Journal of Mathematical Research with Applications Sept., 2014, Vol. 34, No. 5, pp. 543–548 DOI:10.3770/j.issn:2095-2651.2014.05.005 Http://jmre.dlut.edu.cn

Normality Criteria of Meromorphic Functions Sharing a Meromorphic Function

Pai YANG^{1,*}, Xue WANG², Xuecheng PANG³

1. College of Applied Mathematics, Chengdu University of Information Technology,

Sichuan 610225, P. R. China;

2. School of Mathematics and Finance, Fuyang Teachers College, Anhui 236041, P. R. China;

3. Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China

Abstract Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\neq 0)$ be a meromorphic function in D all of whose poles are simple. Suppose that, for each $f \in \mathcal{F}$, $f \neq 0$ in D. If for each pair of functions $\{f, g\} \subset \mathcal{F}$, f' and g' share ψ in D, then \mathcal{F} is normal in D.

Keywords meromorphic function; shared values; normality criteria.

MR(2010) Subject Classification 30D35; 30D45

1. Introduction and main result

We use the following notations. Let \mathbb{C} be complex plane and D be a domain in \mathbb{C} . For $z_0 \in \mathbb{C}$ and r > 0, $\Delta(z_0, r) = \{z | |z - z_0| < r\}$, $\Delta'(z_0, r) = \{z | 0 < |z - z_0| < r\}$, $\Delta = \Delta(0, 1)$ and $\Gamma(z_0, r) = \{z | |z - z_0| = r\}$. Let n(r, f) denote the number of poles of f(z) in $\Delta(0, r)$ (counting multiplicity).

We write $f_n \stackrel{\chi}{\Longrightarrow} f$ in D to indicate that the sequence $\{f_n\}$ converges to f in the spherical metric uniformly on compact subsets of D and $f_n \Rightarrow f$ in D if the convergence is in the Euclidean metric.

A family \mathcal{F} of functions meromorphic in D is normal in D if every sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence which converges spherically uniformly on compact subsets of D.

Let f, g and ψ be meromorphic functions in D. If $f = \psi$ whenever $g = \psi$ and $g = \psi$ whenever $f = \psi$ in D, we say f and g share ψ IM (ignoring multiplicity) [1] in D, or we just say f and g share ψ in D for short.

In 1979, Gu [2] proved the following result.

Theorem A Let \mathcal{F} be a family of meromorphic functions in D, and let k be a positive integer and a be a nonzero constant. If for each $f \in \mathcal{F}$ and $z \in D$, $f(z) \neq 0$ and $f^{(k)}(z) \neq a$, then \mathcal{F} is normal in D.

Received August 28, 2013; Accepted February 24, 2014

Supported by the National Natural Science Foundation of China (Grant Nos. 11371139; 11261029; 11001081) and the Scientific Research Foundation of CUIT (Grant No. KYTZ201403).

^{*} Corresponding author

E-mail address: yangpai@cuit.edu.cn (Pai YANG); fywxue@163.com (Xue WANG); xcpang@math.ecnu.edu.cn (Xuecheng PANG)

Yang [3] and Schwick [4] proved that Theorem A still holds if a is replaced by a holomorphic function $\Psi(\neq 0)$ in Theorem A.

Xu [5] improved Theorem A by the ideas of shared values and obtained the following result.

Theorem B Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi (\neq 0)$ be a holomorphic function in D all of whose zeros are simple. Suppose that, for each $f \in \mathcal{F}$, f has only multiple poles and $f \neq 0$. If for each pair of functions $\{f, g\} \subset \mathcal{F}$, f' and g' share ψ in D, then \mathcal{F} is normal in D.

Xu did not know whether the conditions ψ has only simple zero and f has only multiple poles in D are necessary or not in Theorem B.

It is natural to ask whether Theorem B still holds when ψ is meromorphic. In this paper, we investigate the problem and obtain the following result.

Theorem 1.1 Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\neq 0)$ be a meromorphic function in D. Suppose that

- (a) ψ has only simple poles in D,
- (b) for each $f \in \mathcal{F}$, $f \neq 0$ in D,
- (c) for each pair of functions $\{f, g\} \subset \mathcal{F}$, f' and g' share ψ in D.

Then \mathcal{F} is normal in D.

Remark 1.2 The condition (a) is necessary. Let $f_n(z) = \frac{1}{nz}$, $n = 1, 2, 3, ..., \psi(z) = -\frac{1}{z^2}$ and $D = \Delta$. Obviously, (b) and (c) are satisfied, but $\{f_n(z)\}$ fails to be normal at 0.

