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Abstract Let F be a family of meromorphic functions in D, and let ¥(# 0) be a meromorphic
function in D all of whose poles are simple. Suppose that, for each f € F, f # 0 in D. If for
each pair of functions {f, g} C F, f' and g’ share v in D, then F is normal in D.
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1. Introduction and main result

We use the following notations. Let C be complex plane and D be a domain in C. For
20 € Cand r > 0, A(zo,7) = {2||2 — 20| <7}, A(20,7) = {2]0 < |z — 20| <7}, A =A(0,1) and
T (z0,7) = {z| |z — 20| = r}. Let n(r, f) denote the number of poles of f(z) in A(0,r) (counting
multiplicity).

We write f, == f in D to indicate that the sequence {fn} converges to f in the spherical
metric uniformly on compact subsets of D and f,, = f in D if the convergence is in the Euclidean
metric.

A family F of functions meromorphic in D is normal in D if every sequence {f,} C F
contains a subsequence which converges spherically uniformly on compact subsets of D.

Let f, g and 9 be meromorphic functions in D. If f = 1 whenever g = ¢ and g = ¥
whenever f = in D, we say f and g share 1) IM (ignoring multiplicity) [1] in D, or we just say
f and g share ¢ in D for short.

In 1979, Gu [2] proved the following result.

Theorem A Let F be a family of meromorphic functions in D, and let k be a positive integer
and a be a nonzero constant. If for each f € F and z € D, f(z) # 0 and f*)(2) # a, then F is

normal in D.
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Yang [3] and Schwick [4] proved that Theorem A still holds if a is replaced by a holomorphic
function ¥(# 0) in Theorem A.
Xu [5] improved Theorem A by the ideas of shared values and obtained the following result.

Theorem B Let F be a family of meromorphic functions in D, and let (£ 0) be a holomorphic
function in D all of whose zeros are simple. Suppose that, for each f € F, f has only multiple
poles and f # 0. If for each pair of functions {f, g} C F, f' and ¢’ share ¢ in D, then F is
normal in D.

Xu did not know whether the conditions v has only simple zero and f has only multiple

poles in D are necessary or not in Theorem B.
It is natural to ask whether Theorem B still holds when t is meromorphic. In this paper,

we investigate the problem and obtain the following result.

Theorem 1.1 Let F be a family of meromorphic functions in D, and let ¥ (# 0) be a mero-
morphic function in D. Suppose that

(a) 1 has only simple poles in D,

(b) foreach feF, f#0in D,

(c) for each pair of functions {f, g} C F, f’ and ¢’ share ¢ in D.

Then F is normal in D.

Remark 1.2 The condition (a) is necessary. Let f,(z) = i, n=1,23,...,9(z) = —Z% and
D = A. Obviously, (b) and (c) are satisfied, but {f,(z)} fails to be normal at 0.

Remark 1.3 The condition (b) is necessary. Let f,(z) = e* + é, n=123,...,¥(z) =e*
1

and D = A. Obviously, (a) and (c) are satisfied. Since f,(0) = co and f,(—2) =e™n —1 =0
as n — 00, {fn(2)} fails to be normal at 0.

Remark 1.4 Obviously, the condition (c) is necessary.

2. Some lemmas
In order to prove our theorem, we need the following lemmas.

Lemma 2.1 ([6, Lemma 2]) Let F be a family of functions meromorphic in D, all of whose
zeros have multiplicity at least k, and suppose that there exists A > 1 such that |f*)(z)| < A
whenever f(z) = 0. Then if F is not normal at zy, there exist, for each 0 < a < k,

(a) points z,, z, — zo;

(b) functions f, € F; and

(c) positive numbers p, — 0
such that p;® fn(zn+pnC) = 9,(C) == ¢(¢) in C, where g is a nonconstant meromorphic function
in C, all of whose zeros have multiplicity at least k, such that g% () < g#(0) = kA + 1.

Lemma 2.2 ([7, Theorem 1]) Let f be a meromorphic function in C. If f(z) # 0 and f'(z) # 1
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for all z € C, then f is constant.

Lemma 2.3 ([8, Theorem 3]) Let ¢ # 0 be a meromorphic function in D and k € N. Let F be
a family of meromorphic functions in D, such that f and f*) — ) have no zeros and f and 1

have no common poles for each f € F. Then F is normal in D.

