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Abstract In this paper, we consider a class of Monge-Ampère equations in relative differential

geometry. Given these equations with zero boundary values in a smooth strictly convex

bounded domain, we obtain second order derivative estimates of the convex solutions.
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1. Introduction

In equiaffine differential geometry and relative differential geometry, Li-Simon-Chen [1] and

Wu-Zhao [2] considered the following equation{
det

(
∂2u

∂xi∂xj

)
= S(x)(−u)−k in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth strictly convex bounded domain in Rn, k is a positive constant with k > 1,

and S(x) ∈ C∞(Ω)∩C2(Ω̄) with Sn > 0. In particular for k = n+2 and S(x) = const, equation

(1.1) is the well-known hyperbolic affine hypersphere equation.

Cheng-Yau [3] showed that (1.1) has a convex solution u ∈ C∞(Ω)∩C0(Ω̄), and the unique-

ness follows from the maximum principal. Moreover, Lazer-McKenna [4] showed that the unique

convex solution u satisfies

1

C0
d(x)

n+1
n+k ≤ −u(x) ≤ C0 d(x)

n+1
n+k , (1.2)

where d(x) := dist(x, ∂Ω), and C0 is a positive constant. In the following, we denote by

ui, uij , uijk, . . . , the derivatives of u with respect to x, (uij) the inverse matrix of (uij). The

main result of our paper is

Theorem 1.1 The convex solution of (1.1) satisfies

|uij | ≤ C d(x)
n+1
n+k−2, 1 ≤ i, j ≤ n, (1.3)
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where C is a constant depending only on Ω, n, k and S(x).

For k = n+2 and S(x) = const, formula (1.3) can be seen in Loewner-Nirenberg [5] and Wu

[6]. Second order estimates (1.3) can be used to describe the asymptotic behaviors of relative

hypersurfaces of hyperbolic type, for details see [2] and [6]. On the other hand, (1.3) gives

another proof of Lemma 3 in [2].

2. A barrier function

We consider the function

w = −c(R2 −
∑

1≤i≤n

(xi − x̄i)
2)β , 0 < β < 1 (2.1)

defined in the ball {(x1, x2, . . . , xn) |
∑

(xi − x̄i)
2 ≤ R2}. A direct calculation gives

wi = 2cβ(R2 − (xi − x̄i)
2)β−1(xi − x̄i), (2.2)

wij = 2cβ(R2 − (
∑

xi − x̄i)
2)β−1[δij + 2(1− β)

(xi − x̄i)(xj − x̄j)

R2 −
∑

(xi − x̄i)2
]

= 2βc
1
β (−w)

β−1
β [δij + 2(1− β)c

1
β (−w)−

1
β (xi − x̄i)(xj − x̄j)]. (2.3)

Hence

det(wij) = 2nβnc
n
β (−w)

(β−1)n
β [1 + 2(1− β)c

1
β (−w)−

1
β

∑
(xi − x̄i)

2]

= 2nβnc
n
β (−w)

(β−1)n
β [1 + 2(1− β)c

1
β (−w)−

1
β (R2 − (−w)

1
β c−

1
β )]

= 2nβnc
n
β (−w)n−

n+1
β [(2β − 1)(−w)

1
β + 2R2(1− β)c

1
β ]. (2.4)

For 2β − 1 ≥ 0, we have

det(wij) ≤ 2nβnc
n
β (−w)n−

n+1
β [(2β − 1)R2c

1
β + 2R2(1− β)c

1
β ]

= 2nR2βnc
n+1
β (−w)n−

n+1
β

≤ 2nR2c
n+1
β (−w)n−

n+1
β . (2.5)

For 2β − 1 ≤ 0, we have

det(wij) ≤ 2n+1R2(1− β)βnc
n+1
β (−w)n−

n+1
β

≤ 2R2c
n+1
β (−w)n−

n+1
β . (2.6)

Let S(x) be the function as in (1.1), and k = n+1
β − n. Now we choose the constant c as

follows

c = (2−nR−2 ·min
x∈Ω̄

S(x))
1

n+k . (2.7)

Then from (2.5) and (2.6), we know

det(wij) ≤ S(x)(−w)−k. (2.8)

Next we give a comparison result in [4].

Lemma 2.1 ([4]) Let Ω be a bounded convex domain, and let vk ∈ C2(Ω) ∩ C(Ω̄) for k = 1, 2.
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Let f(x, ξ) be defined for x ∈ Ω and ξ in some interval containing the ranges of v1 and v2 and

assume that f(x, ξ) is strictly increasing in ξ for all x ∈ Ω. If

(1) the matrix ((v1)ij) is positive definite in Ω,

(2) det((v1)ij) ≥ f(x, v1), ∀x ∈ Ω,

(3) det((v2)ij) ≤ f(x, v2), ∀x ∈ Ω,

(4) v1 ≤ v2, ∀x ∈ ∂Ω,

then v1 ≤ v2, ∀x ∈ Ω.