Remark 1.3 The condition (b) is necessary. Let $f_n(z) = e^z + \frac{1}{nz}$, $n = 1, 2, 3, \ldots, \psi(z) = e^z$ and $D = \Delta$. Obviously, (a) and (c) are satisfied. Since $f_n(0) = \infty$ and $f_n(-\frac{1}{n}) = e^{-\frac{1}{n}} - 1 \to 0$ as $n \to \infty$, $\{f_n(z)\}$ fails to be normal at 0.

Remark 1.4 Obviously, the condition (c) is necessary.

2. Some lemmas

In order to prove our theorem, we need the following lemmas.

Lemma 2.1 ([6, Lemma 2]) Let \mathcal{F} be a family of functions meromorphic in D, all of whose zeros have multiplicity at least k, and suppose that there exists $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever f(z) = 0. Then if \mathcal{F} is not normal at z_0 , there exist, for each $0 \le \alpha \le k$,

- (a) points $z_n, z_n \to z_0$;
- (b) functions $f_n \in \mathcal{F}$; and
- (c) positive numbers $\rho_n \to 0$

such that $\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \stackrel{\chi}{\Longrightarrow} g(\zeta)$ in \mathbb{C} , where g is a nonconstant meromorphic function in \mathbb{C} , all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$.

Lemma 2.2 ([7, Theorem 1]) Let f be a meromorphic function in \mathbb{C} . If $f(z) \neq 0$ and $f'(z) \neq 1$

for all $z \in \mathbb{C}$, then f is constant.

Lemma 2.3 ([8, Theorem 3]) Let $\psi \neq 0$ be a meromorphic function in D and $k \in \mathbb{N}$. Let \mathcal{F} be a family of meromorphic functions in D, such that f and $f^{(k)} - \psi$ have no zeros and f and ψ have no common poles for each $f \in \mathcal{F}$. Then \mathcal{F} is normal in D.

Lemma 2.4 ([5, Lemma 6]) Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\neq 0)$ be a holomorphic function in D. Suppose that, for each $f \in \mathcal{F}$, $f \neq 0$. If for each pair of functions $\{f, g\} \subset \mathcal{F}$, f' and g' share ψ in D, then \mathcal{F} is normal in D.

Lemma 2.5 ([9, Theorem 1]) Let f be a transcendental meromorphic function in \mathbb{C} , all but finitely many of whose zeros are multiple, and let $R \neq 0$ be a rational function. Then f' - R has infinitely many zeros.

Lemma 2.6 Let $k \ge 1$ be an integer, and let Q(z) be a polynomial in \mathbb{C} , where $Q(0) \ne 0$. Then $H'(z) = \frac{1}{z}$ has at least one non-zero solution, where $H(z) = \frac{1}{z^k Q(z)}$.

Proof Let

$$T(z) = kQ(z) + zQ'(z) + z^k Q^2(z), \quad s = k + 2\deg(Q(z)),$$

where deg(Q(z)) is the degree of Q(z). Obviously, $s \ge 1$, T(z) is a polynomial of degree s, and T(z) has exactly s zeros. Let z_0 be a zero of T(z). Since $T(0) = kQ(0) \ne 0$, we have $z_0 \ne 0$. Now,

$$T(z_0) = kQ(z_0) + z_0Q'(z_0) + z_0^k Q^2(z_0) = 0,$$
(1)

and hence

$$-\frac{kQ(z_0) + z_0Q'(z_0)}{z_0^{k+1}Q^2(z_0)} = \frac{1}{z_0}.$$

Observing that $H'(z_0) = -\frac{kQ(z_0) + z_0Q'(z_0)}{z_0^{k+1}Q^2(z_0)}$, we have z_0 is a non-zero solution of $H'(z) = \frac{1}{z}$. \Box

3. Proof of Theorem 1.1

Proof Since normality is a local property, it suffices to show that \mathcal{F} is normal in a neighborhood of each point in D. By Lemma 2.4, we only need to prove that \mathcal{F} is normal in a neighborhood of each pole of $\psi(z)$ in D.

Without loss of generality, we may assume $D = \Delta$ and, for $z \in \Delta$,

$$\psi(z) = \frac{\varphi(z)}{z},$$

where $\varphi(0) = 1$ and $\varphi(z) \neq 0, \infty$ in Δ .

