to an acyclic graph. It is known that $\mu=m-n+1$ (see [1]).

The Balaban index of a connected graph G is defined as

$$
J(G)=\frac{m}{\mu+1} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u) D_{G}(v)}}
$$

It was proposed by A. T. Balaban [2, 3], which is also called the average distance-sum connectivity index or J index. It appears to be a very useful molecular descriptor with attractive properties.

[^0]Balaban et al. [4] also proposed the study of the Sum-Balaban index of a connected graph G, which is defined as

$$
S J(G)=\frac{m}{\mu+1} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u)+D_{G}(v)}} .
$$

Balaban index and Sum-Balaban index were used subsequently in various QSAR and QSPR studies. It has been shown that Balaban index and Sum-Balaban index have a strong correlation with chemical properties of the chemical compound and other topological indices of octanes and lower benzenoids. Mathematical properties of Balaban index can be found in [5-11]. Mathematical properties of Sum-Balaban index can be found in $[10]$ and $[12,13]$.

Theorem $1.1([5-9,12,13])$ Let T be a tree on $n(\geq 2)$ vertices. Then

$$
J\left(P_{n}\right) \leq J(T) \leq J\left(S_{n}\right), \quad S J\left(P_{n}\right) \leq S J(T) \leq S J\left(S_{n}\right)
$$

with left (or right) equality if and only if $T=P_{n}$ (or $T=S_{n}$), where P_{n} is the path on n vertices and S_{n} is the star on n vertices.

In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n vertices are characterized, respectively.

2. Preliminaries

In this section, we will introduce two transformations which are useful to the proofs of the main results.

Lemma 2.1 ([7]) Let $a, a^{\prime}, b, b^{\prime}, w, x, y, z \in R^{+}$such that $\frac{b}{x} \geq \frac{a}{w}, \frac{b^{\prime}}{y} \geq \frac{a^{\prime}}{z}, w \geq x$ and $z \geq y$. Then $\frac{1}{\sqrt{(w+a)\left(z+a^{\prime}\right)}}+\frac{1}{\sqrt{x y}} \geq \frac{1}{\sqrt{w z}}+\frac{1}{\sqrt{(x+b)\left(y+b^{\prime}\right)}}$, and the equality holds if and only if $b=a, b^{\prime}=$ $a^{\prime}, w=x$ and $z=y$.

Lemma 2.2 ([7]) Let $x, y, a \in R^{+}$such that $x \geq y+a$. Then $\frac{1}{\sqrt{x y}} \geq \frac{1}{\sqrt{(x-a)(y+a)}}$, and the equality holds if and only if $x=y+a$.

Lemma 2.3 Let $x_{1}, y_{1}, x_{2}, y_{2} \in R^{+}$such that $x_{1}>y_{1}$ and $x_{2}-x_{1}=y_{2}-y_{1}>0$. Then $\frac{1}{\sqrt{x_{1}}}+\frac{1}{\sqrt{y_{2}}}<\frac{1}{\sqrt{x_{2}}}+\frac{1}{\sqrt{y_{1}}}$.
Proof Let $a=x_{2}-x_{1}=y_{2}-y_{1}>0$ and $f(t)=\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t+a}}$. It is clear that $f^{\prime}(t)<0$, then $f(t)$ is a decreasing function of t. So we have $\frac{1}{\sqrt{x_{1}}}-\frac{1}{\sqrt{x_{1}+a}}<\frac{1}{\sqrt{y_{1}}}-\frac{1}{\sqrt{y_{1}+a}}$ by $x_{1}>y_{1}$, that is to say, $\frac{1}{\sqrt{x_{1}}}+\frac{1}{\sqrt{y_{2}}}<\frac{1}{\sqrt{x_{2}}}+\frac{1}{\sqrt{y_{1}}}$.

The edge-lifting transformation ([5]) Let G_{1}, G_{2} be two graphs with $n_{1} \geq 2$ and $n_{2} \geq 2$ vertices, respectively. If G is the graph obtained from G_{1} and G_{2} by adding an edge between a vertex u_{0} of G_{1} and a vertex v_{0} of G_{2}, G^{\prime} is the graph obtained by identifying u_{0} of G_{1} to v_{0} of G_{2} and adding a pendent edge to $u_{0}\left(v_{0}\right)$, then G^{\prime} is called the edge-lifting transformation of G (see Figure 1).

Lemma $2.4([5,12])$ Let G^{\prime} be the edge-lifting transformation of G. Then $J(G)<J\left(G^{\prime}\right)$ and
$S J(G)<S J\left(G^{\prime}\right)$.

G

G^{\prime}

Figure 1 The edge-lifting transformation

A rooted graph has one of its vertices, called the root, distinguished from the others.
Let $T_{1}, T_{2}, \ldots, T_{k}$ be k rooted trees with $\left|V\left(T_{i}\right)\right| \geq 2(1 \leq i \leq k)$ and roots $u_{1}, u_{2}, \ldots, u_{k}$, respectively. Let C_{r} be a cycle with length $r(r \geq 3)$.

Define $G(n, r, 0)=C_{n}$. For $1 \leq k \leq r \leq n$, define $G(n, r, k)$ to be a unicyclic graph on n vertices obtained from $C_{r}, T_{1}, T_{2}, \ldots, T_{k}$, by attaching k rooted trees $T_{1}, T_{2}, \ldots, T_{k}$ to k distinct vertices of the cycle C_{r}, that is to say, $G(n, r, k)$ is a unicyclic graph on n vertices by identifying some vertex of C_{r} with the root u_{i} of T_{i} for each $i(1 \leq i \leq k)$, where $\left|V\left(T_{i}\right)\right| \geq 2(1 \leq i \leq k)$. Clearly, $3 \leq r \leq n-k$.