3. Second order derivative estimates

Proof We divide two steps to prove Theorem 1.1, and follow the calculations as in Loewner-

Nirenberg [5] and Pogorelov [7].

Step 1. For any point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Ω, set d0 = dist(x0, ∂Ω). There is a number

δ0 such that for δ ≤ δ0 the domain Ωδ consisting of the set of points in Ω whose distance to the

boundary is at least δ has a smooth, strictly convex boundary.

Let z = σ(x) be the equation of the tangent hyperplane to the graph u(x) at the point

(x0, u(x0)). We claim that there is a positive constant c0 such that

max
∂Ωδ

σ(x) ≤ −c0 · d
n+1
n+k

0 , for δ ≤ min{δ0, d0/2}. (3.1)

To see this, let Q be the boundary point of Ωδ where σ takes its maximum. For δ ≤ δ0, there is

a fixed positive number R0 independent of δ such that there is a closed disc D in Ω̄δ of radius

R0 touching ∂Ωδ at Q. We may suppose that Q is the origin and that the inner normal to ∂Ωδ

at Q has the direction (0, 0, . . . , 1). Hence the disc D has center (0, 0, . . . , R0).

Let w be the function

w = −c(R2
0 −

∑
1≤i≤n−1

x2
i − (xn −R0)

2)
n+1
n+k

= −c(−
∑

1≤i≤n

x2
i + 2R0xn)

n+1
n+k . (3.2)

From Section 2, we can choose the constant c such that{
det(wij) ≤ S(x)(−w)−k in D,

w = 0 on ∂D.

By Lemma 2.1 we conclude σ ≤ u ≤ w. Since the maximum of σ on D̄ occurs at Q, we see that

the tangent hyperplane has the form σ = u(x0) + un(x
0)(xn − x0

n). Hence

σ(0, . . . , 0, xn) ≤ u(0, . . . , 0, xn) ≤ w(0, . . . , 0, xn) = −c(2R0xn − x2
n)

n+1
n+k . (3.3)

Since for some constant N

σ(0, . . . , 0, xn) ≤ −c(2R0xn − x2
n)

n+1
n+k ≤ −Nx

n+1
n+k
n , 0 ≤ xn ≤ R0, (3.4)

we may therefore assert that σ(0, . . . , 0, xn) ≤ τ(xn), where z = τ(xn) is the equation in the

(xn, z) plane of the tangent line from the point (x0
n, u(x

0)) to the curve z = −Nx
n+1
n+k
n , further-
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more, this line touches the curve at a point (t,−Nt
n+1
n+k ) with t ≤ R0.

The slope of τ(xn) is −N(n+1)
n+k t

1−k
n+k and therefore

σ(Q) ≤ τ(0) = −Nt
n+1
n+k +

N(n+ 1)

n+ k
t

1−k
n+k · t = −N

k − 1

n+ k
t

n+1
n+k . (3.5)

We wish to find a lower bound for t. From the definition of τ(xn), we have

−N(n+ 1)

n+ k
t

1−k
n+k =

u(x0) +Nt
n+1
n+k

x0
n − t

, (3.6)

or

N
k − 1

n+ k
· t+ u(x0) · t

k−1
n+k +N

n+ 1

n+ k
x0
n = 0. (3.7)

Put s = t−1/(n+k), then from (3.7) we get

N
n+ 1

n+ k
x0
n · sn+k + u(x0) · sn+1 +N

k − 1

n+ k
= 0. (3.8)

Consider a function

f(y) = N
n+ 1

n+ k
x0
n · yn+k + u(x0) · yn+1 +N

k − 1

n+ k
, (3.9)

and a point

s∗ = [
−(n+ k)u(x0)

N(n+ 1)x0
n

]
1

k−1 . (3.10)

Then f(s∗) = N k−1
n+k > 0, and the derivative of f(y) is f ′(y) = N(n + 1)x0

n · yn+k−1 + (n +

1)u(x0) · yn. Obviously for y > s∗, f ′(y) > 0. It follows that s ≤ s∗, and hence

t = s−(n+k) ≥ (s∗)−(n+k) = (
−(n+ k)u(x0)

N(n+ 1)x0
n

)
n+k
1−k . (3.11)

Since Ωδ is convex, we get

x0
n ≥ dist(x0, ∂Ωδ) ≥ d0/2. (3.12)

From (1.2), we get

−u(x0) ≤ C0 · d
n+1
n+k

0 . (3.13)

Combining (3.5) and (3.11)-(3.13), we get

σ(Q) ≤ −N
k − 1

n+ k
t

n+1
n+k ≤ −N

k − 1

n+ k
(
−(n+ k)u(x0)

N(n+ 1)x0
n

)
n+1
1−k

≤ −N
k − 1

n+ k
(

n+ k

N(n+ 1)
)

n+1
1−k (2C0)

n+1
1−k · d

n+1
n+k

0 , (3.14)

hence (3.1) is proved.

