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Abstract Let H(n; q, n1, n2, n3, n4) be a unicyclic graph with n vertices containing a cycle

Cq and four hanging paths Pn1+1, Pn2+1, Pn3+1 and Pn4+1 attached at the same vertex of the

cycle. In this paper, it is proved that all unicyclic graphs H(n; q, n1, n2, n3, n4) are determined

by their Laplacian spectra.
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1. Introduction

In this paper, we assume that all graphs are simple and undirected. Let G = (V (G), E(G))

be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). Let the matrix A(G) be

the (0, 1)-adjacency matrix of G and di = d(vi) = di(G) the degree of the vertex vi. Assume

that d1 ≥ d2 ≥ · · · ≥ dn. The matrix L(G) = D(G) − A(G) is called the Laplacian matrix

of G, where D(G) = diag(d1, d2, . . . , dn) denotes the diagonal matrix of vertex degrees of G.

The polynomial ϕ(G) = ϕ(G, x) = det(xIn − L(G)) = l0x
n + l1x

n−1 + · · · + ln is defined as

the Laplacian characteristic polynomials of the graph G, where In is the n× n identity matrix.

Since A(G) and L(G) are real and symmetric, their eigenvalues are real numbers and called the

adjacency and the Laplacian eigenvalues of G, respectively. Assume that λ1 ≥ λ2 ≥ · · · ≥ λn and

µ1 ≥ µ2 ≥ · · · ≥ µn(= 0) are the adjacency and the Laplacian eigenvalues of G. The multiset of

eigenvalues of A(G) (L(G)) is called the adjacency (Laplacian) spectrum of G. Two graphs are

said to be adjacency (Laplacian) cospectral if they have equal adjacency (Laplacian) spectrum.

A graph is said to be determined by the adjacency (Laplacian) spectrum if there is no other

non-isomorphic graph with the same adjacency (Laplacian) spectrum.

Which graphs are determined by their (Laplacian) spectra is an interesting problem in

the theory of graph spectra. Characterizing such graphs seems also to be a difficult problem.

Recently, this problem has attracted some researchers’ attention. Up until now, only some graphs

with special structure are proved to be determined by their (Laplacian) spectra. Some results
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on these special graphs determined by their adjacency or Laplacian spectra can be found in

[10, 15, 16, 18, 24, 26, 27] or [1, 10, 17–20, 22, 23, 25, 28], respectively. The reader can also consult

the books [3, 5] and the surveys [6, 7].

Let Pn and Cn be the path and cycle with n vertices, respectively. Let a kind of unicyclic

graphs H(n; q, n1, n2, . . . , nt) with n vertices be shown in Figure 1. They are some unicyclic

graphs containing a cycle Cq and t hanging paths Pn1+1, Pn2+1, Pn3+1, . . . , Pnt+1 attached at

the same vertex of the cycle. For the case t = 1, Haemers et al. in [10] have proved all lollipop

graphs H(n; q, n− q) to be determined by their Laplacian spectra. For the case t = 2, Liu et al.

in [18] has proved all graphs H(n; q, n1, n2) to be determined by their Laplacian spectra. For the

case t = 3, Lu et al. in [20] have proved all graphs H(n; q, n1, n2, n3) to be determined by their

Laplacian spectra. In this paper, we prove all unicyclic graphs H(n; q, n1, n2, n3, n4) (shown in

Figure 2) to be determined by their Laplacian spectra.

Figure 1 Graph H(n; q, n1, n2, . . . , nt) Figure 2 Graph H(n; q, n1, n2, n3, n4)

2. Preliminaries

In this section, some known lemmas about the (Laplacian) spectrum of a graph are given,

and these lemmas will play important roles throughout the paper.

Lemma 2.1 ([6, 21]) For the Laplacian matrix of a graph G, the following results can be deduced

from the Laplacian spectrum.

(i) The number of vertices.

(ii) The number of edges.

(iii) The number of components.

(iv) The number of spanning trees.

(v) The sum of the squares of degrees of vertices.

Lemma 2.2 ([5]) Assume that N is an n× n symmetric matrix, its eigenvalues are α1 ≥ α2 ≥
· · · ≥ αn. The eigenvalues of the principal submatrix of order m of N are α′

1 ≥ α′
2 ≥ · · · ≥ α′

m,

then αi ≥ α′
i ≥ αn−m+i, i = 1, 2, . . . ,m.

