Normality Criteria of Meromorphic Functions Sharing a Meromorphic Function

Pai YANG ${ }^{1, *}$, Xue WANG ${ }^{2}$, Xuecheng PANG ${ }^{3}$

1. College of Applied Mathematics, Chengdu University of Information Technology, Sichuan 610225, P. R. China;
2. School of Mathematics and Finance, Fuyang Teachers College, Anhui 236041, P. R. China;
3. Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China

Abstract

Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\neq 0)$ be a meromorphic function in D all of whose poles are simple. Suppose that, for each $f \in \mathcal{F}, f \neq 0$ in D. If for each pair of functions $\{f, g\} \subset \mathcal{F}, f^{\prime}$ and g^{\prime} share ψ in D, then \mathcal{F} is normal in D.

Keywords meromorphic function; shared values; normality criteria.
MR(2010) Subject Classification 30D35; 30D45

1. Introduction and main result

We use the following notations. Let \mathbb{C} be complex plane and D be a domain in \mathbb{C}. For $z_{0} \in \mathbb{C}$ and $r>0, \Delta\left(z_{0}, r\right)=\left\{z| | z-z_{0} \mid<r\right\}, \Delta^{\prime}\left(z_{0}, r\right)=\left\{z\left|0<\left|z-z_{0}\right|<r\right\}, \Delta=\Delta(0,1)\right.$ and $\Gamma\left(z_{0}, r\right)=\left\{z| | z-z_{0} \mid=r\right\}$. Let $n(r, f)$ denote the number of poles of $f(z)$ in $\Delta(0, r)$ (counting multiplicity).

We write $f_{n} \xrightarrow{\chi} f$ in D to indicate that the sequence $\left\{f_{n}\right\}$ converges to f in the spherical metric uniformly on compact subsets of D and $f_{n} \Rightarrow f$ in D if the convergence is in the Euclidean metric.

A family \mathcal{F} of functions meromorphic in D is normal in D if every sequence $\left\{f_{n}\right\} \subset \mathcal{F}$ contains a subsequence which converges spherically uniformly on compact subsets of D.

Let f, g and ψ be meromorphic functions in D. If $f=\psi$ whenever $g=\psi$ and $g=\psi$ whenever $f=\psi$ in D, we say f and g share ψ IM (ignoring multiplicity) [1] in D, or we just say f and g share ψ in D for short.

In 1979, Gu [2] proved the following result.
Theorem A Let \mathcal{F} be a family of meromorphic functions in D, and let k be a positive integer and a be a nonzero constant. If for each $f \in \mathcal{F}$ and $z \in D, f(z) \neq 0$ and $f^{(k)}(z) \neq a$, then \mathcal{F} is normal in D.

[^0]Yang [3] and Schwick [4] proved that Theorem A still holds if a is replaced by a holomorphic function $\Psi(\not \equiv 0)$ in Theorem A.

Xu [5] improved Theorem A by the ideas of shared values and obtained the following result.
Theorem B Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\not \equiv 0)$ be a holomorphic function in D all of whose zeros are simple. Suppose that, for each $f \in \mathcal{F}, f$ has only multiple poles and $f \neq 0$. If for each pair of functions $\{f, g\} \subset \mathcal{F}, f^{\prime}$ and g^{\prime} share ψ in D, then \mathcal{F} is normal in D.

Xu did not know whether the conditions ψ has only simple zero and f has only multiple poles in D are necessary or not in Theorem B.

It is natural to ask whether Theorem B still holds when ψ is meromorphic. In this paper, we investigate the problem and obtain the following result.

Theorem 1.1 Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\neq 0)$ be a meromorphic function in D. Suppose that
(a) ψ has only simple poles in D,
(b) for each $f \in \mathcal{F}, f \neq 0$ in D,
(c) for each pair of functions $\{f, g\} \subset \mathcal{F}, f^{\prime}$ and g^{\prime} share ψ in D.

Then \mathcal{F} is normal in D.
Remark 1.2 The condition (a) is necessary. Let $f_{n}(z)=\frac{1}{n z}, n=1,2,3, \ldots, \psi(z)=-\frac{1}{z^{2}}$ and $D=\Delta$. Obviously, (b) and (c) are satisfied, but $\left\{f_{n}(z)\right\}$ fails to be normal at 0 .

