On $L(1,2)$-Edge-Labelings of Some Special Classes of Graphs

Dan HE, Wensong LIN*
Department of Mathematics, Southeast University, Jiangsu 210096, P. R. China

Abstract

For a graph G and two positive integers j and k, an m - $L(j, k)$-edge-labeling of G is an assignment on the edges to the set $\{0, \ldots, m\}$, such that adjacent edges receive labels differing by at least j, and edges which are distance two apart receive labels differing by at least k. The $\lambda_{j, k}^{\prime}$-number of G is the minimum m of an $m-L(j, k)$-edge-labeling admitted by G. In this article, we study the $L(1,2)$-edge-labeling for paths, cycles, complete graphs, complete multipartite graphs, infinite Δ-regular trees and wheels.

Keywords $L(j, k)$-edge-labeling; line graph; path; cycle; complete graph; complete multipartite graph; infinite Δ-regular tree; wheel.

MR(2010) Subject Classification 05C15

1. Introduction

In this paper, we consider undirected and simple graphs, and we use standard notations in graph theory [1]. Let G be a graph with non-empty edge set and j, k be two positive integers. An m-L (j, k)-labeling of G is a function which assigns each vertex of G with a label from the set $\{0, \ldots, m\}$, such that the following two distance conditions are satisfied: $|f(u)-f(v)| \geq j$ if u and v are adjacent and $|f(u)-f(v)| \geq k$ if u and v are distance two apart. The $L(j, k)$-labeling number of a graph G, denoted by $\lambda_{j, k}(G)$, is the minimum m of an $m-L(j, k)$-labeling admitted by G.

The $L(j, k)$-labeling of graphs is motivated by the channel assignment problem introduced by Hale [11]. The $L(2,1)$-labeling was formulated and studied by Griggs and Yeh [10] in 1992. Since then $L(2,1)$-labeling and $L(j, k)$-labeling of graphs for $j \geq k$ have been studied extensively. Refer to surveys [2,9,16]. Most of the results on the $L(j, k)$-labeling dealt with the case $j \geq k$.

A variation of the channel assignment problem is the code assignment in computer networks [13]. The task is to assign integer "control codes" to a network of computer stations with distance restrictions. This is the same as $L(j, k)$-labelings such that $j \leq k$ is allowed. In [13], Jin and Yeh studied the $L(j, k)$-labelings for $(j, k) \in\{(0,1),(1,1),(1,2)\}$. The authors gave a general upper bound for the $L(1,2)$-labeling number and obtained the $L(1,2)$-labeling numbers for several families of graphs. For example, they concluded the following results:

[^0]Theorem 1.1 ([13]) Suppose P_{n} is a path with $n \geq 2$ vertices, and C_{n} is a cycle of order $n \geq 3$. Then

$$
\lambda_{1,2}\left(P_{n}\right)=\left\{\begin{array}{ll}
1, & \text { if } n=2 ; \\
2, & \text { if } n=3 ; \\
3, & \text { if } n \geq 4
\end{array} \quad \lambda_{1,2}\left(C_{n}\right)=\left\{\begin{array}{ll}
2, & \text { if } n=3 ; \\
3, & \text { if } n=0 \\
4, & \text { otherwise }
\end{array} \quad(\bmod 4) ;\right.\right.
$$

In addition, Calamoneri, Pelc and Petreschi [3] investigated the $\lambda_{j, k}$-numbers of trees with $j \leq k$. Chen and Lin [4], Griggs and Jin [8], and Niu [15] also studied the $L(j, k)$-labelings for $j \leq k$.

In this paper, we study the edge version of $L(j, k)$-labeling, which is defined analogously to the above $L(j, k)$-labeling problem. Let G be a graph, whose line graph $L(G)$ is a graph such that each vertex of $L(G)$ represents an edge of G, and two vertices of $L(G)$ are adjacent if and only if their corresponding edges are adjacent in G. Let e_{1}, e_{2} be any two edges of G. The distance between e_{1} and e_{2}, denoted by $d\left(e_{1}, e_{2}\right)$, is defined as the distance between the corresponding two vertices in $L(G)$. That is, two edges e_{1} and e_{2} are adjacent (at distance one) if they meet at a common vertex; and two edges e_{1} and e_{2} are distance two apart if they are nonadjacent but adjacent to a common edge in G. The degree of an edge e, denoted by $d(e)$, is the number of edges adjacent to e. The $L(j, k)$-edge-labeling number of G, denoted by $\lambda_{j, k}^{\prime}(G)$, is the minimum m of an $m-L(j, k)$-edge-labeling admitted by G. We assume without loss of generality that the minimum label of an $L(j, k)$-edge-labeling is 0 .

The $L(j, k)$-edge-labeling is related to the $L(j, k)$-labeling. It is easy to see that $\lambda_{j, k}^{\prime}(G)=$ $\lambda_{j, k}(L(G))$, where $L(G)$ is the line graph of G. The $L(j, k)$-edge-labeling was first investigated by Georges and Mauro in [5], in which the authors determined the $\lambda_{1,1}^{\prime}$-numbers and $\lambda_{2,1}^{\prime}$-numbers for paths, cycles, complete graphs, Δ-regular trees for $\Delta \geq 2, n$-dimensional cubes for small n and wheels. In addition, the $L(j, k)$-edge-labeling was also studied in [4, 14]. The following theorem was proved in [4]:

Theorem 1.2 ([4]) Let G be a simple or multiple graph and let Δ_{L} be the maximum degree of its line graph. Suppose $\Delta_{L} \geq 2$. Except the case that G is a 5 -cycle and $j=k$, we have $\lambda_{j, k}^{\prime}(G) \leq k\left\lfloor\Delta_{L}^{2} / 2\right\rfloor+j \Delta_{L}-1$.