Let $\mathbb{S}=\{S \mid S$ is a rooted star and the root is its center $\}$.
Let $\mathbb{G}^{*}(n, r, k)$ be the set of all unicyclic graphs on n vertices obtained from C_{r} by attaching k rooted stars in \mathbb{S} to k distinct vertices of C_{r} (see Figure 2).

Figure 2 A graph $G^{*}(n, r, k)$ in the set $\mathbb{G}^{*}(n, r, k)$
By Lemma 2.4, we can repeat the edge-lifting transformation to the rooted trees of $G(n, r, k)$, and we have

Lemma 2.5 Let n, r, k be positive integers with $1 \leq k \leq r$ and $3 \leq r \leq n-k, G(n, r, k)$ be defined as above, and $G^{*}(n, r, k) \in \mathbb{G}^{*}(n, r, k)$ obtained from $G(n, r, k)$ by repeating edge-lifting transformation. Then

$$
J(G(n, r, k)) \leq J\left(G^{*}(n, r, k)\right), \quad S J(G(n, r, k)) \leq S J\left(G^{*}(n, r, k)\right)
$$

and the equality holds if and only if $G(n, r, k) \cong G^{*}(n, r, k)$.
Figure 3 shows an example how to obtain $G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$ by repeating edge-lifting transformation from graph $G(n, r, 1)$.

(Let $u_{0}=1, v_{0}=6$.)

$G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$

(Let $u_{0}^{\prime}=1, v_{0}^{\prime}=8$.)
\Downarrow

(Let $u_{0}^{\prime \prime}=1, v_{0}^{\prime \prime}=3$.)

Figure 3 An example
Branch transformation Let $G=G^{*}(n, r, k) \in \mathbb{G}^{*}(n, r, k)$ be defined as above. For convenience, let $m=\left\lfloor\frac{r}{2}\right\rfloor$. If r is even, define $C_{r}=v_{1} v_{2} \cdots v_{m} u_{m} \cdots u_{2} u_{1} v_{1}$; if r is odd, define $C_{r}=v_{1} v_{2} \cdots v_{m} v_{m+1} u_{m} \cdots u_{2} u_{1} v_{1}$. Then G^{\prime} is obtained from G by deleting the pendent edge $u_{i} w$ and adding the pendent edge $v_{i} w$ for any $i \in\{1,2, \ldots, m\}$ (if there exists the pendent edge $u_{i} w$), where $w \in V(G) \backslash V\left(C_{r}\right)$. We say G^{\prime} is obtained from G by branch transformation (see Figure 4 , where $p_{i} \geq 0, q_{i} \geq 0$ for any $\left.i \in\{1,2, \ldots, m\}\right)$.

$G=G^{*}(n, r, k)$ for r is even

G^{\prime}

Figure 4 The branch transformation

Let G be a graph and $U(\neq \phi) \subseteq V(G)$. The subgraph with vertex set U and edge set consisting of those pairs of vertices that are edges in G is called the induced subgraph of G, denoted by $G[U]$, and for any vertex $u \in V(G)$, we define $D_{G}(u, U)=\sum_{v \in U} d_{G}(u, v)$.

Lemma 2.6 Let n, r, k be positive integers with $2 \leq k \leq r, 3 \leq r \leq n-k, G=G^{*}(n, r, k) \in$ $\mathbb{G}^{*}(n, r, k), G^{\prime}$ be the graph obtained from G by branch transformation. Then $J(G)<J\left(G^{\prime}\right)$.

Proof Let $U_{0}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, U_{1}=\left\{w \mid u_{i} w \in E(G), \operatorname{deg}(w)=1,1 \leq i \leq m\right\}, V_{0}=$ $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and $V_{1}=\left\{w \mid v_{i} w \in E(G), \operatorname{deg}(w)=1,1 \leq i \leq m\right\}$ for $r=2 m$ is even, $V_{1}=\left\{w \mid v_{i} w \in E(G), \operatorname{deg}(w)=1,1 \leq i \leq m+1\right\} \cup\left\{v_{m+1}\right\}$ for $r=2 m+1$ is odd.

For any s with $1 \leq s \leq m$, it is clear that $u_{s} \in U_{0}$ and $v_{s} \in V_{0}$, and

$$
\begin{equation*}
D_{G}\left(u_{s}\right)=D_{G}\left(u_{s}, U_{0}\right)+D_{G}\left(u_{s}, U_{1}\right)+D_{G}\left(u_{s}, V_{0}\right)+D_{G}\left(u_{s}, V_{1}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{G^{\prime}}\left(v_{s}\right)=D_{G^{\prime}}\left(v_{s}, V_{0}\right)+D_{G^{\prime}}\left(v_{s}, U_{1}\right)+D_{G^{\prime}}\left(v_{s}, U_{0}\right)+D_{G^{\prime}}\left(v_{s}, V_{1}\right) \tag{2.2}
\end{equation*}
$$