If $f \in \mathcal{F}$, $f(0) \neq \infty$, then there exists $\delta > 0$ such that $f'(z) \neq \psi(z)$ in $\Delta(0, \delta)$. By the conditions of Theorem 1.1, for each $h \in \mathcal{F}$, we have $h'(z) \neq \psi(z)$ in $\Delta(0, \delta)$. By Lemma 2.3, \mathcal{F} is normal in $\Delta(0, \delta)$.

Now, we consider $f(0) = \infty$.

We claim that there exists $\delta > 0$ such that $f'(z) \neq \psi(z)$ in $\Delta'(0, \delta)$, and hence by the conditions of Theorem 1.1, for each $h \in \mathcal{F}$, we have $h'(z) \neq \psi(z)$ in $\Delta'(0, \delta)$. Otherwise, $f'(z) \equiv \psi(z)$

 $\psi(z)$ in $\Delta(0, \delta)$, and hence z = 0 is a multiple pole of $\psi(z)$. A contradiction.

Next, we will prove \mathcal{F} is normal at z = 0. Suppose that \mathcal{F} is not normal at z = 0. For each $h \in \mathcal{F}$, we have that $h'(z) \neq \psi(z)$ and $h(z) \neq 0$ in $\Delta'(0, \delta)$. By Lemma 2.4, \mathcal{F} is normal in $\Delta'(0, \delta)$. Then there exists a sequence of functions $\{f_n(z)\} \subset \mathcal{F}$ such that

(a) $f_n(z) \stackrel{\chi}{\Longrightarrow} f(z)$ in $\Delta'(0, \delta)$,

(b) no subsequence of $\{f_n(z)\}$ is normal at 0,

where f(z) is a meromorphic function or $f(z) \equiv \infty$ in $\Delta'(0, \delta)$.

We claim that $f(z) \equiv 0$ in $\Delta'(0, \delta)$. Suppose that $f(z) \neq 0$ in $\Delta'(0, \delta)$. Since $f_n \neq 0$, we have $\frac{1}{f_n} \xrightarrow{\chi} \frac{1}{f}$ in $\Delta'(0, \delta)$. Clearly for each n, $\frac{1}{f_n}$ is holomorphic function in $\Delta(0, \delta)$. By the maximum principle and Weierstrass' theorem, we get that $\{\frac{1}{f_n}\}_{n=1}^{\infty}$ converges to a certain holomorphic function in $\Delta(0, \delta)$, and hence \mathcal{F} is normal at z = 0. A contradiction.

Set $\{g_n(z)\} = \{g_n(z) | g_n(z) = zf_n(z), z \in \Delta(0, \delta), n = 1, 2, 3, ...\}$. Since $f_n(z) \neq 0$ in $\Delta(0, \delta)$ and $f_n(0) = \infty$ for each n, we have $g_n(z) \neq 0$ in $\Delta(0, \delta)$ for each n.

We first prove that $\{g_n\}$ is normal at 0. Suppose that $\{g_n\}$ is not normal at 0. By Lemma 2.1, there exist points $z_n \to 0$, positive numbers $\rho_n \to 0$ and a subsequence (we continue to call $\{g_n\}$) such that

$$G_n(\zeta) = \frac{g_n(z_n + \rho_n \zeta)}{\rho_n} \xrightarrow{\chi} G(\zeta),$$

where $G(\zeta)$ is a nonconstant meromorphic function and $G(\zeta) \neq 0$ in \mathbb{C} .

We distinguish two cases.

Case I $\frac{z_n}{\rho_n} \to \infty$. Obviously,

$$g'_{n}(z) = f_{n}(z) + zf'_{n}(z),$$

$$G'_{n}(\zeta) = g'_{n}(z_{n} + \rho_{n}\zeta) = f_{n}(z_{n} + \rho_{n}\zeta) + (z_{n} + \rho_{n}\zeta)f'_{n}(z_{n} + \rho_{n}\zeta)$$

$$= \frac{(z_{n} + \rho_{n}\zeta)f_{n}(z_{n} + \rho_{n}\zeta)}{\rho_{n}}\frac{\rho_{n}}{z_{n} + \rho_{n}\zeta} + (z_{n} + \rho_{n}\zeta)f'_{n}(z_{n} + \rho_{n}\zeta).$$