The aim of this article is to investigate the $L(1,2)$-edge-labeling numbers of some graphs. These graphs have been well studied in the distance two labeling literature [6, 7, 10]. In Section 2 , we determine the $\lambda_{1,2}^{\prime}$-numbers for paths, cycles, complete graphs and complete multipartite graphs.

Let $T_{\infty}(\Delta)$ be an infinite tree with each vertex having degree Δ, which is called Δ-regular tree. Georges and Mauro [5] derived the $\lambda_{2,1}^{\prime}$-numbers for $T_{\infty}(\Delta)$ with $\Delta \geq 3$.

Theorem 1.3 ([5]) Suppose $T_{\infty}(\Delta)$ is an infinite Δ-regular tree. Then

$$
\lambda_{2,1}^{\prime}\left(T_{\infty}(\Delta)\right)= \begin{cases}2 \Delta+1, & \text { if } \Delta=3 \text { and } 4 \\ 2 \Delta+2, & \text { if } \Delta=5 \\ 2 \Delta+3, & \text { if } \Delta \geq 6\end{cases}
$$

In Section 3, we show bounds of the $\lambda_{1,2}^{\prime}$-number for $T_{\infty}(\Delta)$, and the bounds are sharp for $\Delta=3$ and 4 .

A wheel of order $n+1$, denoted by W_{n}, is a graph that contains a cycle of order n, and each vertex on the cycle is adjacent to a common vertex not on the cycle, called the hub of the wheel. The edges incident to the hub are called spokes. Georges and Mauro [5] determined the $\lambda_{2,1}^{\prime}$-numbers for W_{n}. The authors gave the following conclusions:

Theorem 1.4 ([5]) For $n \geq 3$,

$$
\left.\lambda_{2,1}^{\prime}\left(W_{n}\right)\right)= \begin{cases}7, & \text { if } n=3 \text { and } 4 \\ 9, & \text { if } n=5 \\ 2 n-2, & \text { if } n \geq 6\end{cases}
$$

In Section 4, we get the $\lambda_{1,2}^{\prime}$-numbers for W_{n} with $n \geq 3$.

2. Path, cycle, complete graph and complete multipartite graph

Recall the relationship between the $\lambda_{j, k}$-number and the $\lambda_{j, k}^{\prime}$-number as indicated in Section 1 , we can get the $\lambda_{1,2}^{\prime}$-numbers for paths and cycles by Theorem 1.1.

Remark 2.1 For $n \geq 2$,

$$
\lambda_{1,2}^{\prime}\left(P_{n}\right)=\lambda_{1,2}\left(L\left(P_{n}\right)\right)=\lambda_{1,2}\left(P_{n-1}\right)= \begin{cases}0, & \text { if } n=2 \\ 1, & \text { if } n=3 ; \\ 2, & \text { if } n=4 ; \\ 3, & \text { if } n \geq 5\end{cases}
$$

Remark 2.2 For $n \geq 3$,

$$
\lambda_{1,2}^{\prime}\left(C_{n}\right)=\lambda_{1,2}\left(L\left(C_{n}\right)\right)=\lambda_{1,2}\left(C_{n}\right)=\left\{\begin{array}{ll}
2, & \text { if } n=3 \\
3, & \text { if } n \equiv 0 \\
4, & \text { otherwise }
\end{array}(\bmod 4) ;\right.
$$

We now turn to discuss the $L(1,2)$-edge-labeling numbers for complete graphs and complete multipartite graphs.

Lemma 2.3 For a graph G with m edges, if $L(G)$ is hamiltonian, then $\lambda_{1,2}^{\prime}(G) \leq m-1$.
Proof In order to prove the result, it suffices to give an $(m-1)-L(1,2)$-edge-labeling for G. From the relationship between G and $L(G)$, we can assume that $E(G)=V(L(G))=\left\{e_{1}, \ldots, e_{m}\right\}$. Since $L(G)$ is hamiltonian, there is a hamiltonian path in $L(G)$. Without loss of generality, let $e_{1} \ldots e_{m}$ be a hamiltonian path in $L(G)$. We define a labeling function f as $f\left(e_{i}\right)=i-1$. It is easy to check that f is an $(m-1)-L(1,2)$-edge-labeling of G. Thus, Lemma 2.3 follows.

Harary and Nash-Williams [12] discussed the hamiltonian properties of the line graph.

Lemma 2.4 ([12])
(1) If G is Eulerian, then $L(G)$ is hamiltonian.
(2) If G is hamiltonian, then $L(G)$ is hamiltonian.
(3) $L(G)$ is hamiltonian if and only if there is a tour in G which includes at least one end-vertex of each edge of G.

Theorem 2.5 If G is a complete graph or complete multipartite graph with $|E(G)|=m$, then $\lambda_{1,2}^{\prime}(G)=m-1$.