Lemma 2.3 ([4]) Let A = [aij ] be a matrix of order n. Let

ri =
n∑

j=1

|aij |, 1 ≤ i ≤ n

be the sum of the absolute values of the entries in row i of A. Then

ρ(A) ≤ max(r1, r2, . . . , rn)
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where ρ(A) is the maximum of the absolute values of all eigenvalues of A. A similar inequality

holds for the sum of the absolute values of the entries in columns of A.

Lemma 2.4 ([21]) LetG be a graph with n vertices andm edges and let deg(G) = (d1, d2, . . . , dn)

be its non-increasing degree sequence. Then the first four coefficients in ϕ(G, x) are

l0 = 1, l1 = −2m, l2 = 2m2 −m− 1

2

n∑
i=1

d2i ,

l3 =
1

3
(−4m3 + 6m2 + 3m

n∑
i=1

d2i −
n∑

i=1

d3i − 3
n∑

i=1

d2i + 6nG(C3)),

where nG(C3) is the number of triangles in G.

Lemma 2.5 ([12, 14]) Let G be a graph with V (G) ̸= Ø and E(G) ̸= Ø. Then

d1 + 1 ≤ µ1 ≤ max{di(di +mi) + dj(dj +mj)

di + dj
, vivj ∈ E(G)}

where d1 denotes the maximum vertex degree of G and mi denotes the average of the degrees of

the vertices adjacent to vertex vi in G.

Lemma 2.6 ([13]) Let G be a connected graph with n ≥ 3 vertices, and let deg(G) =

(d1, d2, . . . , dn) be its non-increasing degree sequence. Then µ2 ≥ d2.

Lemma 2.7 ([2]) The coefficients li of the polynomial ϕ(G, x) are given by the formula

(−1)ili =
∑

p(Φ), 1 ≤ i ≤ n,

where the right hand of the equation is the summation of all sub-forests Φ of G which have i

edges, and p(Φ) denotes the product of the numbers of vertices in the components of the forest

Φ.

Lemma 2.8 ([8]) Let Bn be the matrix of order n obtained from L(Pn+1) by deleting the row

and column corresponding to some end vertices of Pn+1, and let Hn be the matrix of order n

obtained from L(Pn+2) by deleting the rows and columns corresponding to the two end vertices

of Pn+2. Set ϕ(P0) = 0, ϕ(B0) = 1, ϕ(H0) = 1. Then we have the following conclusions.

(i) ϕ(Pn+1) = (x− 2)ϕ(Pn)− ϕ(Pn−1),(n ≥ 1).

(ii) xϕ(Bn) = ϕ(Pn+1) + ϕ(Pn).

(iii) ϕ(Pn) = x(ϕ(Hn−1)) (n ≥ 1).

(iv) ϕ(Cn) =
1
xϕ(Pn+1)− 1

xϕ(Pn−1) + 2(−1)n+1 (n ≥ 3, x ̸= 0).

From Lemma 2.8, if x = 4, then we can get the following lemma.

Lemma 2.9 ([20]) (i) ϕ(Pn; 4) = 4n.

(ii) ϕ(Bn; 4) = 2n+ 1.

(iii) ϕ(Hn; 4) = n+ 1.

(iv) ϕ(Cn; 4) = 2 + 2(−1)n+1.

From Lemma 2.8, if x ̸= 4, then we can get the following lemma.
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Lemma 2.10 For ϕ(G) = ϕ(G, x) of a graph G, if x ̸= 4, and y satisfies the equation y2 − (x−
2)y + 1 = 0. Then we have the following results.

(i) ϕ(Pn) =
(y+1)(y2n−1)

yn+1−yn .

(ii) ϕ(Bn) =
y2n+1−1
yn+1−yn .

(iii) ϕ(Hn) =
y2n+2−1
yn+2−yn .

(iv) ϕ(Cn) = yn + 1
yn + 2(−1)n+1.

If v is a vertex of G, let Lv(G) be the principal submatrix of L(G) obtained by deleting the

row and column corresponding to vertex v from L(G).

Lemma 2.11([9]) Let G1 and G2 be two vertex-disjoint graphs and G = G1u : vG2 be a graph

obtained by joining the vertex u of the graph G1 to the vertex v of the graph G2 by an edge.