Noting that $G\left[U_{0}\right] \cong G^{\prime}\left[V_{0}\right], G\left[V_{0}\right] \cong G^{\prime}\left[U_{0}\right]$ and $G\left[U_{0} \bigcup U_{1}\right] \cong G^{\prime}\left[V_{0} \bigcup U_{1}\right]$, so

$$
D_{G}\left(u_{s}, U_{0}\right)=D_{G^{\prime}}\left(v_{s}, V_{0}\right), D_{G}\left(u_{s}, V_{0}\right)=D_{G^{\prime}}\left(v_{s}, U_{0}\right),
$$

and $D_{G}\left(u_{s}, U_{1}\right)=D_{G^{\prime}}\left(v_{s}, U_{1}\right), D_{G}\left(u_{s}, V_{1}\right)>D_{G^{\prime}}\left(v_{s}, V_{1}\right)$. Thus we have

$$
\begin{equation*}
D_{G}\left(u_{s}\right)-D_{G^{\prime}}\left(v_{s}\right)=D_{G}\left(u_{s}, V_{1}\right)-D_{G^{\prime}}\left(v_{s}, V_{1}\right)>0 . \tag{2.3}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
D_{G}\left(v_{s}\right)=D_{G}\left(v_{s}, U_{0}\right)+D_{G}\left(v_{s}, U_{1}\right)+D_{G}\left(v_{s}, V_{0}\right)+D_{G}\left(v_{s}, V_{1}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{G^{\prime}}\left(u_{s}\right)=D_{G^{\prime}}\left(u_{s}, V_{0}\right)+D_{G^{\prime}}\left(u_{s}, U_{1}\right)+D_{G^{\prime}}\left(u_{s}, U_{0}\right)+D_{G^{\prime}}\left(u_{s}, V_{1}\right) \tag{2.5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
D_{G^{\prime}}\left(u_{s}\right)-D_{G}\left(v_{s}\right)=D_{G^{\prime}}\left(u_{s}, V_{1}\right)-D_{G}\left(v_{s}, V_{1}\right)>0 \tag{2.6}
\end{equation*}
$$

Noting that $D_{G}\left(u_{s}, V_{1}\right)=D_{G^{\prime}}\left(u_{s}, V_{1}\right)$ and $D_{G^{\prime}}\left(v_{s}, V_{1}\right)=D_{G}\left(v_{s}, V_{1}\right)$, by (2.3) and (2.6), we have

$$
\begin{equation*}
D_{G}\left(u_{s}\right)-D_{G^{\prime}}\left(v_{s}\right)=D_{G^{\prime}}\left(u_{s}\right)-D_{G}\left(v_{s}\right)=D_{G}\left(u_{s}, V_{1}\right)-D_{G^{\prime}}\left(v_{s}, V_{1}\right)>0 \tag{2.7}
\end{equation*}
$$

By (2.1), (2.2), (2.4) and (2.5), we have

$$
\begin{equation*}
D_{G^{\prime}}\left(u_{s}\right)-D_{G}\left(u_{s}\right)=D_{G}\left(v_{s}\right)-D_{G^{\prime}}\left(v_{s}\right)>0 . \tag{2.8}
\end{equation*}
$$

For any edge $u_{s} u_{t} \in E\left(G\left[U_{0}\right]\right)$ and $v_{s} v_{t} \in E\left(G\left[V_{0}\right]\right)$, take $x=D_{G^{\prime}}\left(v_{s}\right), y=D_{G^{\prime}}\left(v_{t}\right)$, $w=D_{G}\left(u_{s}\right), z=D_{G}\left(u_{t}\right), a=D_{G^{\prime}}\left(u_{s}\right)-D_{G}\left(u_{s}\right), a^{\prime}=D_{G^{\prime}}\left(u_{t}\right)-D_{G}\left(u_{t}\right), b=D_{G}\left(v_{s}\right)-$ $D_{G^{\prime}}\left(v_{s}\right), b^{\prime}=D_{G}\left(v_{t}\right)-D_{G^{\prime}}\left(v_{t}\right)$. Then $b=a>0, b^{\prime}=a^{\prime}>0$ by (2.8). It is obvious that $a, a^{\prime}, b, b^{\prime}, w, x, y, z \in R^{+}, w>x, z>y$ by (2.7). Then $\frac{b}{x}>\frac{a}{w}, \frac{b^{\prime}}{y}>\frac{a^{\prime}}{z}$. Thus by Lemma 2.1, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{s}\right) D_{G^{\prime}}\left(u_{t}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{s}\right) D_{G^{\prime}}\left(v_{t}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{s}\right) D_{G}\left(u_{t}\right)}}+\frac{1}{\sqrt{D_{G}\left(v_{s}\right) D_{G}\left(v_{t}\right)}} \tag{2.9}
\end{equation*}
$$

Similarly, for any vertex $w \in U_{1} \bigcup V_{1}$, we can show $D_{G}(w) \geq D_{G^{\prime}}(w)$, where equality holds if and only if $r=2 m+1$ is odd, $w=v_{m+1}$ or $r=2 m+1$ is odd, w is pendent vertex and adjacent to v_{m+1}. Then it implies that the following inequalities (2.10)-(2.12) hold.