Observing that

$$\frac{\rho_n}{z_n + \rho_n \zeta} \Rightarrow 0, \quad \frac{(z_n + \rho_n \zeta) f_n(z_n + \rho_n \zeta)}{\rho_n} = \frac{g_n(z_n + \rho_n \zeta)}{\rho_n} \xrightarrow{\chi} G(\zeta)$$

in \mathbb{C} , we have

$$(z_n + \rho_n \zeta) f'_n(z_n + \rho_n \zeta) - \varphi(z_n + \rho_n \zeta) = (z_n + \rho_n \zeta) f'_n(z_n + \rho_n \zeta) - (z_n + \rho_n \zeta) \psi(z_n + \rho_n \zeta)$$
$$= (z_n + \rho_n \zeta) [f'_n(z_n + \rho_n \zeta) - \psi(z_n + \rho_n \zeta)]$$
$$\Rightarrow G'(\zeta) - 1$$

in $\mathbb{C}\setminus E_1$, where $E_1 = \{z | G(z) = \infty\}$. Clearly, $f'_n(z_n + \rho_n \zeta) - \psi(z_n + \rho_n \zeta) \neq 0$ for sufficiently large *n*. By Hurwitz's theorem, we have that either $G'(\zeta) - 1 \equiv 0$ or $G'(\zeta) - 1 \neq 0$ in \mathbb{C} . If $G'(\zeta) - 1 \equiv 0$ in \mathbb{C} , then $G(\zeta)$ has at least one zero which contradicts $G(\zeta) \neq 0$. If $G'(\zeta) - 1 \neq 0$, then by the fact that $G(\zeta) \neq 0$ and Lemma 2.2, $G(\zeta)$ is constant in \mathbb{C} . A contradiction.

Case II $\frac{z_n}{\rho_n} \not\to \infty$. Taking a subsequence and renumbering, we may assume that $\frac{z_n}{\rho_n} \to \alpha$, where

 α is a finite complex number. Then

$$0 \neq \frac{g_n(\rho_n\zeta)}{\rho_n} = \frac{g_n(z_n + \rho_n(\zeta - \frac{z_n}{\rho_n}))}{\rho_n} = G_n(\zeta - \frac{z_n}{\rho_n}) \Rightarrow G(\zeta - \alpha) = \widetilde{G}(\zeta)$$

Obviously, $\widetilde{G}(\zeta) \neq 0$.

Set $H_n(\zeta) = f_n(\rho_n \zeta)$. We have

$$H_n(\zeta) = \frac{\rho_n \zeta f_n(\rho_n \zeta)}{\rho_n} \frac{1}{\zeta} = \frac{g_n(\rho_n \zeta)}{\rho_n} \frac{1}{\zeta} \xrightarrow{\simeq} \frac{\hat{G}(\zeta)}{\zeta} = H(\zeta)$$
(2)

in \mathbb{C} . Obviously, $H(0) = \infty$ and $H(\zeta) \neq 0$. By (2),

$$H'_{n}(\zeta) - \rho_{n}\psi(\rho_{n}\zeta) = \rho_{n}(f'_{n}(\rho_{n}\zeta) - \psi(\rho_{n}\zeta)) \Rightarrow H'(\zeta) - \frac{1}{\zeta}$$
(3)

in $\mathbb{C}\setminus E_2$, where $E_2 = \{z | H(z) = \infty\}$.

We claim that $H'(\zeta) = \frac{1}{\zeta}$ if and only if $\zeta = 0$. For sufficiently large n, $f_n(\rho_n\zeta) - \psi(\rho_n\zeta) \neq 0$ in $\mathbb{C}\setminus\{0\}$. By Hurwitz's theorem and (3), we have that either $H'(\zeta) \equiv \frac{1}{\zeta}$ or $H'(\zeta) \neq \frac{1}{\zeta}$ in $\mathbb{C}\setminus\{0\}$. If $H'(\zeta) \equiv \frac{1}{\zeta}$ in $\mathbb{C}\setminus\{0\}$, then $H(\zeta)$ is a multi-valued function. A contradiction. If $H'(\zeta) \neq \frac{1}{\zeta}$ in $\mathbb{C}\setminus\{0\}$, then $H'(\zeta) = \frac{1}{\zeta}$ if and only if $\zeta = 0$.