Proof Since G is a complete graph or complete multipartite graph, the edges of G are pairwisely at most distance two apart. So, the labels assigned to the edges of G must be distinct. Thus, $\lambda_{1,2}^{\prime}(G) \geq m-1$. On the other hand, if G is a complete graph, then G is hamiltonian; if G is a complete multipartite graph, then it is not difficult to find a tour in G which includes at least one end-vertex of each edge of G. Therefore, the line graph of G is hamiltonian by Lemma 2.4. So, $\lambda_{1,2}^{\prime}(G) \leq m-1$ by Lemma 2.3. Thus, Theorem 2.5 holds.

3. Infinite Δ-regular tree

For two nonnegative integers a and b with $a \leq b$, let $[a, b]$ denote the set $\{a, a+1, \ldots, b\}$. Two sets A and B are called 2-separated, if for every $x \in A$ and $y \in B$, it holds that $|x-y| \geq 2$. For a vertex u, let $N(u)$ denote the set of vertices adjacent to u.

For the infinite Δ-regular tree $T_{\infty}(\Delta)$, by Remark 2.1, we have $\lambda_{1,2}^{\prime}\left(T_{\infty}(2)\right)=3$. Hence, let $\Delta \geq 3$. The following result gives a lower bound for $\lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right)$:

Lemma 3.1 For $\Delta \geq 3, \lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right) \geq 2 \Delta+1$.
Proof Suppose $\lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right) \geq 2 \Delta+1$ is false. Then $\lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right) \leq 2 \Delta$. Let f be a 2Δ -$L(1,2)$-edge-labeling for $T_{\infty}(\Delta)$. Let $u v$ be any edge in $T_{\infty}(\Delta)$. Since an infinite Δ-regular tree is edge-transitive, we may assume that $f(u v)=0$.

Let $A=\{f(u t) \mid t \in N(u) \backslash\{v\}\}$ and $B=\{f(v t) \mid t \in N(v) \backslash\{u\}\}$. We have $|A|=|B|=\Delta-1$ and $A \cap B=\varnothing$. Moreover, A and B are 2-separated and $A \cup B$ must be contained in [1,2 Δ]. So, at least one of A and B consists of consecutive integers. Without loss of generality, assume A consists of consecutive integers. Then A and B can only be the following cases:

Case $1 A=[1, \Delta-1]$ and $B=[\Delta+1,2 \Delta-1]$.
Case $2 A=[1, \Delta-1]$ and $B=[\Delta+2,2 \Delta]$.
Case $3 A=[2, \Delta]$ and $B=[\Delta+2,2 \Delta]$.
Case $4 A=[1, \Delta-1]$ and $B=[\Delta+1,2 \Delta] \backslash\{\Delta+k\}$ for some $1<k<\Delta$.
Case $5 A=[k, \Delta+k-2]$ and $B=[1, k-2] \cup[\Delta+k, 2 \Delta]$ for some $2<k \leq \Delta$.
Case $6 A=[\Delta+2,2 \Delta]$ and $B=[1, k-1] \cup[k+1, \Delta]$ for some $1<k<\Delta$.

In the following, in order to get contradictions in the above six cases, we distinguish them into $\Delta>3$ and $\Delta=3$. Assume $\Delta>3$. Let $x(\neq v)$ be a vertex adjacent to u, and $y(\neq u)$ be a vertex adjacent to v. Let F_{x} (or F_{y}) be the set of forbidden labels for the $\Delta-1$ edges incident to x (or y) except $u x$ (or $v y$).

Case 1 Since $B=[\Delta+1,2 \Delta-1]$, we may assume that $f(v y)=\Delta+2$. Then $F_{y}=[\Delta, 2 \Delta] \cup\{0,1\}$ by the distance condition. Note that $\left|F_{y}\right|=\Delta+3$. So, there are only $(2 \Delta+1)-(\Delta+3)=\Delta-2$ labels for those $\Delta-1$ edges incident to y, a contradiction.

Case 2 Since $B=[\Delta+2,2 \Delta]$, we may assume that $f(v y)=\Delta+3$. Then $F_{y}=[\Delta+1,2 \Delta] \cup\{0,1\}$ by the distance condition. That is, $\{f(y t) \mid t \in N(y) \backslash\{v\}\}=[2, \Delta]$. Let $z(\neq v)$ be a vertex adjacent to y. Assume $f(y z)=2$. The forbidden labels for remaining $\Delta-1$ edges incident to z are in $[2, \Delta+4]$. Since $|[2, \Delta+4]|=\Delta+3$, there are only $\Delta-2$ labels for these $\Delta-1$ edges, a contradiction.

Case 3 Since $B=[\Delta+2,2 \Delta]$, the argument is similar to Case 2.
Case 4 Since $B=[\Delta+1,2 \Delta] \backslash\{\Delta+k\}$, we may assume that $f(v y)=2 \Delta$. Then $F_{y}=$ $[\Delta, 2 \Delta] \cup\{0,1\}$ by the distance condition. Since $\left|F_{y}\right|=\Delta+3$, there are only $\Delta-2$ labels for those $\Delta-1$ edges incident to y, a contradiction.

Case 5 Since $A=[k, \Delta+k-2]$, we may assume that $f(u x)=k+1$. Then $F_{x}=[k-1, \Delta+$ $k-1] \cup\{0,1\}$ by the distance condition. Note that $2<k \leq \Delta$. We have $\left|F_{x} \cap[0,2 \Delta]\right|=\Delta+3$. So, there are only $\Delta-2$ labels for those $\Delta-1$ edges incident to x, a contradiction.