For any edge $u_{s} w \in E(G)$ with $u_{s} \in U_{0}$ where $1 \leq s \leq m$ and $w \in U_{1}$, the corresponding edge is $v_{s} w \in E\left(G^{\prime}\right)$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{s}\right) D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(u_{s}\right) D_{G}(w)}} . \tag{2.10}
\end{equation*}
$$

For any edge $v_{s} w \in E(G)$ with $v_{s} \in V_{0}$ where $1 \leq s \leq m$ and $w \in V_{1}$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{s}\right) D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(v_{s}\right) D_{G}(w)}} . \tag{2.11}
\end{equation*}
$$

When $r=2 m+1$ is odd, then for any edge $v_{m+1} w \in E(G)$ with $w \in V_{1}$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{m+1}\right) D_{G^{\prime}}(w)}}=\frac{1}{\sqrt{D_{G}\left(v_{m+1}\right) D_{G}(w)}} \tag{2.12}
\end{equation*}
$$

For edge $u_{1} v_{1}$, by (2.8) and Lemma 2.3, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right) D_{G^{\prime}}\left(v_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{1}\right) D_{G}\left(v_{1}\right)}} . \tag{2.13}
\end{equation*}
$$

From (2.9) to (2.13), we obtain $J\left(G^{\prime}\right)>J(G)$ by the definition of Balaban index.
Lemma 2.7 Let n, r, k be positive integers with $2 \leq k \leq r$ and $3 \leq r \leq n-k, G=G^{*}(n, r, k) \in$ $\mathbb{G}^{*}(n, r, k), G^{\prime}$ be the graph obtained from G by branch transformation. Then $S J(G)<S J\left(G^{\prime}\right)$.

Proof Let $U_{0}, U_{1}, V_{0}, V_{1}, a, a^{\prime}, b, b^{\prime}$ be defined as Lemma 2.6. Let $f(x)=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+a+a^{\prime}}}$. Then $f(x)$ is a decreasing function of x since $f^{\prime}(x)<0$. Noting that $D_{G}\left(u_{s}\right)+D_{G}\left(u_{t}\right)>$ $D_{G^{\prime}}\left(v_{s}\right)+D_{G^{\prime}}\left(v_{t}\right)=D_{G}\left(v_{s}\right)+D_{G}\left(v_{t}\right)-a-a^{\prime}$, we have

$$
\begin{aligned}
& \frac{1}{\sqrt{D_{G}\left(u_{s}\right)+D_{G}\left(u_{t}\right)}}-\frac{1}{\sqrt{D_{G}\left(u_{s}\right)+D_{G}\left(u_{t}\right)+a+a^{\prime}}} \\
& <\frac{1}{\sqrt{D_{G}\left(v_{s}\right)+D_{G}\left(v_{t}\right)-a-a^{\prime}}}-\frac{1}{\sqrt{D_{G}\left(v_{s}\right)+D_{G}\left(v_{t}\right)}}
\end{aligned}
$$

Thus

$$
\begin{align*}
& \frac{1}{\sqrt{D_{G^{\prime}}\left(u_{s}\right)+D_{G^{\prime}}\left(u_{t}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{s}\right)+D_{G^{\prime}}\left(v_{t}\right)}} \\
& >\frac{1}{\sqrt{D_{G}\left(u_{s}\right)+D_{G}\left(u_{t}\right)}}+\frac{1}{\sqrt{D_{G}\left(v_{s}\right)+D_{G}\left(v_{t}\right)}} \tag{2.14}
\end{align*}
$$

Similarly, for any vertex $w \in U_{1} \bigcup V_{1}$, we can show $D_{G}(w) \geq D_{G^{\prime}}(w)$, where equality holds if and only if $r=2 m+1$ is odd, $w=v_{m+1}$ or $r=2 m+1$ is odd, w is pendent vertex and adjacent to v_{m+1}. Then it implies that the following inequalities (2.15)-(2.17) hold.

For any edge $u_{s} w \in E(G)$ with $u_{s} \in U_{0}$ where $1 \leq s \leq m$ and $w \in U_{1}$, the corresponding edge is $v_{s} w \in E\left(G^{\prime}\right)$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{s}\right)+D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(u_{s}\right)+D_{G}(w)}} \tag{2.15}
\end{equation*}
$$

For any edge $v_{s} w \in E(G)$ with $v_{s} \in V_{0}$ where $1 \leq s \leq m$ and $w \in V_{1}$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{s}\right)+D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(v_{s}\right)+D_{G}(w)}} \tag{2.16}
\end{equation*}
$$

When $r=2 m+1$ is odd, then for any edge $v_{m+1} w \in E(G)$ with $w \in V_{1}$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(v_{m+1}\right)+D_{G^{\prime}}(w)}}=\frac{1}{\sqrt{D_{G}\left(v_{m+1}\right)+D_{G}(w)}} \tag{2.17}
\end{equation*}
$$

For edge $u_{1} v_{1}$, by (2.8), we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(v_{1}\right)}}=\frac{1}{\sqrt{D_{G}\left(u_{1}\right)+D_{G}\left(v_{1}\right)}} . \tag{2.18}
\end{equation*}
$$

From (2.14) to (2.18), we obtain $S J\left(G^{\prime}\right)>S J(G)$ by the definition of Sum-Balaban index.

Lemma 2.8 Let n, r, k be positive integers with $1 \leq k \leq r$ and $3 \leq r \leq n-k, G=G^{*}(n, r, k) \in$ $\mathbb{G}^{*}(n, r, k)$, and G^{\prime} obtained from G by repeating the branch transformation, and we cannot get other graph from G^{\prime} by repeating branch transformation. Then
(1) $G^{\prime} \in \mathbb{G}^{*}(n, r, 1)$ (see Figure 5).
(2) $J(G) \leq J\left(G^{\prime}\right)$, and the equality holds if and only if $G \cong G^{\prime}$.
(3) $S J(G) \leq S J\left(G^{\prime}\right)$, and the equality holds if and only if $G \cong G^{\prime}$.

Figure 5 graph $G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$

3. The maximum Balaban index of unicyclic graphs

In this section, we will show that $G^{*}(n, 3,1)$ is the graph which has the maximum Balaban index among all unicyclic graphs on n vertices.