Then ϕ(G) = ϕ(G1)ϕ(G2)− ϕ(G1)ϕ(Lv(G2))− ϕ(G2)ϕ(Lu(G1)).

Lemma 2.12 ([18]) Let G be a connected unicyclic graph with n vertices and its cycle Cq. If

G′ is Laplacian cospectral to G, then G′ must be a connected unicyclic graph with n vertices

and one cycle Cq. Moreover,
n∑

i=1

di(G)3 =

n∑
i=1

di(G
′)3.

3. Laplacian spectral characterization of graphs H(n; q, n1, n2, n3, n4)

In this section, we prove that no two non-isomorphic graphs of the formH(n; q, n1, n2, n3, n4)

are Laplacian cospectral, and the graph H(n; q, n1, n2, n3, n4) is determined by its Laplacian

spectrum. To prove Theorems 3.3 and 3.4, we first prove the following lemmas.

Lemma 3.1 The antepenultimate coefficient ln−2 of ϕ(H(n; q, n1, n2, n3, n4), x) is given by

(−1)n−2ln−2 =q[
1

6
(n1 + n2 + n3 + n4)

3 − (n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)+

1

2
q(n1 + n2 + n3 + n4)

2 + (1− q)(n1n2 + n1n3 + n1n4 + n2n3+

n2n4 + n3n4) + (
1

2
q − 1

6
)(n1 + n2 + n3 + n4)] +

∑
p(Φ),

where the summation is over all sub-forests Φ of H(n; q, n1, n2, n3, n4) which have n − 2 edges

obtained by deleting two edges both from Cq in H(n; q, n1, n2, n3, n4).

Proof Let G = H(n; q, n1, n2, n3, n4). Since G has n edges, the (n− 2)-subforests of G can be

obtained from G by deleting two edges in which at least one comes from the cycle Cq. Then by

Lemma 2.7, we can get that

(−1)n−2ln−2 =q

n1−1∑
i=0

(q + n2 + n3 + n4 + i)(n1 − i) + q

n2−1∑
i=0

(q + n1 + n3 + n4 + i)(n2 − i)+

q

n3−1∑
i=0

(q + n1 + n2 + n4 + i)(n3 − i) + q

n4−1∑
i=0

(q + n1 + n2 + n3 + i)(n4 − i)+
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p(Φ), (1)

where the summation is over all sub-forests Φ of G = H(n; q, n1, n2, n3, n4) which have n − 2

edges obtained by deleting two edges both from Cq in G.

Because
n1−1∑
i=0

(q + n2 + n3 + n4 + i)(n1 − i)

=

n1−1∑
i=0

(q + n2 + n3 + n4)n1 +

n1−1∑
i=0

(n1 − q − n2 − n3 − n4)i−
n1−1∑
i=0

i2

= (q + n2 + n3 + n4)n
2
1 + (n1 − q − n2 − n3 − n4)

n1(n1 − 1)

2
−

1

6
n1(n1 − 1)(2n1 − 1)

=
1

6
n3
1 +

1

2
n2
1n2 +

1

2
n2
1n3 +

1

2
n2
1n4 +

1

2
n1n2 +

1

2
n1n3 +

1

2
n1n4 +

1

2
n1q−

1

6
n1 +

1

2
n2
1q, (2)

similarly, we obtain the following results:

n2−1∑
i=0

(q + n1 + n3 + n4 + i)(n2 − i)

=
1

6
n3
2 +

1

2
n2
2n1 +

1

2
n2
2n3 +

1

2
n2
2n4 +

1

2
n2n1 +

1

2
n2n3 +

1

2
n2n4 +

1

2
n2q−

1

6
n2 +

1

2
n2
2q, (3)

n3−1∑
i=0

(q + n1 + n2 + n4 + i)(n3 − i)

=
1

6
n3
3 +

1

2
n2
3n1 +

1

2
n2
3n2 +

1

2
n2
3n4 +

1

2
n3n1 +

1

2
n3n2 +

1

2
n3n4 +

1

2
n3q−

1

6
n3 +

1

2
n2
3q, (4)

n4−1∑
i=0

(q + n1 + n2 + n3 + i)(n4 − i)

=
1

6
n3
4 +

1

2
n2
4n1 +

1

2
n2
4n2 +

1

2
n2
4n3 +

1

2
n4n1 +

1

2
n4n2 +

1

2
n4n3 +

1

2
n4q−

1

6
n4 +

1

2
n2
4q. (5)