Case 6 Since $A=[\Delta+2,2 \Delta]$, the argument is similar to Case 2.
We now turn to $\Delta=3$. Let f be a $6-L(1,2)$-edge-labeling for $T_{\infty}(3)$. The above cases correspond to the following cases: (1) $A=\{1,2\}$ and $B=\{4,5\},\{5,6\}$ or $\{4,6\} ;(2) A=\{2,3\}$ and $B=\{5,6\}$; (3) $A=\{3,4\}$ and $B=\{1,6\} ;(4) A=\{5,6\}$ and $B=\{1,3\}$.

Observation Suppose $e_{1} e_{2}$ is a path of length two in $T_{\infty}(3)$ with $f\left(e_{1}\right)=a$ and $f\left(e_{2}\right)=b$. Due to the distance condition, the set $\{a, b\}$ cannot be $\{1,4\},\{1,5\}$ or $\{2,5\}$.

For (1), the case of $A=\{1,2\}$, we may assume that $f(u x)=1$. Then $\{f(x t) \mid t \in N(x) \backslash$ $\{u\}\} \cap\{4,5\}=\varnothing$ by Observation. So, due to the distance condition, we have $\{f(x t) \mid t \in$ $N(x) \backslash\{u\}\} \subset\{6\}$. It is a contradiction since $|\{f(x t) \mid t \in N(x) \backslash\{u\}\}|=2$. With the similar argument, we can prove that $A \neq\{2,3\}$ and $B \neq\{1,3\}$, which are corresponding to (2) and (4), respectively. For (3), the case of $A=\{3,4\}$, we may assume that $f(u x)=4$. Then the labels of the remaining two edges incident to x are 5 and 6 . Without loss of generality, let w be a vertex adjacent to x with $f(x w)=5$. We have $\{f(w t) \mid t \in N(w) \backslash\{x\}\} \cap\{1,2\}=\varnothing$ by Observation. So, due to the distance condition, it follows that $\{f(w t) \mid t \in N(w) \backslash\{x\}\} \subset\{0\}$. It is a contradiction by $|\{f(w t) \mid t \in N(w) \backslash\{x\}\}|=2$. Therefore, the lemma holds for $\Delta=3$. This completes the proof of Lemma 3.1.

We now turn to the upper bound of $\lambda_{1,2}^{\prime}$-number for $T_{\infty}(\Delta)$. If we fix an edge $u v$ in $T_{\infty}(\Delta)$,
then $T_{\infty}(\Delta) \backslash\{u v\}$ has two rooted trees T_{u} and T_{v}, rooted at u and v, respectively. For two vertices x and y in $T_{\infty}(\Delta)$, the distance between x and y, denoted by $d(x, y)$, is the length of the unique (x, y)-path in $T_{\infty}(\Delta)$. For any edge $e=x y$ in T_{u}, define $d(x y, u)=\min \{d(x, u), d(y, u)\}$. If $d(x y, u)=k$, then we call $x y$ a $k^{t h}$-generation edge descended from u. Similarly, we define the $k^{t h}$-generation edge descended from v. For two adjacent edges e_{1} and e_{2} in T_{u} (or T_{v}), if e_{1} is a $k^{t h}$-generation edge and e_{2} is a $(k+1)^{t h}$-generation edge, then we say that e_{1} is the father of e_{2} and e_{2} is a child of e_{1}.

Lemma 3.2 For $\Delta \geq 3, \lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right) \leq 2 \Delta+4$.
Proof To prove the result, it suffices to produce a $(2 \Delta+4)-L(1,2)$-edge-labeling f for $T_{\infty}(\Delta)$.
Let $X_{0}=[0, \Delta+1]$ and $X_{1}=[\Delta+3,2 \Delta+4]$. We note that X_{0} and X_{1} are 2-separated and $\left|X_{0}\right|=\left|X_{1}\right|=\Delta+2$.

Fix an edge $u v$ and label it by 0 . Assign the $\Delta-1$ edges incident to u expect $u v$ by the distinct labels in $X_{0} \backslash\{0\}$, and assign the $\Delta-1$ incident to v expect $u v$ by the distinct labels in X_{1}. Now assume that, for $0 \leq h \leq k$, the $h^{t h}$-generation edges descended from u are labeled entirely from X_{i}, where $i \equiv h(\bmod 2)$, the $h^{t h}$-generation edges descended from v are labeled entirely from X_{j}, where $j \equiv h+1(\bmod 2)$. In the following, we prove that the $(k+1)^{t h}$-generation edges descended from u or v can be labeled.

Without loss of generality, let e be a $k^{t h}$-generation edge descended from u with label $f(e) \in X_{i}$, where $i \equiv k(\bmod 2)$, and let e^{\prime} be the father of e with $f\left(e^{\prime}\right) \in X_{j}$, where $j \equiv k+1$ $(\bmod 2)$. We assign labels to the $\Delta-1$ children of e from $W=X_{j} \backslash\left\{f\left(e^{\prime}\right)-1, f\left(e^{\prime}\right), f\left(e^{\prime}\right)+1\right\}$. Since $|W| \geq \Delta-1$, such a labeling can be achieved. Because the distance between any two $(k+1)^{t h}$-generation edges descended from u with distinct parents is greater than two, all of the $(k+1)^{t h}$-generation edges from u can be labeled in this manner.