Let G be a unicyclic graph on n vertices. Then $|E(G)|=n, \mu=1$, and thus

$$
J(G)=\frac{n}{2} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u) D_{G}(v)}}
$$

Lemma 3.1 Let n, r be positive integers with $3 \leq r \leq n, G=G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$ (see Figure 5). Then

$$
\frac{2 J(G)}{n}= \begin{cases}\frac{n-r}{\sqrt{\left(\frac{r^{2}}{4}-r+2 n-2\right)\left(\frac{r^{2}}{4}+n-r\right)}}+\sum_{1 \leq i \leq \frac{r}{2}} \frac{2}{\sqrt{\left[\frac{r^{2}}{4}+i(n-r)\right]\left[\frac{r^{2}}{4}+(i+1)(n-r)\right]}}, & r \text { is even; } \tag{3.1}\\ \frac{n-r}{\sqrt{\left(\frac{r^{2}}{4}-r+2 n-\frac{9}{4}\right)\left(\frac{r^{2}-1}{4}+n-r\right)}}+\sum_{1 \leq i \leq \frac{r-1}{2}}^{\sqrt{D_{G}\left(u_{i}\right) D_{G}\left(u_{i+1}\right)}}+\frac{1}{\frac{r^{2}-1}{4}+\frac{r+1}{2}(n-r)}, & r \text { is odd; }\end{cases}
$$

where $D_{G}\left(u_{i}\right)=\frac{r^{2}-1}{4}+i(n-r)$ for r is odd and $1 \leq i \leq \frac{r+1}{2}$.
Proof We calculate $D_{G}(u)$ for any vertex $u \in V(G)$.
Case $1 r$ is even.
Subcase $1.1 u \in V(G) \backslash V\left(C_{r}\right)$.

$$
D_{G}(u)=2(n-r-1)+\left(1+2+\cdots+\frac{r}{2}\right)+\left(2+3+\cdots+\frac{r+2}{2}\right)=\frac{r^{2}}{4}-r+2 n-2
$$

Subcase $1.2 u=u_{i} \in V\left(C_{r}\right)$ where $1 \leq i \leq r$.

Noting that $D_{G}\left(u_{i}\right)=D_{G}\left(u_{r+2-i}\right)$, we only need to calculate $D_{G}\left(u_{i}\right)$ for $1 \leq i \leq \frac{r+2}{2}$. Clearly, when $1 \leq i \leq \frac{r+2}{2}$, we have

$$
D_{G}\left(u_{i}\right)=\left(1+2+\cdots+\frac{r}{2}\right)+\left(1+2+\cdots+\frac{r-2}{2}\right)+i(n-r)=\frac{r^{2}}{4}+i(n-r)
$$

Case $2 r$ is odd.
Subcase $2.1 u \in V(G) \backslash V\left(C_{r}\right)$.

$$
D_{G}(u)=2(n-r-1)+\left(1+2+\cdots+\frac{r+1}{2}\right)+\left(2+3+\cdots+\frac{r+1}{2}\right)=\frac{r^{2}}{4}-r+2 n-\frac{9}{4} .
$$

Subcase $2.2 u=u_{i} \in V\left(C_{r}\right)$ where $1 \leq i \leq r$.
Noting that $D_{G}\left(u_{i}\right)=D_{G}\left(u_{r+2-i}\right)$, we only need to calculate $D_{G}\left(u_{i}\right)$ for $1 \leq i \leq \frac{r+1}{2}$. Clearly, when $1 \leq i \leq \frac{r+1}{2}$, we have

$$
D_{G}\left(u_{i}\right)=\left(1+2+\cdots+\frac{r-1}{2}\right)+\left(1+2+\cdots+\frac{r-1}{2}\right)+i(n-r)=\frac{r^{2}-1}{4}+i(n-r) .
$$

Combine the previous arguments and let $w \in V(G) \backslash V\left(C_{r}\right)$, then we can show (3.1) by the following equation

$$
\begin{gathered}
J(G)=\frac{n}{2} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u) D_{G}(v)}} \\
= \begin{cases}\frac{n}{2}\left(\sum_{1 \leq i \leq \frac{r}{2}} \frac{2}{\sqrt{D_{G}\left(u_{i}\right) D_{G}\left(u_{i+1}\right)}}+\frac{n-r}{\sqrt{D_{G}\left(u_{1}\right) D_{G}(w)}}\right), & r \text { is even; } \\
\frac{n}{2}\left(\sum_{1 \leq i \leq \frac{r-1}{2}} \frac{2}{\sqrt{D_{G}\left(u_{i}\right) D_{G}\left(u_{i+1}\right)}}+\frac{1}{\sqrt{D_{G}\left(u_{\frac{r+1}{2}}\right) D_{G}\left(u_{\frac{r+3}{2}}\right.}}+\frac{n-r}{\sqrt{D_{G}\left(u_{1}\right) D_{G}(w)}}\right), & r \text { is odd }\end{cases}
\end{gathered}
$$

Theorem 3.2 Let n, r be integers with $n \geq 4,3 \leq r \leq n, G \not \approx C_{n}$ be a connected unicyclic graph on n vertices, the length of unique cycle of G be r. Then

$$
J(G) \leq J\left(G^{*}(n, 3,1)\right)=\frac{n}{2} \cdot\left(\frac{1}{2 n-4}+\frac{2}{\sqrt{(2 n-4)(n-1)}}+\frac{n-3}{\sqrt{(2 n-3)(n-1)}}\right)
$$

where the equality holds if and only if $G \cong G^{*}(n, 3,1)$.
Proof Since $G \not \not C_{n}$, there exists positive integer k such that $1 \leq k \leq r \leq n$ and $G=G(n, r, k)$. By Lemma 2.5, there exists G_{1} such that $G_{1} \in \mathbb{G}^{*}(n, r, k)$ and G_{1} is obtained from G by repeating edge-lifting transformation. Then $J(G) \leq J\left(G_{1}\right)$, where the equality holds if and only if $G=G(n, r, k) \cong G_{1}$.