Then, substituting (2)–(5) into (1), we have

(−1)n−2ln−2 =q[
1

6
(n1 + n2 + n3 + n4)

3 − (n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)+

1

2
q(n1 + n2 + n3 + n4)

2 + (1− q)(n1n2 + n1n3 + n1n4 + n2n3+

n2n4 + n3n4) + (
1

2
q − 1

6
)(n1 + n2 + n3 + n4)] +

∑
p(Φ),
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where the summation is over all sub-forests Φ of G = H(n; q, n1, n2, n3, n4) which have n − 2

edges obtained by deleting two edges both from Cq in G. �

Lemma 3.2 Let G be the graph H(n; q, n1, n2, n3, n4) as shown in Figure 2. Then we have the

following result:

ϕ(G, 4) =(32− 128q − 32(−1)q)n1n2n3n4 + (16− 48q − 16(−1)q)·

(n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4) + (8− 16q − 8(−1)q)·

(n1n2 + n1n3 + n1n4 + n2n3 + n2n4 + n3n4) + (4− 4q−

4(−1)q) · (n1 + n2 + n3 + n4) + 2− 2(−1)q.

Proof Firstly, we assume that G2 = H(n−n1; q, n2, n3, n4), G3 = H(n−n1 −n2; q, n3, n4) and

G4 = H(n− n1 − n2 − n3; q, n4). Then, from Lemma 2.11, we obtain

ϕ(G, x) =ϕ(G2, x)ϕ(Pn1 , x)− ϕ(G2, x)ϕ(Bn1−1, x)−

ϕ(Pn1 , x)ϕ(Hq−1, x)ϕ(Bn2 , x)ϕ(Bn3 , x)ϕ(Bn4 , x). (6)

ϕ(G2, x) =ϕ(G3, x)ϕ(Pn2 , x)− ϕ(G3, x)ϕ(Bn2−1, x)−

ϕ(Pn2 , x)ϕ(Hq−1, x)ϕ(Bn3 , x)ϕ(Bn4 , x).

ϕ(G3, x) =ϕ(G4, x)ϕ(Pn3 , x)− ϕ(G4, x)ϕ(Bn3−1, x)−

ϕ(Pn3 , x)ϕ(Hq−1, x)ϕ(Pn4 , x).

ϕ(G4, x) =ϕ(Cq, x)ϕ(Pn4 , x)− ϕ(Cq, x)ϕ(Bn4−1, x)−

ϕ(Hq−1, x)ϕ(Bn4 , x).

When x = 4, by Lemma 2.9, we obtain the following results:

ϕ(G4, 4) =4n4 − 4(−1)qn4 − 4qn4 + 2− 2(−1)q, (7)

ϕ(G3, 4) =8n3n4 − 8(−1)qn3n4 − 16n3n4q + 4n3 + 4n4 − 4(−1)qn3−

4(−1)qn4 − 4n4q − 4n3q + 2− 2(−1)q, (8)

ϕ(G2, 4) =16n2n3n4 − 16(−1)qn2n3n4 − 48n2n3n4q + 8n2n3 + 8n2n4+

8n3n4 − 8(−1)qn2n3 − 8(−1)qn2n4 − 8(−1)qn2n4−

8(−1)qn3n4 − 16n2n4q − 16n2n3q − 16n3n4q + 4n2+

4n3 + 4n4 − 4(−1)qn2 − 4(−1)qn3 − 4(−1)qn4−

4n2q − 4n3q − 4n4q + 2− 2(−1)q. (9)

Then, substituting (7)–(9) into (6), we can get that

ϕ(G, 4) =(32− 128q − 32(−1)q)n1n2n3n4 + (16− 48q − 16(−1)q)·

(n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4) + (8− 16q − 8(−1)q)·

(n1n2 + n1n3 + n1n4 + n2n3 + n2n4 + n3n4) + (4− 4q−

4(−1)q) · (n1 + n2 + n3 + n4) + 2− 2(−1)q. � (10)
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Note that when x ̸= 4 and y satisfies the equation y2 − (x − 2)y + 1 = 0, by Lemma 2.10,

we can get the following expressions of ϕ(G) = ϕ(H(n; q, n1, n2, n3, n4)) by using Mathematica:

ϕ(G4) =
1

(y − 1)2
[−2(−1)1+qy1−n4 + 2(−1)1+qy−n4 − 2(−1)1+qy1+n4+

2(−1)1+qy2+n4 + y−n4−q − 2y1−n4−q + y2+n4−q + y−n4+q−

2y1+n4+q + y2+n4+q], (11)

ϕ(G3) =
1

(y − 1)3
[−2(−1)1+qy−n3−n4 + 2(−1)1+qy1−n3−n4

+ 2(−1)1+qy1+n3−n4 − 2(−1)1+qy2+n3−n4 + 2(−1)1+qy1−n3+n4−

2(−1)1+qy2−n3+n4 − 2(−1)1+qy2+n3+n4 + 2(−1)1+qy3+n3+n4

− y−n3−n4−q + 3y1−n3−n4−q − 2y2+n3−n4−q − 2y2−n3+n4−q+

y2+n3+n4−q + y3+n3+n4−q − y−n3−n4+q − y1−n3−n4+q+

2y1+n3−n4+q + 2y1−n3+n4+q − 3y2+n3+n4+q + y3+n3+n4+q], (12)

ϕ(G2) =
1

(y − 1)4
[2(−1)1+qy−n2−n3−n4 − 2(−1)1+qy1−n2−n3−n4−

2(−1)1+qy1+n2−n3−n4 + 2(−1)1+qy2+n2−n3−n4−

2(−1)1+qy1−n2+n3−n4 + 2(−1)1+qy2+n2+n3−n4−

2(−1)1+qy3+n2+n3−n4 − 2(−1)1+qy1−n2−n3+n4+

2(−1)1+qy2−n2+n3+n4 − 2(−1)1+qy2+n2−n3+n4−

2(−1)1+qy3+n2−n3+n4 + 2(−1)1+qy2−n2+n3+n4−

2(−1)1+qy3−n2+n3+n4 − 2(−1)1+qy3+n2+n3+n4+

2(−1)1+qy4+n2+n3+n4 + y−n2−n3−n4−q − 4y1−n2−n3−n4−q+

3y2+n2−n3−n4−q + 3y2−n2+n3−n4−q − y2+n2+n3−n4−q−

2y3+n2+n3−n4−q + 3y2−n2−n3+n4−q − y2+n2−n3+n4−q−

2y3+n2−n3+n4−q − y2−n2+n3+n4−q − 2y3−n2+n3+n4−q+

2y3+n2+n3+n4−q + y4+n2+n3+n4−q + y−n2−n3−n4+q−

y2−n2+n3−n4+q + 3y2+n2+n3−n4+q − 2y1−n2−n3+n4+q−

y2−n2−n3+n4+q + 3y2+n2−n3+n4+q + 3y2−n2+n3+n4+q−

4y3+n2+n3+n4+q + y4+n2+n3+n4+q]. (13)

Then, substituting (11)–(13) into (6), we can get that

(y − 1)5ϕ(G) + 1− 5y + y2q + 3y1+2q + 5y4+2n − y5+2n − 3y4+2(n−q)−

y5+2(n−q) + 2(−1)1+qyq − 2(−1)1+qy1+q + 2(−1)1+qy4+2n−q−

2(−1)1+qy5+2n−q = f(n1, n2, n3, n4; y) (14)

where n = q + n1 + n2 + n3 + n4,

f(n1, n2, n3, n4; y)
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= −4y2+2n1 − 4y2+2n2 − 4y2+2n3 − 4y2+2n4 + y2+2n1+2n2 + y2+2n1+2n3+