A similar argument may be used to prove that the labeling works for T_{v}. Then $2 \Delta+4$ is an upper bound for $T_{\infty}(\Delta)$. So, Lemma 3.2 follows.

In the following, we assign labels to the edges of $T_{\infty}(\Delta)$ in another manner and get another upper bound.

Lemma 3.3 For $\Delta \geq 3, \lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right) \leq 3 \Delta-2$.
Proof In order to prove the result, it suffices to produce a $(3 \Delta-2)$ - $L(1,2)$-edge-labeling f for $T_{\infty}(\Delta)$.

Let $X_{0}=[0, \Delta-2], X_{1}=[\Delta, 2 \Delta-2]$ and $X_{2}=[2 \Delta, 3 \Delta-2]$. We note that the sets X_{i} are pairwisely 2 -separated and $\left|X_{i}\right|=\Delta-1(i \in\{0,1,2\})$.

Fix an edge $u v$ and label it by $3 \Delta-2$. For the $h^{t h}$-generation edges descended from u, which are in T_{u}, we assign them by labels in X_{i}, where $i \equiv h(\bmod 3)$. For the $h^{t h}$-generation edges descended from v, which are in T_{v}, we assign them in the following manner: if $h \equiv 0(\bmod 3)$, then we assign them by labels in X_{1}; if $h \equiv 1(\bmod 3)$, then we assign them by labels in X_{0}; if $h \equiv 2(\bmod 3)$, then we assign them by labels in X_{2}.

It is easy to check that the labeling f satisfies the constraints of distance, and f is a
$(3 \Delta-2)$ - $L(1,2)$-edge-labeling for $T_{\infty}(\Delta)$. Hence, Lemma 3.3 holds.
By Lemmas 3.1, 3.2 and 3.3, we obtain:
Theorem 3.4 For $\Delta \geq 3$,

$$
2 \Delta+1 \leq \lambda_{1,2}^{\prime}\left(T_{\infty}(\Delta)\right) \leq \begin{cases}3 \Delta-2, & \text { if } \Delta \leq 6 \\ 2 \Delta+4, & \text { if } \Delta>6\end{cases}
$$

It follows from Theorem 3.4 that $\lambda_{1,2}^{\prime}\left(T_{\infty}(3)\right)=7$ and $9 \leq \lambda_{1,2}^{\prime}\left(T_{\infty}(4)\right) \leq 10$. Using a computer aided method to exhaust all possibilities, we can determine that there does not exist a 9-L(1, 2)-edge-labeling for $T_{\infty}(4)$. Hence, we have:

Corollary 3.5 For $\Delta=3$ and 4, we have $\lambda_{1,2}^{\prime}\left(T_{\infty}(3)\right)=7$ and $\lambda_{1,2}^{\prime}\left(T_{\infty}(4)\right)=10$.

4. The wheels

Recall the definition of a wheel W_{n} in Section 1. We denote the vertices of C_{n} outside of W_{n} by $u_{0}, u_{1}, \ldots, u_{n-1}$ and the edges $\left\{u_{i} u_{i+1}\right\}$ by $e_{i}\left(0 \leq i \leq n-1\right.$ and $\left.u_{n}=u_{0}\right)$. Additionally, we denote the hub by w and the spoke $w u_{i}$ by $s_{i}(0 \leq i \leq n-1)$. For any m - $L(1,2)$-edge-labeling function f of W_{n}, let $A=\left\{f\left(e_{i}\right) \mid 0 \leq i \leq n-1\right\}, B=\left\{f\left(s_{i}\right) \mid 0 \leq i \leq n-1\right\}, l_{i}$ and r be the cardinality of $\left\{e \in E\left(W_{n}\right) \mid f(e)=i\right\}$ and $\left\{i \in[0, m] \mid l_{i} \geq 2\right\}$, respectively. The following results give the $\lambda_{1,2}^{\prime}$-numbers for W_{n} with $n \in\{3,4,5,6\}$.

Theorem 4.1 Suppose W_{n} is a wheel. Then

$$
\lambda_{1,2}^{\prime}\left(W_{n}\right)= \begin{cases}5, & \text { if } n=3 \\ 7, & \text { if } n=4 \\ 9, & \text { if } n=5 \\ 11, & \text { if } n=6\end{cases}
$$

Proof If $n=3$, then $W_{3}=K_{4}$. The result follows by Theorem 2.5.
It is easy to see that W_{4} and W_{5} have edge diameter two and $\left|E\left(W_{4}\right)\right|=8$ and $\left|E\left(W_{5}\right)\right|=10$. So, $\lambda_{1,2}^{\prime}\left(W_{4}\right) \geq 7$ and $\lambda_{1,2}^{\prime}\left(W_{5}\right) \geq 9$. In Figure 1, we provide a 7 - and $9-L(1,2)$-edge-labelings for W_{4} and W_{5}, respectively. Hence, Theorem holds for $n=4$ and 5 .