Since $H'(\zeta) = \frac{1}{\zeta}$ if and only if $\zeta = 0$ and $H(\zeta) \neq 0$, by Lemma 2.5, $H(\zeta)$ is a rational function. Since $H(0) = \infty$ and $H(\zeta) \neq 0$ in \mathbb{C} , we have $H(\zeta) = \frac{1}{\zeta^k Q(\zeta)}$, where $k \geq 1$ is an integer, Q(z) is a polynomial in \mathbb{C} and $Q(0) \neq 0$. By Lemma 2.6, $H'(z) = \frac{1}{z}$ has at least one non-zero solution, which results in a contradiction. Now, we have shown that $\{g_n\}$ is normal at 0.

We claim that 0 is a pole of order 2 of $f'_n(z) - \psi(z)$ for sufficiently large n, and hence $f'_n(z) - \psi(z) \neq 0$ in $\Delta(0, \delta)$ for sufficiently large n. Since $\{g_n\}$ is normal at 0 and $g_n(z) = zf_n(z) \Rightarrow zf(z) \equiv 0$ in $\Delta'(0, \delta)$, we have $g_n(z) \Rightarrow 0$ in $\Delta(0, \delta)$, and then

$$g_n(0) \to 0 \text{ as } n \to \infty.$$
 (4)

By the fact that $f_n(0) = \infty$, we have

$$g_n(0) = z f_n(z)|_{z=0} \neq 0.$$
(5)

By (4) and (5), we have z=0 is a simple pole of $f_n(z)$ for sufficiently large n. Obviously, z=0 is a pole of order 2 of $f'_n(z) - \psi(z)$ for sufficiently large n.

Now, we have

$$f'_{n}(z) - \psi(z) = \left\{\frac{g_{n}(z)}{z}\right\}' - \psi(z) = \frac{zg'_{n}(z) - g_{n}(z)}{z^{2}} - \frac{\varphi(z)}{z} \Rightarrow -\frac{\varphi(z)}{z}$$

on $\Gamma(0, \frac{\delta}{2})$. By argument principle, for sufficiently large n,

$$n\left(\frac{\delta}{2}, \frac{1}{f_n'(z) - \psi(z)}\right) - n\left(\frac{\delta}{2}, f_n'(z) - \psi(z)\right) = n\left(\frac{\delta}{2}, \frac{1}{-\frac{\varphi(z)}{z}}\right) - n\left(\frac{\delta}{2}, -\frac{\varphi(z)}{z}\right).$$

On the one hand, since $g_n(z) = zf_n(z) \Rightarrow 0$ in $\Delta(0, \delta)$, we have, for sufficiently large n, $f_n(z)$ has only one simple pole in $\Delta(0, \delta/2)$, and then for sufficiently large n,

$$n\left(\frac{\delta}{2}, \frac{1}{f'_n(z) - \psi(z)}\right) - n\left(\frac{\delta}{2}, f'_n(z) - \psi(z)\right) = 0 - 2 = -2.$$

On the other hand,

$$n\left(\frac{\delta}{2}, \frac{1}{-\frac{\varphi(z)}{z}}\right) - n\left(\frac{\delta}{2}, -\frac{\varphi(z)}{z}\right) = 0 - 1 = -1.$$

This leads to a contradiction. This completes the proof of the theorem. \Box

Acknowledgements We thank the referees for their time and comments.

References

- [1] Chungchun YANG, Hongxun YI. Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers Group, Dordrecht, 2003.
- [2] Yongxing GU. A criterion for normality of families of meromorphic functions. Sci. Sinica, 1979, 1: 267–274. (in Chinese)
- [3] Le YANG. Normality for families of meromorphic functions. Sci. Sinica Ser. A, 1986, 29(12): 1263–1274.
- [4] W. SCHWICK. Exceptional functions and normality. Bull. Lond. Math. Soc., 1997, **29**(4): 425–432.
- [5] Yan XU. On a result due to Yang and Schwick. Sci. Sin. Math., 2010, 40(5): 421-428. (in Chinese)
- [6] Xuecheng PANG, Lawrence ZALCMAN. Normal families and shared values. Bull. Lond. Math. Soc., 2000, 32(3): 325–331.
- [7] W. K. HAYMAN. Picard values of meromorphic functions and their derivatives. Ann. Math., 1959, 70(2): 9–42.
- [8] W. SCHWICK. On Hayman's alternative for families of meromorphic functions. Complex Var. Elliptic Equ., 1997, 32(1): 51–57.
- [9] Xuecheng PANG, S. NEVO, L. ZALCMAN. Derivatives of meromorphic functions with multiple zeros and rational functions. Comput. Methods Funct. Theory, 2008, 8(2): 483–491.

548