Remark 1.3 The condition (b) is necessary. Let $f_{n}(z)=e^{z}+\frac{1}{n z}, n=1,2,3, \ldots, \psi(z)=e^{z}$ and $D=\Delta$. Obviously, (a) and (c) are satisfied. Since $f_{n}(0)=\infty$ and $f_{n}\left(-\frac{1}{n}\right)=e^{-\frac{1}{n}}-1 \rightarrow 0$ as $n \rightarrow \infty,\left\{f_{n}(z)\right\}$ fails to be normal at 0 .

Remark 1.4 Obviously, the condition (c) is necessary.

2. Some lemmas

In order to prove our theorem, we need the following lemmas.
Lemma 2.1 ([6, Lemma 2]) Let \mathcal{F} be a family of functions meromorphic in D, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. Then if \mathcal{F} is not normal at z_{0}, there exist, for each $0 \leq \alpha \leq k$,
(a) points $z_{n}, z_{n} \rightarrow z_{0}$;
(b) functions $f_{n} \in \mathcal{F}$; and
(c) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \xrightarrow{\chi} g(\zeta)$ in \mathbb{C}, where g is a nonconstant meromorphic function in \mathbb{C}, all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$.

Lemma $2.2\left(\left[7\right.\right.$, Theorem 1]) Let f be a meromorphic function in \mathbb{C}. If $f(z) \neq 0$ and $f^{\prime}(z) \neq 1$
for all $z \in \mathbb{C}$, then f is constant.
Lemma 2.3 ([8, Theorem 3]) Let $\psi \not \equiv 0$ be a meromorphic function in D and $k \in \mathbb{N}$. Let \mathcal{F} be a family of meromorphic functions in D, such that f and $f^{(k)}-\psi$ have no zeros and f and ψ have no common poles for each $f \in \mathcal{F}$. Then \mathcal{F} is normal in D.

Lemma 2.4 ([5, Lemma 6]) Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\neq 0)$ be a holomorphic function in D. Suppose that, for each $f \in \mathcal{F}, f \neq 0$. If for each pair of functions $\{f, g\} \subset \mathcal{F}, f^{\prime}$ and g^{\prime} share ψ in D, then \mathcal{F} is normal in D.

Lemma 2.5 ([9, Theorem 1]) Let f be a transcendental meromorphic function in \mathbb{C}, all but finitely many of whose zeros are multiple, and let $R \not \equiv 0$ be a rational function. Then $f^{\prime}-R$ has infinitely many zeros.

Lemma 2.6 Let $k \geq 1$ be an integer, and let $Q(z)$ be a polynomial in \mathbb{C}, where $Q(0) \neq 0$. Then $H^{\prime}(z)=\frac{1}{z}$ has at least one non-zero solution, where $H(z)=\frac{1}{z^{k} Q(z)}$.

Proof Let

$$
T(z)=k Q(z)+z Q^{\prime}(z)+z^{k} Q^{2}(z), \quad s=k+2 \operatorname{deg}(Q(z))
$$

where $\operatorname{deg}(Q(z))$ is the degree of $Q(z)$. Obviously, $s \geq 1, T(z)$ is a polynomial of degree s, and $T(z)$ has exactly s zeros. Let z_{0} be a zero of $T(z)$. Since $T(0)=k Q(0) \neq 0$, we have $z_{0} \neq 0$. Now,

$$
\begin{equation*}
T\left(z_{0}\right)=k Q\left(z_{0}\right)+z_{0} Q^{\prime}\left(z_{0}\right)+z_{0}^{k} Q^{2}\left(z_{0}\right)=0 \tag{1}
\end{equation*}
$$

and hence

$$
-\frac{k Q\left(z_{0}\right)+z_{0} Q^{\prime}\left(z_{0}\right)}{z_{0}^{k+1} Q^{2}\left(z_{0}\right)}=\frac{1}{z_{0}}
$$

Observing that $H^{\prime}\left(z_{0}\right)=-\frac{k Q\left(z_{0}\right)+z_{0} Q^{\prime}\left(z_{0}\right)}{z_{0}^{k+1} Q^{2}\left(z_{0}\right)}$, we have z_{0} is a non-zero solution of $H^{\prime}(z)=\frac{1}{z}$.