y2+2n1+2n4 + y2+2n2+2n3 + y2+2n2+2n4 + y2+2n3+2n4 + 3y3+2n1+2n2+

3y3+2n1+2n3 + 3y3+2n1+2n4 + 3y3+2n2+2n3 + 3y3+2n2+2n4 + 3y3+2n3+2n4−

2y3+2n1+2n2+2n3 − 2y3+2n1+2n2+2n4 − 2y3+2n1+2n3+2n4 − 2y3+2n2+2n3+2n4−

2y4+2n1+2n2+2n3 − 2y4+2n1+2n2+2n4 − 2y4+2n1+2n3+2n4 − 2y4+2n2+2n3+2n4+

2(−1)1+qy1+2n1+q + 2(−1)1+qy1+2n2+q + 2(−1)1+qy1+2n3+q+

2(−1)1+qy1+2n4+q − 2(−1)1+qy2+2n1+q − 2(−1)1+qy2+2n2+q−

2(−1)1+qy2+2n3+q − 2(−1)1+qy2+2n4+q − 2(−1)1+qy2+2n1+2n2+q−

2(−1)1+qy2+2n1+2n3+q − 2(−1)1+qy2+2n1+2n4+q − 2(−1)1+qy2+2n2+2n3+q−

2(−1)1+qy2+2n2+2n4+q − 2(−1)1+qy2+2n3+2n4+q + 2(−1)1+qy3+2n1+2n2+q+

2(−1)1+qy3+2n1+2n3+q + 2(−1)1+qy3+2n1+2n4+q + 2(−1)1+qy3+2n2+2n3+q+

2(−1)1+qy3+2n2+2n4+q + 2(−1)1+qy3+2n3+2n4+q − 2(−1)1+qy4+2n1+2n2+2n3+q−

2(−1)1+qy4+2n1+2n2+2n4+q − 2(−1)1+qy4+2n1+2n3+2n4+q−

2(−1)1+qy4+2n2+2n3+2n4+q + 2(−1)1+qy3+2n1+2n2+2n3+q+

2(−1)1+qy3+2n1+2n2+2n4+q + 2(−1)1+qy3+2n1+2n3+2n4+q+

2(−1)1+qy3+2n2+2n3+2n4+q + 2y1+2n1+2q + 2y1+2n2+2q + 2y1+2n3+2q+

2y1+2n4+2q + 2y2+2n1+2q + 2y2+2n2+2q + 2y2+2n3+2q + 2y2+2n4+2q−

3y2+2n1+2n2+2q − 3y2+2n1+2n3+2q − 3y2+2n1+2n4+2q − 3y2+2n2+2n3+2q−

3y2+2n2+2n4+2q − 3y2+2n3+2n4+2q − y3+2n1+2n2+2q − y3+2n1+2n3+2q−

y3+2n1+2n4+2q − y3+2n2+2n3+2q − y3+2n2+2n4+2q − y3+2n3+2n4+2q+

4y3+2n1+2n2+2n3+2q + 4y3+2n1+2n2+2n4+2q + 4y3+2n1+2n3+2n4+2q+

4y3+2n2+2n3+2n4+2q.

Theorem 3.3 No two non-isomorphic graphs of the form H(n; q, n1, n2, n3, n4) are Laplacian

cospectral.

Proof Suppose thatG′ = H(n; q′, n′
1, n

′
2, n

′
3, n

′
4) is Laplacian cospectral toG = H(n; q, n1, n2, n3, n4).

From Lemma 2.12, we have q = q′, then n1 +n2 +n3 +n4 = n′
1 +n′

2 +n′
3 +n′

4. In the following,

we prove that G and G′ are isomorphic.

We consider the coefficient ln−2 of ϕ(G, x) and the coefficient l′n−2 of ϕ(G′, x). From Lemma

3.1, we can get ln−2 of ϕ(G) and l′n−2 of ϕ(G′).

(−1)n−2ln−2 =q[
1

6
(n1 + n2 + n3 + n4)

3 − (n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)+

1

2
q(n1 + n2 + n3 + n4)

2 + (1− q)(n1n2 + n1n3 + n1n4 + n2n3+

n2n4 + n3n4) + (
1

2
q − 1

6
)(n1 + n2 + n3 + n4)] +

∑
p(Φ),
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(−1)n−2l′n−2 =q′[
1

6
(n′

1 + n′
2 + n′

3 + n′
4)

3 − (n′
1n

′
2n

′
3 + n′

1n
′
2n

′
4 + n′

1n
′
3n

′
4 + n′

2n
′
3n

′
4)+

1

2
q′(n′

1 + n′
2 + n′

3 + n′
4)

2 + (1− q′)(n′
1n

′
2 + n′

1n
′
3 + n′

1n
′
4 + n′

2n
′
3+

n′
2n

′
4 + n′

3n
′
4) + (

1

2
q′ − 1

6
)(n′

1 + n′
2 + n′

3 + n′
4)] +

∑
p(Φ′),

where the summation is over all sub-forests Φ (resp., Φ′) of G (G′) with n− 2 (or n′ − 2 ) edges

obtained by deleting two edges both from Cq in G (G′).