By Lemma 2.8, $G_{2}=G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$ can be obtained from G_{1} by repeating branch transformation such that $J\left(G_{1}\right) \leq J\left(G_{2}\right)$, where the equality holds if and only if $G_{1} \cong G_{2}$.

Now by Lemma 3.1, we will show $J\left(G^{*}(n, r, 1)\right) \leq \max \left\{J\left(G^{*}(n, 3,1)\right), J\left(G^{*}(n, 4,1)\right)\right\}$ by the following two cases.

Case $1 r$ is even.
Let $f(r)=\left(\frac{r^{2}}{4}-r+2 n-2\right)\left(\frac{r^{2}}{4}+n-r\right)$, and $g_{i}(r)=\left[\frac{r^{2}}{4}+i(n-r)\right]\left[\frac{r^{2}}{4}+(i+1)(n-r)\right]$ for $1 \leq i \leq \frac{r}{2}$.

It is obvious that $f^{\prime}(r)>0, g_{1}^{\prime}(r)>0, g_{2}^{\prime}(r)>0, \ldots$, and $g_{\frac{r}{2}}^{\prime}(r)>0$. So $J\left(G^{*}(n, r, 1)\right)=$ $\frac{n}{2} \cdot\left(\frac{n-r}{\sqrt{f(r)}}+\sum_{1 \leq i \leq \frac{r}{2}} \frac{2}{\sqrt{g_{i}(r)}}\right)$ is a decreasing function of r when r is even. Thus we have

$$
J\left(G^{*}(n, 4,1)\right)>J\left(G^{*}(n, 6,1)\right)>\cdots>J\left(G^{*}\left(n, 2\left\lfloor\frac{n-1}{2}\right\rfloor, 1\right)\right)
$$

Case $2 r$ is odd.
Let $f(r)=\left(\frac{r^{2}}{4}-r+2 n-\frac{9}{4}\right)\left(\frac{r^{2}-1}{4}+n-r\right), g_{i}(r)=\left[\frac{r^{2}-1}{4}+i(n-r)\right]\left[\frac{r^{2}-1}{4}+(i+1)(n-r)\right]$ for $1 \leq i \leq \frac{r-1}{2}$, and $h(r)=\frac{r^{2}-1}{4}+\frac{r+1}{2}(n-r)$.

It is obvious that $f^{\prime}(r)>0, g_{1}^{\prime}(r)>0, g_{2}^{\prime}(r)>0, \ldots, g_{\frac{r-1}{2}}^{\prime}(r)>0$ and $h^{\prime}(r)>0$. So $J\left(G^{*}(n, r, 1)\right)=\frac{n}{2} \cdot\left(\frac{n-r}{\sqrt{f(r)}}+\sum_{1 \leq i \leq \frac{r-1}{2}} \frac{2}{\sqrt{g_{i}(r)}}+\frac{1}{h(r)}\right)$ is a decreasing function of r when r is odd. Thus we have $J\left(G^{*}(n, 3,1)\right)>J\left(G^{*}(n, 5,1)\right)>\cdots>J\left(G^{*}\left(n, 2\left\lfloor\frac{n-2}{2}\right\rfloor+1,1\right)\right)$.

On the other hand, by calaulating, we have

$$
\begin{aligned}
\frac{2}{n} \cdot & \left(J\left(G^{*}(n, 3,1)\right)-J\left(G^{*}(n, 4,1)\right)\right) \\
= & \frac{1}{2 n-4}+\frac{2}{\sqrt{(2 n-4)(n-1)}}+\frac{n-3}{\sqrt{(2 n-3)(n-1)}}- \\
& \left(\frac{2}{\sqrt{n(2 n-4)}}+\frac{2}{\sqrt{(2 n-4)(3 n-8)}}+\frac{n-4}{\sqrt{n(2 n-2)}}\right) \\
= & \left(\frac{1}{2 n-4}-\frac{1}{\sqrt{(2 n-4)(3 n-8)}}\right)+\left(\frac{2}{\sqrt{(2 n-4)(n-1)}}-\frac{2}{\sqrt{n(2 n-4)}}\right)+ \\
& \left(\frac{n-4}{\sqrt{(2 n-3)(n-1)}}-\frac{n-4}{\sqrt{n(2 n-2)}}\right)+\left(\frac{1}{\sqrt{(2 n-3)(n-1)}}-\frac{1}{\sqrt{(2 n-4)(3 n-8)}}\right)>0 .
\end{aligned}
$$

From above arguments, we have

$$
J(G) \leq J\left(G_{1}\right) \leq J\left(G_{2}\right) \leq \max \left\{J\left(G^{*}(n, 3,1)\right), J\left(G^{*}(n, 4,1)\right)\right\}=J\left(G^{*}(n, 3,1)\right)
$$

If $G=C_{n}$, then for any vertex $u \in V\left(C_{n}\right), D_{G}(u)=\frac{n^{2}}{4}$ for even n and $D_{G}(u)=\frac{n^{2}-1}{4}$ for odd n. Thus we have