Figure 1 Optimal $L(1,2)$-edge-labelings for W_{4}, W_{5} and W_{6}, respectively
When $n=6$, we provide a $11-L(1,2)$-edge-labeling for W_{6} in Figure 1. Then $\lambda_{1,2}^{\prime}\left(W_{6}\right) \leq 11$. On the other hand, suppose $\lambda_{1,2}^{\prime}\left(W_{6}\right) \leq 10$. Let f be a $10-L(1,2)$-edge-labeling for W_{6}. Due to the distance condition, we have $l_{i} \leq 2$ and $r \leq 3$. Moreover, if $l_{i}=2$, then $l_{i-1}=l_{i+1}=0$. So,
$\sum_{i=0}^{10} l_{i} \leq 11$, contradicting $\left|E\left(W_{6}\right)\right|=12$. Therefore, $\lambda_{1,2}^{\prime}\left(W_{6}\right)=11$. This completes Theorem 4.1.

We now consider $n \geq 7$. In the following, we first investigate the properties of the labels on C_{n}.

Lemma 4.2 Suppose f is an $L(1,2)$-edge-labeling for W_{n} with $n \geq 7$. Then the labeling function f satisfies the following properties:
(1) $l_{i} \leq\left\lfloor\frac{n}{3}\right\rfloor$.
(2) If the label k is assigned to two different edges on C_{n}, then $k \pm 1 \notin B$.
(3) If $|A|=4$, then $r \geq 3$; if $|A|=5$ and $n \geq 10$, then $r \geq 3$.

Proof (1) Since any two spokes are adjacent and the distance between any spoke and any edge on C_{n} is at most two, the label used on spokes can appear only once. Therefore, if $l_{i} \geq 2$, then the label i must be assigned to the edges on C_{n}. So, $l_{i} \leq\left\lfloor\frac{n}{3}\right\rfloor$.
(2) Suppose two edges on C_{n} have label k, then these two edges must be nonadjacent, thus any spoke cannot be adjacent to both of these two edges. Therefore, labels $k+1$ and $k-1$ cannot be used on spokes. That is $k \pm 1 \notin B$.
(3) Suppose $r \leq 2$. If $|A|=4$, then $\sum_{i \in A} l_{i} \leq 2 \cdot\left\lfloor\frac{n}{3}\right\rfloor+2<n$ for $n>6$. If $|A|=5$, then $\sum_{i \in A} l_{i} \leq 2 \cdot\left\lfloor\frac{n}{3}\right\rfloor+3<n$ for $n>9$. These contradict $\sum_{i \in A} l_{i}=n$. Hence, (3) follows.

Next, we give the lower bounds of $\lambda_{1,2}^{\prime}$-number for W_{n}.
Lemma 4.3 For $n \geq 7, \lambda_{1,2}^{\prime}\left(W_{n}\right) \geq n+4$.
Proof Suppose to the contrary, $\lambda_{1,2}^{\prime}\left(W_{n}\right) \leq n+3$. Let f be an $(n+3)$-L(1,2)-edge-labeling for W_{n}. Recall the description of A and B, we have $A \cap B=\varnothing$ and $|B|=n$ by the distance condition. So, $|A| \leq 4$ as there are $n+4$ labels. Obviously, $|A| \geq 3$. In the following, we consider the following two cases:

Case $1|A|=3$.
Suppose $A=\{a, b, c\}$ with $a<b<c$. Then the labels a, b and c must be assigned to the edges on C_{n} in a cyclic order. Due to the distance condition, $b \neq a+1$ and $c \neq b+1$. So, the labels in $F=\{a-1, a, a+1, b, b+1, c, c+1\}$ are distinct. By (2) of Lemma 4.2, $F \cap B=\varnothing$. Then $|B| \leq n-1$, since there are $n+4$ labels and $|F \cap[0, n+3]| \geq 5$, a contradiction.

Case $2|A|=4$.
Suppose $A=\{a, b, c, d\}$. This implies that $l_{k} \geq 1$ for all $k \in[0, n+3]$. By (3) of Lemma 4.2 , there exist at least three labels in A, say a, b and c, such that $l_{i} \geq 2(i=a, b, c)$. If $l_{d} \geq 2$, then at least one of labels in $[0, n+3]$ cannot be assigned to the spokes by (2) of Lemma 4.2 , a contradiction. Hence, $l_{d}=1$. Then the labels in the set $F=\{a-1, a, a+1, b-1, b, b+$ $1, c-1, c, c+1, d\}$ are forbidden for the spokes. That is, $F \cap[0, n+3]=\{a, b, c, d\}$. So, the labels a, b and c are consecutive integers. Then $A=\{0,1,2,3\}$ and $d=3$ (i.e., $l_{3}=1$), or $A=\{n, n+1, n+2, n+3\}$ and $d=n$ (i.e., $l_{n}=1$). By symmetry, we only consider the case of
$A=\{0,1,2,3\}$. Since $l_{3}=1$ and $n \geq 6$, it is impossible to label the other $n-1$ edges on C_{n} by 0,1 and 2 . Therefore, $|A| \neq 4$.

By the above two cases, $|A|$ cannot be 3 or 4 . It is a contradiction and the assumption is false. Thus, Lemma 4.3 holds.