3. Proof of Theorem 1.1

Proof Since normality is a local property, it suffices to show that \mathcal{F} is normal in a neighborhood of each point in D. By Lemma 2.4, we only need to prove that \mathcal{F} is normal in a neighborhood of each pole of $\psi(z)$ in D.

Without loss of generality, we may assume $D=\Delta$ and, for $z \in \Delta$,

$$
\psi(z)=\frac{\varphi(z)}{z}
$$

where $\varphi(0)=1$ and $\varphi(z) \neq 0, \infty$ in Δ.
If $f \in \mathcal{F}, f(0) \neq \infty$, then there exists $\delta>0$ such that $f^{\prime}(z) \neq \psi(z)$ in $\Delta(0, \delta)$. By the conditions of Theorem 1.1, for each $h \in \mathcal{F}$, we have $h^{\prime}(z) \neq \psi(z)$ in $\Delta(0, \delta)$. By Lemma 2.3, \mathcal{F} is normal in $\Delta(0, \delta)$.

Now, we consider $f(0)=\infty$.
We claim that there exists $\delta>0$ such that $f^{\prime}(z) \neq \psi(z)$ in $\Delta^{\prime}(0, \delta)$, and hence by the conditions of Theorem 1.1, for each $h \in \mathcal{F}$, we have $h^{\prime}(z) \neq \psi(z)$ in $\Delta^{\prime}(0, \delta)$. Otherwise, $f^{\prime}(z) \equiv$
$\psi(z)$ in $\Delta(0, \delta)$, and hence $z=0$ is a multiple pole of $\psi(z)$. A contradiction.
Next, we will prove \mathcal{F} is normal at $z=0$. Suppose that \mathcal{F} is not normal at $z=0$. For each $h \in \mathcal{F}$, we have that $h^{\prime}(z) \neq \psi(z)$ and $h(z) \neq 0$ in $\Delta^{\prime}(0, \delta)$. By Lemma 2.4, \mathcal{F} is normal in $\Delta^{\prime}(0, \delta)$. Then there exists a sequence of functions $\left\{f_{n}(z)\right\} \subset \mathcal{F}$ such that
(a) $f_{n}(z) \xrightarrow{\chi} f(z)$ in $\Delta^{\prime}(0, \delta)$,
(b) no subsequence of $\left\{f_{n}(z)\right\}$ is normal at 0 , where $f(z)$ is a meromorphic function or $f(z) \equiv \infty$ in $\Delta^{\prime}(0, \delta)$.

We claim that $f(z) \equiv 0$ in $\Delta^{\prime}(0, \delta)$. Suppose that $f(z) \not \equiv 0$ in $\Delta^{\prime}(0, \delta)$. Since $f_{n} \neq 0$, we have $\frac{1}{f_{n}} \xrightarrow{\chi} \frac{1}{f}$ in $\Delta^{\prime}(0, \delta)$. Clearly for each $n, \frac{1}{f_{n}}$ is holomorphic function in $\Delta(0, \delta)$. By the maximum principle and Weierstrass' theorem, we get that $\left\{\frac{1}{f_{n}}\right\}_{n=1}^{\infty}$ converges to a certain holomorphic function in $\Delta(0, \delta)$, and hence \mathcal{F} is normal at $z=0$. A contradiction.

Set $\left\{g_{n}(z)\right\}=\left\{g_{n}(z) \mid g_{n}(z)=z f_{n}(z), z \in \Delta(0, \delta), n=1,2,3, \ldots\right\}$. Since $f_{n}(z) \neq 0$ in $\Delta(0, \delta)$ and $f_{n}(0)=\infty$ for each n, we have $g_{n}(z) \neq 0$ in $\Delta(0, \delta)$ for each n.