Proposition 3.3 Let $n \geq 3$. Then $J\left(C_{n}\right)= \begin{cases}2, & \text { if } n \text { is even; } \\ \frac{2 n^{2}}{n^{2}-1}, & \text { if } n \text { is odd. }\end{cases}$
Theorem 3.4 Let n, r be integers with $n \geq 4,3 \leq r \leq n, G$ be a connected unicyclic graph on n vertices, the length of unique cycle of G be r. Then

$$
J(G) \leq J\left(G^{*}(n, 3,1)\right)=\frac{n}{2} \cdot\left(\frac{1}{2 n-4}+\frac{2}{\sqrt{(2 n-4)(n-1)}}+\frac{n-3}{\sqrt{(2 n-3)(n-1)}}\right),
$$

where the equality holds if and only if $G \in \mathbb{G}^{*}(n, 3,1)$.
Proof By Theorem 3.2 and Proposition 3.3, we only need to show $J\left(G^{*}(n, 3,1)\right)>J\left(C_{n}\right)$.
Case $1 n=4$.

$$
J\left(G^{*}(4,3,1)\right)-J\left(C_{4}\right)=2\left(\frac{1}{4}+\frac{2}{\sqrt{12}}+\frac{1}{\sqrt{15}}\right)-2>0
$$

Case $2 n \geq 5$.

Then $\left(\frac{n^{2}-1}{4}\right)^{2}-(2 n-3)(n-1)=\frac{n^{4}-34 n^{2}+80 n-47}{16}=\frac{(n+5)^{2}(n-5)^{2}}{16}+\left(n+\frac{5}{2}\right)^{2}-\frac{772}{16}>0$. So

$$
\begin{aligned}
& J\left(G^{*}(n, 3,1)\right)-J\left(C_{n}\right) \geq \frac{n}{2} \cdot\left(\frac{1}{2 n-4}+\frac{2}{\sqrt{(2 n-4)(n-1)}}+\frac{n-3}{\sqrt{(2 n-3)(n-1)}}\right)-\frac{2 n^{2}}{n^{2}-1} \\
& \quad=\frac{n}{2} \cdot\left(\frac{1}{2 n-4}+\frac{2}{\sqrt{(2 n-4)(n-1)}}+\frac{n-3}{\sqrt{(2 n-3)(n-1)}}-\frac{n}{\frac{n^{2}-1}{4}}\right) \\
& \quad=\frac{n}{2} \cdot\left[\left(\frac{1}{2 n-4}-\frac{1}{\frac{n^{2}-1}{4}}\right)+\left(\frac{2}{\sqrt{(2 n-4)(n-1)}}-\frac{2}{\frac{n^{2}-1}{4}}\right)+\left(\frac{n-3}{\sqrt{(2 n-3)(n-1)}}-\frac{n-3}{\frac{n^{2}-1}{4}}\right)\right]>0 .
\end{aligned}
$$

Combining the above two cases, we complete the proof.

4. The maximum Sum-Balaban index of unicyclic graphs

In this section, we will show that $G^{*}(n, 3,1)$ is the graph which has the maximum SumBalaban index among all unicyclic graphs on n vertices.

Let G be a unicyclic graph on n vertices. Then $|E(G)|=n, \mu=1$, and thus

$$
S J(G)=\frac{n}{2} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u)+D_{G}(v)}}
$$

Similarly to Section 3, we can obtain the following results immediately.
Lemma 4.1 Let n, r be positive integers with $3 \leq r \leq n, G=G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$ (see Figure 5). Then

$$
\frac{2 S J(G)}{n}= \begin{cases}\frac{n-r}{\sqrt{\frac{r^{2}}{2}-2 r+3 n-2}}+\sum_{1 \leq i \leq \frac{r}{2}} \frac{2}{\sqrt{\frac{r^{2}}{2}+(2 i+1)(n-r)},} & r \text { is even } \\ \frac{n-r}{\sqrt{\frac{r^{2}}{2}-2 r+3 n-\frac{5}{2}}}+\sum_{1 \leq i \leq \frac{r-1}{2}} \frac{2}{\sqrt{\frac{r^{2}-1}{2}+(2 i+1)(n-r)}}+\frac{1}{\sqrt{n r-\frac{r^{2}+1}{2}+n-r}}, & r \text { is odd }\end{cases}
$$

Theorem 4.2 Let n, r be integers with $n \geq 4,3 \leq r \leq n, G \nsubseteq C_{n}$ be a connected unicyclic graph on n vertices, the length of unique cycle of G be r. Then

$$
S J(G) \leq S J\left(G^{*}(n, 3,1)\right)=\frac{n}{2} \cdot\left(\frac{1}{\sqrt{4 n-8}}+\frac{2}{\sqrt{3 n-5}}+\frac{n-3}{\sqrt{3 n-4}}\right)
$$

where the equality holds if and only if $G \cong G^{*}(n, 3,1)$.
Proof Note that

$$
\begin{aligned}
S J & \left(G^{*}(n, 3,1)\right)-S J\left(G^{*}(n, 4,1)\right) \\
= & \frac{n}{2} \cdot\left[\left(\frac{1}{\sqrt{4 n-8}}+\frac{2}{\sqrt{3 n-5}}+\frac{n-3}{\sqrt{3 n-4}}\right)-\left(\frac{2}{\sqrt{3 n-4}}+\frac{2}{\sqrt{5 n-12}}+\frac{n-4}{\sqrt{3 n-2}}\right)\right] \\
= & \frac{n}{2} \cdot\left[\left(\frac{1}{\sqrt{4 n-8}}-\frac{1}{\sqrt{5 n-12}}\right)+\left(\frac{2}{\sqrt{3 n-5}}-\frac{2}{\sqrt{3 n-4}}\right)+\right. \\
& \left.\left(\frac{n-4}{\sqrt{3 n-4}}-\frac{n-4}{\sqrt{3 n-2}}\right)+\left(\frac{1}{\sqrt{3 n-4}}-\frac{1}{\sqrt{5 n-12}}\right)\right]>0 .
\end{aligned}
$$