Because q = q′,n1+n2+n3+n4 = n′
1+n′

2+n′
3+n′

4,
∑

p(Φ) =
∑

p(Φ′), and (−1)n−2ln−2 =

(−1)n−2l′n−2, we have

(n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)− (1− q)(n1n2 + n1n3 + n1n4+

n2n3 + n2n4 + n3n4) = (n′
1n

′
2n

′
3 + n′

1n
′
2n

′
4 + n′

1n
′
3n

′
4 + n′

2n
′
3n

′
4)−

(1− q)(n′
1n

′
2 + n′

1n
′
3 + n′

1n
′
4 + n′

2n
′
3 + n′

2n
′
4 + n′

3n
′
4). (15)

From Lemma 3.2, we can get ϕ(G, 4) and ϕ(G′, 4) as follows

ϕ(G, 4) =(32− 128q − 32(−1)q)n1n2n3n4 + (16− 48q − 16(−1)q)·

(n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4) + (8− 16q − 8(−1)q)·

(n1n2 + n1n3 + n1n4 + n2n3 + n2n4 + n3n4) + (4− 4q−

4(−1)q) · (n1 + n2 + n3 + n4) + 2− 2(−1)q,

ϕ(G′, 4) =(32− 128q′ − 32(−1)q
′
)n′

1n
′
2n

′
3n

′
4 + (16− 48q′ − 16(−1)q

′
)·

(n′
1n

′
2n

′
3 + n′

1n
′
2n

′
4 + n′

1n
′
3n

′
4 + n′

2n
′
3n

′
4) + (8− 16q′ − 8(−1)q

′
)·

(n′
1n

′
2 + n′

1n
′
3 + n′

1n
′
4 + n′

2n
′
3 + n′

2n
′
4 + n′

3n
′
4) + (4− 4q′−

4(−1)q
′
) · (n′

1 + n′
2 + n′

3 + n′
4) + 2− 2(−1)q

′
.

Because ϕ(G, 4) = ϕ(G′, 4), q = q′, we have

(4− 16q − 4(−1)q)n1n2n3n4 + (2− 6q − 2(−1)q)(n1n2n3 + n1n2n4+

n1n3n4 + n2n3n4) + (1− 2q − (−1)q)(n1n2 + n1n3 + n1n4 + n2n3+

n2n4 + n3n4) = (4− 16q − 4(−1)q)n′
1n

′
2n

′
3n

′
4 + (2− 6q − 2(−1)q)·

(n′
1n

′
2n

′
3 + n′

1n
′
2n

′
4 + n′

1n
′
3n

′
4 + n′

2n
′
3n

′
4) + (1− 2q − (−1)q)(n′

1n
′
2+

n′
1n

′
3 + n′

1n
′
4 + n′

2n
′
3 + n′

2n
′
4 + n′

3n
′
4). (16)

Because the graphs G and G′ have the same Laplacian characteristic polynomials, that

is, ϕ(G) = ϕ(G′), by (14) we have f(n1, n2, n3, n4; y) = f(n′
1, n

′
2, n

′
3, n

′
4; y). Without loss of

generality, assume that n1 ≤ n2 ≤ n3 ≤ n4 and n′
1 ≤ n′

2 ≤ n′
3 ≤ n′

4, then the smallest degrees of

all items of the polynomials f(n1, n2, n3, n4; y) and f(n′
1, n

′
2, n

′
3, n

′
4; y) on variable y are 2 + 2n1

and 2 + 2n′
1, respectively. Then n1 = n′

1.

Because n1+n2+n3+n4 = n′
1+n′

2+n′
3+n′

4, by (15) and (16), we can deduce the following

equations (17) and (18):

n2n3n4 + (n1 − 1 + q)(n2n3 + n2n4 + n3n4)
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= n′
2n

′
3n

′
4 + (n1 − 1 + q)(n′

2n
′
3 + n′

2n
′
4 + n′

3n
′
4), (17)

[n1(4− 4(−1)q − 16q) + (2− 2(−1)q − 16q)]n2n3n4 + [n1(2− 2(−1)q−

6q) + (1− (−1)q − 2q)](n2n3 + n2n4 + n3n4) = [n1(4− 4(−1)q − 16q)+

(2− 2(−1)q − 16q)]n′
2n

′
3n

′
4 + [n1(2− 2(−1)q − 6q) + (1− (−1)q − 2q)]·

(n′
2n

′
3 + n′

2n
′
4 + n′

3n
′
4). (18)

By solving the above two equations, we get that{
n2n3n4 = n′

2n
′
3n

′
4,

n2n3 + n2n4 + n3n4 = n′
2n

′
3 + n′

2n
′
4 + n′

3n
′
4.