From (1.2) we see that

−u(x) ≤ C0 · δ
n+1
n+k , x ∈ ∂Ωδ. (3.15)

Note that N and C0 are constants independent of δ, we now fix

δ = min{δ0,
1

2
d0, (

c0
2C0

)
n+k
n+1 d0}. (3.16)
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Then we have

−u(x) ≤ c0
2
d

n+1
n+k

0 , x ∈ ∂Ωδ. (3.17)

It follows from (3.1) and (3.17) that

α := max
∂Ωδ

(σ − u(x)) ≤ −c0
2
d

n+1
n+k

0 . (3.18)

By formula (3.17) and the convexity of u, there exists a constant c1 > 0 such that

|gradu|, |grad (σ − u)| ≤ c1d
1−k
n+k

0 , in Ωδ. (3.19)

Step 2. Set

γ = u− σ + α, in Ωδ, (3.20)

then γ ≥ 0 on ∂Ωδ. With

τ =
2

(c1)2
d

2(k−1)
k+n

0 , (3.21)

we consider in the region Ω0 = the points in Ωδ where γ < 0, the function

W = −γ[exp (τu2
r/2)]urr, (3.22)

where the index r denotes differentiation in a fixed direction. In Ω0, which contains x0, the

function W attains a maximum at some point O and some direction. By a unimodular trans-

formation, we can make our choice of coordinate system in such a way that the direction is

(1, 0, . . . , 0) and at the point O we have uij = 0 for i ̸= j.

In Ω0, the function −γ[exp (τu2
1/2)]u11 takes a maximum at the point O. Take the logarithm

and differentiate it twice with respect to xi, then at the point O

γi
γ

+ τu1u1i +
u11i

u11
= 0, (3.23)

γii
γ

− γ2
i

γ2
+ τu1u1ii + τu2

1i +
u11ii

u11
− u2

11i

u2
11

≤ 0. (3.24)

Multiplying (3.24) by uiiu11 and summing over i, with the aid of (3.23), we obtain (Summation

convention is used)

uiiu11ii − uiiu
2
11i

u11
−
∑
i>1

uiiu
2
11i

u11
+

n

γ
u11 −

γ2
1

γ2
+ τu2

11 + τu1u11u
iiuii1 ≤ 0. (3.25)

We now differentiate (1.1) twice with respect to x1

uijuij1 = −k
u1

u
+

S1

S
. (3.26)

uij
1 uij1 + uijuij11 = −k

u11

u
+ k

u2
1

u2
+

S11

S
− S2

1

S2
. (3.27)

From (3.27), we get

uiiuii11 = −k
u11

u
+ k

u2
1

u2
+

S11

S
− S2

1

S2
− uij

1 uij1

= −k
u11

u
+ k

u2
1

u2
+

S11

S
− S2

1

S2
+ uiiujju2

ij1. (3.28)
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Note that

uiiujju2
ij1 − uiiu

2
11i

u11
−

∑
i>1

uiiu
2
11i

u11
≥ 0. (3.29)

On the other hand, by (3.26) we have

τu1u11u
iiuii1 = −kτ

u2
1

u
u11 + τu1u11

S1

S
≥ τu1u11

S1

S
. (3.30)

Combining (3.25) and (3.28)–(3.30), we get

τu2
11 + (

n

γ
+ τ

S1

S
u1)u11 +

S11

S
− S2

1

S2
− γ2

1

γ2
≤ 0. (3.31)

Multiplying inequality (3.31) by γ2 exp (τu2
1), we obtain

τ ·W 2 − (n+ τγu1
S1

S
)e

τ
2 u

2
1 ·W + (γ2(

S11

S
− S2

1

S2
)− γ2

1)e
τu2

1 ≤ 0. (3.32)

Applying (3.19) and (3.21), there exist constants c2, c3 and c4 such that

c2d

2(k−1)
n+k

0 W 2 − c3W − c4d

2(1−k)
n+k

0 ≤ 0. (3.33)

It follows that

W (O) ≤ c5 · d
2(1−k)
n+k

0 , for constant c5 > 0. (3.34)

Hence at the point x0, we have

−γ[exp (τu2
r/2)]urr ≤ c5 · d

2(1−k)
n+k

0 . (3.35)

Since

−γ(x0) = −α ≥ c0
2
d
n+1
n+k
0 , (3.36)

we can find a positive constant c6 so that

|uii(x
0)| ≤ c6 d

n+1
n+k−2

0 , 1 ≤ i ≤ n. (3.37)

By (3.37) and the convexity of u, we obtain (1.3).
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