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Abstract In this paper, we consider a class of Monge-Ampere equations in relative differential
geometry. Given these equations with zero boundary values in a smooth strictly convex
bounded domain, we obtain second order derivative estimates of the convex solutions.
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1. Introduction

In equiaffine differential geometry and relative differential geometry, Li-Simon-Chen [1] and
Wu-Zhao [2] considered the following equation
det (%a“xj) = S(x)(—u)™" in Q,
{ u=0 on 09,
where € is a smooth strictly convex bounded domain in R", k is a positive constant with & > 1,
and S(x) € C>®(Q2)NC2%(Q) with S,, > 0. In particular for K = n+2 and S(z) = const, equation
(1.1) is the well-known hyperbolic affine hypersphere equation.
Cheng-Yau [3] showed that (1.1) has a convex solution u € C>°(Q)NC°(Q), and the unique-

ness follows from the maximum principal. Moreover, Lazer-McKenna [4] showed that the unique

(1.1)

convex solution u satisfies

n+1
Ci d(z)»v* < —u(z) < Cod(z)n+k, (1.2)
0

where d(z) := dist(z,09Q), and Cy is a positive constant. In the following, we denote by

Wi, Wij, Uijk, - - -, the derivatives of u with respect to x, (u/) the inverse matrix of (u;;). The

main result of our paper is

Theorem 1.1 The convex solution of (1.1) satisfies

jug| < Cd(@) 572, 1<i,j<n, (1.3)
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where C' is a constant depending only on 2, n, k and S(z).

For k = n+2 and S(z) = const, formula (1.3) can be seen in Loewner-Nirenberg [5] and Wu
[6]. Second order estimates (1.3) can be used to describe the asymptotic behaviors of relative
hypersurfaces of hyperbolic type, for details see [2] and [6]. On the other hand, (1.3) gives

another proof of Lemma 3 in [2].

2. A barrier function

We consider the function

w=—c(R*= Y (zi—-:)")" 0<p<1 (2.1)

1<i<n

defined in the ball {(z1,7a,...,2,) | Y (z; — ;)% < R?}. A direct calculation gives

w; = 2B(R? — (z; — 2;)*)° N (a; — 7)), (2.2)

—20,6 sz_fz _1[51'3'+2(1—,6)(xi:ji)(ljj_f_j)]

= 28¢% (—w) 7 [6 +2(1 — B)cF (—w) T (w — i) (w5 — 7). (2:3)

Hence

n (B=D)n

det(w;;) = 2"3"cH (—w)" 7 [1+2(1 = B)ch (—w) ™5 Y (x; — 7;)?]
F(—w) T L+ 2(1 = B)eF (—w) F (R — (—w)Fe )]
= 278" (—w)" " [(26 — 1)(—w) + 2R (1 — B)cF]. (2.4)

For 26 — 1 > 0, we have

det(wi;) < 2"B"cH (—w)™ "% [(28 — 1)R2c? + 2R2(1 — B)c?]
= 2"R2B"CF (—w)"
n+1

§2"R2cn/;§1(—w)”_ EI

(2.5)

For 25 — 1 < 0, we have

n+1 n+1

det(w;;) < 2"RA(1 - B)B"c T (—w)" P

<2R% w)" (2.6)

‘n+1

7 (=
Let S(z) be the function as in (1.1), and k = ";1 —n. Now we choose the constant ¢ as
follows
c=(2""R~2 - minS(z))"F. (2.7)
€S
Then from (2.5) and (2.6), we know
det(w;;) < S(x)(—w)~". (2.8)

Next we give a comparison result in [4].

Lemma 2.1 ([4]) Let Q be a bounded convex domain, and let v, € C2(Q) N C(Q) for k = 1,2.
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Let f(x,€) be defined for = € Q and & in some interval containing the ranges of v; and ve and
assume that f(x,€) is strictly increasing in & for all z € Q. If

(1) the matrix ((v1);;) is positive definite in €2,

(2) det((v1)i) > f(z,01), Ve € Q,

(3) det((v2)i;) < flz,v2), Vo €,

(4) vy < wg, Vo € 09,
then v, < vy, Vx € .