Lemma 2.4 ([5, Lemma 6]) Let F be a family of meromorphic functions in D, and let 1( 0) be
a holomorphic function in D. Suppose that, for each f € F, f # 0. If for each pair of functions
{f, g} C F, f" and ¢’ share + in D, then F is normal in D.

Lemma 2.5 ([9, Theorem 1)) Let f be a transcendental meromorphic function in C, all but
finitely many of whose zeros are multiple, and let R # 0 be a rational function. Then f' — R has

infinitely many zeros.

Lemma 2.6 Let k > 1 be an integer, and let Q(z) be a polynomial in C, where Q(0) # 0. Then

H'(z) = 1 has at least one non-zero solution, where H(z) = PolER

Proof Let
T(2) = kQ(2) + 2Q'(2) + 2" Q*(2), s =k + 2deg(Q(2)),

where deg(Q(z)) is the degree of Q(z). Obviously, s > 1, T'(z) is a polynomial of degree s, and
T(z) has exactly s zeros. Let zg be a zero of T'(z). Since T'(0) = kQ(0) # 0, we have zo#0. Now,

T(z0) = kQ(20) + 20Q' (20) + 26Q°(20) = 0, (1)
and hence .
_kQ(20) + 20Q'(20) _ 1
Z§+1Q2(ZO) 2’0.
Observing that H'(2p) :—%ﬁ(@gzo), we have zg is a non-zero solution of H'(z)=1. 0
E2Y 20 z

3. Proof of Theorem 1.1

Proof Since normality is a local property, it suffices to show that F is normal in a neighborhood
of each point in D. By Lemma 2.4, we only need to prove that F is normal in a neighborhood
of each pole of (z) in D.

Without loss of generality, we may assume D = A and, for z € A,

where p(0) =1 and (z) # 0,00 in A.

If feF, f(0)# oo, then there exists 6 > 0 such that f'(z) # ¥(z) in A(0,6). By the
conditions of Theorem 1.1, for each h € F, we have h'(2)#¢(z) in A(0,6). By Lemma 2.3, F is
normal in A(0, d).

Now, we consider f(0)=o0.

We claim that there exists 6 > 0 such that f/'(z) # ¥(z) in A’(0,4), and hence by the
conditions of Theorem 1.1, for each h € F, we have h/(z)#(z) in A’(0,6). Otherwise, f/(z) =
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¥(z) in A(0,6), and hence z = 0 is a multiple pole of ¥(z). A contradiction.

Next, we will prove F is normal at z =0. Suppose that F is not normal at z = 0. For
each h € F, we have that h'(z) #¢(z) and h(z)#0 in A’(0,d). By Lemma 2.4, F is normal in
A’(0,6). Then there exists a sequence of functions {f,(z)} C F such that

(2) fu(2) = f(2) in A'(0,5),

(b) no subsequence of {f,(z)} is normal at 0,
where f(z) is a meromorphic function or f(z) = oo in A(0, 9).

We claim that f(z) = 0 in A’(0,d). Suppose that f(z) # 0 in A’(0,d). Since f, # 0,

1 X 1

we have i = % in A’(0,9). Clearly for each n, 7o

the maximum principle and Weierstrass’ theorem, we get that {fi};l’o:1 converges to a certain

is holomorphic function in A(0,6). By

holomorphic function in A(0, ), and hence F is normal at z = 0. A contradiction.

Set {gn(2)} = {gn(2)] gn(2) = zfn(2),z € A(0,0),n = 1,2,3,...}. Since f,(z) # 0 in
A(0,6) and f,,(0) = oo for each n, we have g,(z) # 0 in A(0, ) for each n.

We first prove that {g,} is normal at 0. Suppose that {g,} is not normal at 0. By Lemma
2.1, there exist points z,, — 0, positive numbers p,, — 0 and a subsequence (we continue to call
{gn}) such that
gn(2n + pn()

X
G
o = G(0),

Gn(C) =

where G(¢) is a nonconstant meromorphic function and G(¢) # 0 in C.

We distinguish two cases.