Lemma 4.4 For $n \equiv 2(\bmod 4)$ and $n \geq 10, \lambda_{1,2}^{\prime}\left(W_{n}\right) \geq n+5$.
Proof Suppose to the contrary, $\lambda_{1,2}^{\prime}\left(W_{n}\right) \leq n+4$. Let f be an $(n+4)$ - $L(1,2)$-edge-labeling for W_{n}. Since there are $n+5$ labels, we have $3 \leq|A| \leq 5$. With similar arguments in Case 1 of Lemma 4.3, we can prove $|A| \neq 3$. So, we consider the following two cases:

Case $1|A|=4$.
By (3) of Lemma 4.2, we have $r \geq 3$. Since f is an $(n+4)-L(1,2)$-labeling function, there are at most 5 labels forbidden to the spokes. So, by (2) of Lemma 4.2, A can be the following possibilities: (1) $A=\{0,1,2,3\}$ or $\{n+1, n+2, n+3, n+4\}$; (2) $A=\{0,1,2, m\}$ for some $m \in[4, n+4]$ and $l_{m}=1 ;(3)|A|=\{m, n+2, n+3, n+4\}$ for some $m \in[0, n]$ and $l_{m}=1$. For (1), it contradicts $\lambda_{1,2}^{\prime}\left(C_{n}\right)=4$ when $n \equiv 2(\bmod 4)$ by Theorem 2.2. For (2), since $l_{m}=1$ and $n \geq 10$, it is impossible to label the other $n-1$ edges by 0,1 and 2 . By the symmetry of labels, A cannot be the pattern of (3). Hence, $|A| \neq 4$.

Case $2|A|=5$.
By (3) of Lemma 4.2, we also have $r \geq 3$. Suppose $A=\{a, b, c, d, e\}$ and $l_{i} \geq 2$ for $i \in\{a, b, c\}$. Without loss of generality, assume $a<b<c$. Then $a+1=b$ or $b+1=c$. Otherwise, the labels in $F=\{a-1, a, a+1, b-1, b, b+1, c-1, c, c+1\}$ are forbidden for the spokes. It follows that $|F \cap[0, n+4]| \geq 6$, a contradiction. Then we may assume that $a+1=b$. By (2) of Lemma 4.2, we know $r \neq 5$. So, $r=3$ or $r=4$.

If $r=3$, then $l_{d}=l_{e}=1$. Without loss of generality, assume $f\left(e_{0}\right)=d$ and $f\left(e_{j}\right)=e$. Consider the path $P=e_{1} e_{2} \ldots e_{j-1}$ and $P^{\prime}=e_{j+1} e_{j+2} \ldots e_{n-1}$. Let l and l^{\prime} be the length of P and P^{\prime}, respectively. Since $n \geq 10$, at least one of l and l^{\prime} is larger than 3 . Assume $l \geq 4$. So, it is impossible to label the edges on P by the labels $a, a+1$ and c. Hence, $r \neq 3$.

If $r=4$, then we may assume that $l_{d} \geq 2$ and $l_{e}=1$. By (2) of Lemma 4.2, since $l_{k} \geq 1$ for each $k \in[0, n+4]$, A must be $\{0,1,2,3,4\}$ and $l_{4}=1$, or $\{n, n+1, n+2, n+3, n+4\}$ and $l_{n}=1$. By symmetry, we only consider the case of $A=\{0,1,2,3,4\}$. As $l_{4}=1$, the labels $0,1,2$ and 3 must appear on the other $n-1$ edges of C_{n} in a cyclic order. Since $n \equiv 2(\bmod 4)$ and $n \geq 10$, this is impossible. Hence, $r \neq 4$.

By the above cases, $|A|$ cannot be 3,4 or 5 . It is a contradiction and the assumption is false. Lemma 4.4 follows.

In the following, we get the $\lambda_{1,2}^{\prime}$-numbers for W_{n} with $n \geq 7$:
Lemma 4.5 For $n \geq 7$,

$$
\lambda_{1,2}^{\prime}\left(W_{n}\right)= \begin{cases}n+5, & \text { if } n \equiv 2 \quad(\bmod 4) \\ n+4, & \text { otherwise }\end{cases}
$$

Proof By Lemma 4.3 and 4.4, it suffices to produce $L(1,2)$-edge-labelings for W_{n} with different values of n.

Case $1 \quad n \equiv 0(\bmod 4)$.
The labeling function f on $E\left(W_{n}\right)$ to the set $[0, n+4]$ is defined as:

$$
f\left(s_{i}\right)=5+i, f\left(e_{i}\right)=\left\{\begin{array}{lll}
0, & \text { if } i \equiv 0 & (\bmod 4) ; \\
1, & \text { if } i \equiv 1 & (\bmod 4) ; \\
2, & \text { if } i \equiv 2 & (\bmod 4) ; \\
3, & \text { if } i \equiv 3 & (\bmod 4),
\end{array} \quad \text { for all } 0 \leq i \leq n-1\right.
$$

It is straightforward to check that f is an $(n+4)$ - $L(1,2)$-edge-labeling. Thus $\lambda_{1,2}^{\prime}\left(W_{n}\right)=n+4$ when $n \equiv 0(\bmod 4)$.

Case $2 n \equiv 1(\bmod 4)$.
The labeling function f on $E\left(W_{n}\right)$ to the set $[0, n+4]$ is defined as:

$$
\begin{aligned}
& f\left(s_{i}\right)=5+i \text { for } 0 \leq i \leq n-1 ; \\
& f\left(e_{i}\right)=\left\{\begin{array}{lll}
0, & \text { if } i \equiv 0 \quad(\bmod 4) ; \\
1, & \text { if } i \equiv 1 \quad(\bmod 4) ; \\
2, & \text { if } i \equiv 2 \quad(\bmod 4) ; \\
3, & \text { if } i \equiv 3 \quad(\bmod 4),
\end{array}\right.
\end{aligned}
$$

It is straightforward to check that f is an $(n+4)$ - $L(1,2)$-edge-labeling. Thus $\lambda_{1,2}^{\prime}\left(W_{n}\right)=n+4$ when $n \equiv 1(\bmod 4)$.