3. Second order derivative estimates

Proof We divide two steps to prove Theorem 1.1, and follow the calculations as in Loewner-
Nirenberg [5] and Pogorelov [7].

Step 1. For any point 2° = (29,29,...,22) € Q, set dy = dist(2°,99). There is a number
do such that for § < §p the domain 25 consisting of the set of points in 2 whose distance to the
boundary is at least § has a smooth, strictly convex boundary.

Let z = o(x) be the equation of the tangent hyperplane to the graph u(z) at the point

(2%, u(2%)). We claim that there is a positive constant cy such that
ntl
rggxa(m) < —co - dgt*, for § < min{dy,do/2}. (3.1)
)

To see this, let @ be the boundary point of {25 where o takes its maximum. For ¢ < §g, there is
a fixed positive number Ry independent of § such that there is a closed disc D in Qs of radius
Ry touching 095 at Q. We may suppose that @ is the origin and that the inner normal to 0
at @ has the direction (0,0,...,1). Hence the disc D has center (0,0,..., Rp).

Let w be the function

w=—c(R§— Y @} (wn— Ro)*)"
1<i<n—1
= —¢(— Y a?+2Roz,) " (3.2)
1<i<n

From Section 2, we can choose the constant ¢ such that
det(w;;) < S(x)(—w)™" in D,
{ w=0 ondD.
By Lemma 2.1 we conclude o < v < w. Since the maximum of ¢ on D occurs at @, we see that

the tangent hyperplane has the form o = u(xq) + up(2°)(x, — 22). Hence

n+1

a(0,...,0,2,) <u(0,...,0,2,) <w(0,...,0,z,) = —c(2Rox, — x2)n+. (3.3)

Since for some constant N
c(0,...,0,z,) < —c(2Rpx,, — xi)%i < —in{bi’i, 0 <z, < Ry, (3.4)
we may therefore assert that ¢(0,...,0,z,) < 7(z,), where z = 7(x,,) is the equation in the

n4+1

: 3 0 0 n+k
ny B = — N —
(n, z) plane of the tangent line from the point (z,,u(z")) to the curve z Nzxp** | further



478 Yadong WU and Hepeng LI

ntl
more, this line touches the curve at a point (¢, —Ntnr+k) with ¢t < Ry.
The slope of 7(z,,) is f%t% and therefore
ni1 Nn+1) 1k k—1 nt1
< = — n+k _  Ztn+k . = — n+k .
a(Q) < 7(0) Ntn+k + " tnFk -t Nn+k: + (3.5)
We wish to find a lower bound for ¢. From the definition of 7(x,,), we have
0 ol
7N(n+1)t7111§:u(x)+]\7t +k, (3.6)
n+k 20 —t
or
k-1 k=1 n+1
N ot 0y . tn¥F + N o =o. .
Tk +u(x”) - tnFr 4 R 0 (3.7)
Put s = t~%/("+k) then from (3.7) we get
n+1 k—1
N——g0 . sntF ) "+ N =0. 3.8
RS +u(z?) - "+ —— (3.8)
Consider a function
n+1 k-1
- N 0 ,ntk 0y ., n+l N )
Fly) = No—an g™ Hula) -y 4+ N (3.9)
and a point
R
=|———"7—"F-F|FT. 3.10
=1 N(n+1)zf } (3.10)
Then f(s*) = Z—jr}c > 0, and the derivative of f(y) is f'(y) = N(n + 1)29 - y*+k=1 4 (n +
Du(z®) - y™. Obviously for y > s*, f'(y) > 0. It follows that s < s*, and hence
- _ —(n+ k)u(z%) ntr
ST > () (N ) (3.11)
Since ()5 is convex, we get
29 > dist(2°, 0Qs) > do/2. (3.12)
From (1.2), we get
n+1
—u(z?) < Cy-dj . (3.13)
Combining (3.5) and (3.11)-(3.13), we get
k—1 ni1 k=1 —(n+ku(a®)
<-N tntk < —N 1=k
@)= =Nt S N N Dy,
k-1 n+k | nt1 ntl ol
— V1% (2C,)1=F . d"TF 3.14
hence (3.1) is proved.
From (1.2) we see that
—u(z) < Cy- 074k, x € 0. (3.15)
Note that N and C{ are constants independent of §, we now fix
1 Co ntk
§ = min{d,. =d n+1 o}, 3.16
mln{ 05 2 05 (200) 0} ( )
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Then we have