Case I ;—" — 00. Obviously,

9n(2) = ful(2) + 25 (2),
G;(C) = g;L(Zn + pnC) = fu(zn + pnC) + (20 + PnC)flL(Zn + pn€)
_

Zn + PnC) frn(2n + pn() Pn ,
Pn Zn + pn( * (Zn + pnC)f"(Z" + p"()'

Observing that

Zn + PnC Pn Pn

in C, we have

(Zn + pnC)fr/L(Zn + PnC) - ‘P(Zn + pnC) = (Zn + PnC)ffz(Zn + pnC) - (zn + pnCW(Zn + pnC)
= (Zn + PnC)[fr/z(Zn + PnO - @/}(Zn + PWO]
=G0 -1
in C\E1, where E; = {z] G(z) = oo}. Clearly, ] (zn + pnC) — ¥(2n + pnC) # 0 for sufficiently
large n. By Hurwitz’s theorem, we have that either G'({) =1 =0or G'({) — 1 # 0 in C. If

G'(¢)—1=0in C, then G(¢) has at least one zero which contradicts G({) # 0. If G'(¢{) —1 # 0,
then by the fact that G(¢) # 0 and Lemma 2.2, G(¢) is constant in C. A contradiction.

Case I1 Z—" +4 oo. Taking a subsequence and renumbering, we may assume that Z—" — «, where
n n
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« is a finite complex number. Then

n(Zn + Pn — el
04 gn(pnQ) _ 9n(en 4 pnl(C—32)) Go(C— ) = G(C - a) = G(0).
Obviously, é({) # 0.

Set H,,(¢) = fn(pn¢). We have
_ Pann(PnOl _ !]n(PnC)l x. G() _
Hy(C) = o ¢ ¢ H(C) (2)

in C. Obviously, H(0) = oo and H(¢) # 0. By (2),

H,,(C) = pntb(pn€) = pu(f1(pn€) = ¥(pnC)) = H'(C) — % 3)

in C\Es, where Ey = {z| H(z) = oo}.

We claim that H'({) = % if and only if ¢ = 0. For sufficiently large n, f,,(pnC) — ¥ (pn() #0
in C\{0}. By Hurwitz’s theorem and (3), we have that either H'({) = % or H'(¢) # % in C\{0}.
If H(¢) = % in C\{0}, then H(¢) is a multi-valued function. A contradiction. If H'({) # % in
C\{0}, then H'(¢) = ¢ if and only if ¢ = 0.

Since H'(¢) = % if and only if ¢ = 0 and H(¢) # 0, by Lemma 2.5, H({) is a rational
function. Since H(0) = oo and H(¢) # 0 in C, we have H(() = ﬁ(c), where k > 1 is an integer,
Q(z) is a polynomial in C and Q(0) # 0. By Lemma 2.6, H'(z) = % has at least one non-zero
solution, which results in a contradiction. Now, we have shown that {g,} is normal at 0.

We claim that 0 is a pole of order 2 of f/(z) — 9(z) for sufficiently large n, and hence
fl(z) —¥(z) # 0 in A(0,9) for sufficiently large n. Since {g,} is normal at 0 and g,(z) =

z2fn(2) = 2f(2) =0 in A’(0,0), we have ¢,,(z) = 0 in A(0, ), and then
gn(0) = 0 as n — oo. (4)
By the fact that f,,(0) = co, we have
9n(0) = 2 fn(2)]2=0 # 0. (5)

By (4) and (5), we have z=0 is a simple pole of f,(z) for sufficiently large n. Obviously, z=0
is a pole of order 2 of f/(z)—1(z) for sufficiently large n.

Now, we have

1) = () = {22y ) = D —0nla) _ 2B) , _pl2)

on I'(0, %) By argument principle, for sufficiently large n,

5 1 —né'z—z:né L 0 e(®)
n(§7m) (27fn<) 1/}( )) (277M) ( )

On the one hand, since g,(z) = zf,(z) = 0 in A(0,d), we have, for sufficiently large n, f,(z)
has only one simple pole in A(0,§/2), and then for sufficiently large n,

0 1 o () =092 — —
n(?m)*”(ivfn(z) ( )) 0-2 2.
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On the other hand,

1) z
)—n(§.—@(z)):0—1:—1.

"3 e
This leads to a contradiction. This completes the proof of the theorem. [
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