Case $3 n \equiv 2(\bmod 4)$.
By Remark 2.2, $\lambda_{1,2}^{\prime}\left(C_{n}\right)=4$ when $n \equiv 2(\bmod 4)$. So, we can define $f\left(e_{i}\right)$ with the labels in $[0,4]$. And then we define $f\left(s_{i}\right) \in[6, n+5]$ for all $i \in[0, n-1]$. It is obvious that f is an $(n+5)$ - $L(1,2)$-edge-labeling for W_{n}. Thus, $\lambda_{1,2}^{\prime}\left(W_{n}\right)=n+5$ when $n \equiv 2(\bmod 4)$.

Case $4 n \equiv 3(\bmod 4)$.
The labeling function f on $E\left(W_{n}\right)$ to the set $[0, n+4]$ is defined as:

$$
\begin{aligned}
& f\left(s_{n-1}\right)=5, \quad f\left(s_{i}\right)=6+i \text { for } 0 \leq i \leq n-2 ; \\
& f\left(e_{i}\right)=\left\{\begin{array}{lll}
2, & \text { if } i \equiv 0 \quad(\bmod 4) ; \\
3, & \text { if } i \equiv 1 \quad(\bmod 4) ; \\
0, & \text { if } i \equiv 2 \quad(\bmod 4) ; \\
1, & \text { if } i \equiv 3 \quad(\bmod 4),
\end{array}\right.
\end{aligned}
$$

It is straightforward to check that f is an $(n+4)$ - $L(1,2)$-edge-labeling. Thus $\lambda_{1,2}^{\prime}\left(W_{n}\right)=n+4$ when $n \equiv 3(\bmod 4)$.

By the cases above, the proof is completed.
By Lemmas 4.1 and 4.5, we obtain:

Theorem 4.6 For $n \geq 3$,

$$
\lambda_{1,2}^{\prime}\left(W_{n}\right)= \begin{cases}5, & \text { if } n=3 \\ 7, & \text { if } n=4 ; \\ n+5, & \text { if } n \equiv 2 \\ n+4, & \text { otherwise }\end{cases}
$$

Acknowledgements The authors are grateful to the referees for their time and helpful comments that improved the paper.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory. Springer, New York, 2008.
[2] T. CALAMONERI. The $L(h, k)$-labeling problem: A updated survey and annotated bibliograhpy. Comput. J., 2011, 54(8): 1344-1371.
[3] T. CALAMONERI, A. PELC, R. PETRESCHI. Labeling trees with a condition at distance two. Discrete Math., 2006, 306(14): 1534-1539.
[4] Qin CHEN, Wensong LIN. $L(j, k)$-labelings and $L(j, k)$-edge-labelings of graphs. Ars Combin., 2012, 106: 161-172.
[5] J. P. GEORGES, D. W. MAURO. Edge labelings with a condition at distance two. Ars Combin., 2004, 70: 109-128.
[6] J. P. GEORGES, D. W. MAURO. Generalized vertex labelings with a condition at distance two, Congr. Numer., 1995, 109: 141-159.
[7] J. P. GEORGES, D. W. MAURO. On regular graphs optimally labeled with a condition at distance two. SIAM J. Discrete Math., 2003, 17(2): 320-331.
[8] J. R. GRIGGS, X. T. JIN. Real number channel assignments for lattices. SIAM J. Discrete Math., 2008, 22(3): 996-1021.
[9] J. R. GRIGGS, X. T. JIN. Recent progress in mathematics and engineering on optimal graph labellings with distance conditions, J. Comb. Optim., 2007, 14(2-3): 249-257.
[10] J. R. GRIGGS, R. K. YEH. Labelling graphs with a condition at distance 2. SIAM J. Discrete Math., 1992, 5(4): 586-595.
[11] W. K. HALE. Frenquency assignment: theory and applications. Proc. IEEE, 1980, 68: 1497-1514.
[12] F. HARARY, C. ST. J. A. NASH-WILLIAMS. On eularian and hamiltonian graphs and line graphs. Canad. Math. Bull, 1965, 8(6): 701-709.
[13] X. T. JIN, R. K. YEH. Graph distance-dependent labeling related to code assignment in computer networks. Naval Res. Logist., 2005, 52(2): 159-164.
[14] Wensong LIN, Jianzhuan WU. Distance two edge labeling of lattices. J. Comb. Optim., 2013, 25(4): 661679.
[15] Qingjie NIU. The $L(s, t)$-labeling numbers and edge spans of graph. M. Phil. thesis of department of mathematics, Southeast University, Nanjing, 2007. (in Chinese)
[16] R. K. YEH. A survey on labeling graphs with a condition at distance two. Discrete Math., 2006, 306(12): 1217-1231.

[^0]: Received July 6, 2013; Accepted March 19, 2014
 Supported by the National Natural Science Foundation of China (Grant Nos. 10971025; 10901035).

 * Corresponding author

 E-mail address: hedanmath@163.com (Dan HE); wslin@seu.edu.cn (Wensong LIN)