_ Co
u(z) < 5 g™, x € 09Qs. (3.17)
It follows from (3.1) and (3.17) that
o = max(o — u(z)) < — g7 (3.18)
0% - 20

By formula (3.17) and the convexity of u, there exists a constant ¢; > 0 such that

1k
gradu|, |grad (o —u)| < c1dy™", 1n (s. .
d d dit*t, inQ 3.19
Step 2. Set
Yy=u—o+a, inQy, (3.20)
then v > 0 on 09s. With
2 2(k—1)
7= d T (3.21)

(c1)?

we consider in the region )y = the points in {25 where v < 0, the function
W = —y[exp (Tu2/2)]|tr, (3.22)

where the index r denotes differentiation in a fixed direction. In €y, which contains z°, the
function W attains a maximum at some point O and some direction. By a unimodular trans-
formation, we can make our choice of coordinate system in such a way that the direction is
(1,0,...,0) and at the point O we have u;; = 0 for i # j.

In Q, the function —v[exp (Tu?/2)]u1; takes a maximum at the point O. Take the logarithm
and differentiate it twice with respect to x;, then at the point O

U114

% + Tu1U1; + o 0, (3.23)
1
B 2 - 2
B lé + Tuyu + Tui; + e Lzh <0. (3.:24)
v U1l Uiy

Multiplying (3.24) by u**u;; and summing over i, with the aid of (3.23), we obtain (Summation

convention is used)

i i U114 Z Guy 1 7 2 ii
U U1y — U —— — U — + —uyj1 — 5 + TU7q + TUTULIU Ui S 0. (325)
R v

We now differentiate (1.1) twice with respect to z1

y S
u”uijl = —k% + gl (326)
is g U u? S S?
ufuu1+U”“UH::*ki%”%kﬂé*77?”73%' (3.27)
From (3.27), we get
y U u? S 52 i
u'uginn = —k‘% + ku% + ?11 - 5*12 — uy'uij1
2 g sz

= —k‘% + k% + ?11 - 3712 + uutug) . (3.28)
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Note that

L ,.u2 . .,u2 .

u”u”u?jl — gt E w2 >0, (3.29)
Uil : Uil

i>1

On the other hand, by (3.26) we have

.. u% 51 51
Tulullu“uiil = —kT—ull + TULULL — Z TULUIl (= - (330)
u S S
Combining (3.25) and (3.28)—(3.30), we get
n Sl 511 52 ’)/2
Tujy + (; + Tgul)un + < - S—; — 7—12 <0. (3.31)
Multiplying inequality (3.31) by 42 exp (7u?), we obtain
Sy, = S S?
T W?—(n+ T’yulgl)efuf W+ (’yz(% - 5—12) - 7%)67“? <0. (3.32)
Applying (3.19) and (3.21), there exist constants cg, c3 and ¢4 such that
2(k—1) 2(1—k)
cady " W2 — esW — ¢qdy, " <0 (3.33)
It follows that
2(1—k)
W(0) < ecs-dy,""* | for constant c5 > 0. (3.34)
Hence at the point z°, we have
2(1—k)
—ylexp (Tu2/2)]upyr < c5-dy™ T . (3.35)
Since
co n+tl
—(2%) = —a > §d§+k, (3.36)
we can find a positive constant cg so that
ntl
uii(2°)] < ¢6 A 2, 1<i<n. (3.37)

By (3.37) and the convexity of u, we obtain (1.3).
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