(19)

Let

A =
4∏

i=2

ni =
4∏

i=2

n′
i, B =

∑
2≤i≤j≤4

ninj =
∑

2≤i≤j≤4

n′
in

′
j .

Obviously, n2, n3, n4 and n′
2, n

′
3, n

′
4 are the roots of the following equation, respectively,

x3 − (n− q − n1)x
2 +Bx−A = 0.

Hence the graph G′ and G are isomorphic. Thus this theorem is proved. �

Theorem 3.4 Graph H(n; q, n1, n2, n3, n4) is determined by its Laplacian spectrum.

Proof Let G = H(n; q, n1, n2, n3, n4). Assume that G′ is Laplacian cospectral to G. By Lemma

2.12, G′ is a connected unicyclic graph with n vertices, n edges and cycle Cq. Suppose that

G′ has x′
j vertices of degree j, for j = 1, 2, . . . ,∆, where ∆ is the maximum degree of G′.

From Lemma 2.5, we obtain 7 ≤ µ1(G) = µ1(G
′) ≤ 7 + 1

2 . Then ∆ = d1(G
′) ≤ 6. Because

max{ri(Lv(G))} = 4 for i = 1, 2, . . . , n− 1, by Lemma 2.3, then µ1(Lv(G)) ≤ 4. By Lemma 2.2,

we can get µ2(L(G)) ≤ µ1(Lv(G)) ≤ µ1(L(G)), that is µ2(L(G)) ≤ 4. Then according to Lemma

2.6, d2(G
′) ≤ µ2(L(G

′)) = µ2(L(G)) ≤ 4. So, G′ has at most one vertex of degree greater than

4. Therefore, by (i), (ii) and (v) of Lemmas 2.1 and 2.12, we can get the following equations:
x′
1 + x′

2 + x′
3 + x′

4 + 1 = n,

x′
1 + 2x′

2 + 3x′
3 + 4x′

4 +∆ = 2n,

x′
1 + 22x′

2 + 32x′
3 + 42x′

4 +∆2 = 4 + 62 + (n− 5) · 22,
x′
1 + 23x′

2 + 33x′
3 + 43x′

4 +∆3 = 4 + 63 + (n− 5) · 23.

(20)

By solving Eqs. (20), we get the following result.
x′
1 = 1

6∆
3 − 3

2∆
2 + 13

3 ∆− 4,

x′
2 = n− 1

2∆
3 + 4∆2 − 19

2 ∆+ 16,

x′
3 = 1

2∆
3 − 7

2∆
2 + 7∆− 24,

x′
4 = 11− 1

6∆
3 +∆2 − 11

6 ∆.

(21)

Now we consider the following cases.

Case 1 If ∆ = 1, then x′
1 = −1, x′

2 = n+ 10, x′
3 = −20, x′

4 = 10.
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Case 2 If ∆ = 2, then x′
1 = 0, x′

2 = n+ 9, x′
3 = −20, x′

4 = 10.

Case 3 If ∆ = 3, then x′
1 = 0, x′

2 = n+ 10, x′
3 = −21, x′

4 = 10.

Case 4 If ∆ = 4, then x′
1 = 0, x′

2 = n+ 10, x′
3 = −20, x′

4 = 9.

Case 5 If ∆ = 6, then x′
1 = 4, x′

2 = n− 5, x′
3 = 0, x′

4 = 0.

Because x′
1, x′

2, x′
3 and x′

4 are nonnegative integers, we have ∆ = 6. Therefore, G′ is

only the graph H(n; q′, n′
1, n

′
2, n

′
3, n

′
4). According to Theorem 3.3, we can know that the graph

G′ = H(n; q′, n′
1, n

′
2, n

′
3, n

′
4) is isomorphic to the graph G = H(n; q, n1, n2, n3, n4). Thus, the

theorem is proved. �
For a graph, its Laplacian eigenvalues determine the eigenvalues of its complement [11], so

the complements of all unicyclic graphs H(n; q, n1, n2, n3, n4) are determined by their Laplacian

spectra.
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