Thus similarly to the proof of Theorem 3.2, we have

$$
S J(G) \leq S J\left(G_{1}\right) \leq S J\left(G_{2}\right) \leq \max \left\{S J\left(G^{*}(n, 3,1)\right), S J\left(G^{*}(n, 4,1)\right)\right\}=S J\left(G^{*}(n, 3,1)\right)
$$

Proposition 4.3 Let $n \geq 3$. Then $S J\left(C_{n}\right)= \begin{cases}\frac{\sqrt{2} n}{2}, & \text { if } n \text { is even; } \\ \frac{\sqrt{2} n^{2}}{2 \sqrt{n^{2}-1}}, & \text { if } n \text { is odd. }\end{cases}$
Theorem 4.4 Let n, r be integers with $n \geq 4,3 \leq r \leq n, G$ be a connected unicyclic graph on n vertices, the length of unique cycle of G be r. Then

$$
S J(G) \leq S J\left(G^{*}(n, 3,1)\right)=\frac{n}{2} \cdot\left(\frac{1}{\sqrt{4 n-8}}+\frac{2}{\sqrt{3 n-5}}+\frac{n-3}{\sqrt{3 n-4}}\right)
$$

where the equality holds if and only if $G \in \mathbb{G}^{*}(n, 3,1)$.
Proof By Theorem 4.2 and Proposition 4.3, we only need to show $S J\left(G^{*}(n, 3,1)\right)>S J\left(C_{n}\right)$.
Case $1 n=4$.

$$
S J\left(G^{*}(4,3,1)\right)-S J\left(C_{4}\right)=2\left(\frac{2}{\sqrt{8}}+\frac{2}{\sqrt{7}}\right)-2 \sqrt{2}=\frac{4 \sqrt{7}}{7}-\sqrt{2}>0
$$

Case $2 n \geq 5$.

$$
\begin{aligned}
& S J\left(G^{*}(n, 3,1)\right)-S J\left(C_{n}\right) \geq \frac{n}{2} \cdot\left(\frac{1}{\sqrt{4 n-8}}+\frac{2}{\sqrt{3 n-5}}+\frac{n-3}{\sqrt{3 n-4}}\right)-\frac{\sqrt{2} n^{2}}{2 \sqrt{n^{2}-1}} \\
& \quad=\frac{n}{2} \cdot\left[\left(\frac{1}{\sqrt{4 n-8}}-\frac{1}{\sqrt{\frac{n^{2}-1}{2}}}\right)+\left(\frac{2}{\sqrt{3 n-5}}-\frac{2}{\sqrt{\frac{n^{2}-1}{2}}}\right)+\left(\frac{n-3}{\sqrt{3 n-4}}-\frac{n-3}{\sqrt{\frac{n^{2}-1}{2}}}\right)\right]>0 .
\end{aligned}
$$

Combining the above two cases, we complete the proof.
Acknowledgements The authors would like to thank the referees for their valuable comments, corrections, and suggestions, which lead to an improvement of the original paper.

References

[1] R. J. WILSON. Introduction to Graph Theory. Oliver \& Boyd, Edinburgh, 1972.
[2] A. T. BALABAN. Highly discriming distance-based topological index. Chem. Phys. Lett., 1982, 89: 399404.
[3] A. T. BALABAN. Topological indices based on topological distances in molecular graphs. Pure Appl. Chem., 1983, 55: 199-206.
[4] A. T. BALABAN, P. V. KHADIKAR, S. AZIZ. Comparison of topological indices based on iterated 'sum' versus 'product' operations. Iranian J. Math. Chem., 2010, 1: 43-67.
[5] Hanyuan DENG. On the Balaban index of trees. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 253-260.
[6] Hawei DONG, Xiaofeng GUO. Character of graphs with extremal Balaban index. MATCH Commun. Math. Comput. Chem., 2010, 63(3): 799-812.
[7] Hawei DONG, Xiaofeng GUO. Character of trees with extreme Balaban index. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 261-272.
[8] Shuxian LI, Bo ZHOU. On the Balaban index of trees. Ars Combin., 2011, 101: 503-512.
[9] Lingli SUN. Bounds on the Balaban index of trees. MATCH Commun. Math. Comput. Chem., 2010, 63(3): 813-818.
[10] Lihua YOU, Han HAN. The maximum Balaban index (Sum-Balaban index) of trees with given diameter. Ars Combin., 2013, 112: 115-128.
[11] Bo ZHOU, N. TRINAJSTIĆ. Bounds on the Balaban index. Croat. Chem. Acta, 2008, 81: 319-323.
[12] Hanyuan DENG. On the Sum-Balaban index. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 273-284.
[13] Rundang XING, Bo ZHOU, A. GROVAC. On sum-Balaban index. Ars Combin., 2012, 104: 211-223.

[^0]: $\overline{\text { Received May 5, 2013; Accepted January 28, }} 2014$
 Supported by the Zhujiang Technology New Star Foundation of Guangzhou (Grant No. 2011J2200090), and Program on International Cooperation and Innovation, Department of Education, Guangdong Province (Grant No. 2012gjhz0007).

 * Corresponding author

 E-mail address: ylhua@scnu.edu.cn (Lihua YOU); 303903094@qq.com (Xin DONG)