We first prove that $\left\{g_{n}\right\}$ is normal at 0 . Suppose that $\left\{g_{n}\right\}$ is not normal at 0 . By Lemma 2.1, there exist points $z_{n} \rightarrow 0$, positive numbers $\rho_{n} \rightarrow 0$ and a subsequence (we continue to call $\left.\left\{g_{n}\right\}\right)$ such that

$$
G_{n}(\zeta)=\frac{g_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}} \xlongequal{\chi} G(\zeta)
$$

where $G(\zeta)$ is a nonconstant meromorphic function and $G(\zeta) \neq 0$ in \mathbb{C}.
We distinguish two cases.
Case I $\frac{z_{n}}{\rho_{n}} \rightarrow \infty$. Obviously,

$$
\begin{aligned}
g_{n}^{\prime}(z) & =f_{n}(z)+z f_{n}^{\prime}(z) \\
G_{n}^{\prime}(\zeta) & =g_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)=f_{n}\left(z_{n}+\rho_{n} \zeta\right)+\left(z_{n}+\rho_{n} \zeta\right) f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right) \\
& =\frac{\left(z_{n}+\rho_{n} \zeta\right) f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}} \frac{\rho_{n}}{z_{n}+\rho_{n} \zeta}+\left(z_{n}+\rho_{n} \zeta\right) f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)
\end{aligned}
$$

Observing that

$$
\frac{\rho_{n}}{z_{n}+\rho_{n} \zeta} \Rightarrow 0, \quad \frac{\left(z_{n}+\rho_{n} \zeta\right) f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}}=\frac{g_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}} \xlongequal{\chi} G(\zeta)
$$

in \mathbb{C}, we have

$$
\begin{aligned}
\left(z_{n}+\rho_{n} \zeta\right) f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)-\varphi\left(z_{n}+\rho_{n} \zeta\right) & =\left(z_{n}+\rho_{n} \zeta\right) f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)-\left(z_{n}+\rho_{n} \zeta\right) \psi\left(z_{n}+\rho_{n} \zeta\right) \\
& =\left(z_{n}+\rho_{n} \zeta\right)\left[f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)-\psi\left(z_{n}+\rho_{n} \zeta\right)\right] \\
& \Rightarrow G^{\prime}(\zeta)-1
\end{aligned}
$$

in $\mathbb{C} \backslash E_{1}$, where $E_{1}=\{z \mid G(z)=\infty\}$. Clearly, $f_{n}^{\prime}\left(z_{n}+\rho_{n} \zeta\right)-\psi\left(z_{n}+\rho_{n} \zeta\right) \neq 0$ for sufficiently large n. By Hurwitz's theorem, we have that either $G^{\prime}(\zeta)-1 \equiv 0$ or $G^{\prime}(\zeta)-1 \neq 0$ in \mathbb{C}. If $G^{\prime}(\zeta)-1 \equiv 0$ in \mathbb{C}, then $G(\zeta)$ has at least one zero which contradicts $G(\zeta) \neq 0$. If $G^{\prime}(\zeta)-1 \neq 0$, then by the fact that $G(\zeta) \neq 0$ and Lemma $2.2, G(\zeta)$ is constant in \mathbb{C}. A contradiction.

Case II $\frac{z_{n}}{\rho_{n}} \nrightarrow \infty$. Taking a subsequence and renumbering, we may assume that $\frac{z_{n}}{\rho_{n}} \rightarrow \alpha$, where
α is a finite complex number. Then

$$
0 \neq \frac{g_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}}=\frac{g_{n}\left(z_{n}+\rho_{n}\left(\zeta-\frac{z_{n}}{\rho_{n}}\right)\right)}{\rho_{n}}=G_{n}\left(\zeta-\frac{z_{n}}{\rho_{n}}\right) \Rightarrow G(\zeta-\alpha)=\widetilde{G}(\zeta) .
$$

Obviously, $\widetilde{G}(\zeta) \neq 0$.
Set $H_{n}(\zeta)=f_{n}\left(\rho_{n} \zeta\right)$. We have

$$
\begin{equation*}
H_{n}(\zeta)=\frac{\rho_{n} \zeta f_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}} \frac{1}{\zeta}=\frac{g_{n}\left(\rho_{n} \zeta\right)}{\rho_{n}} \frac{1}{\zeta} \xlongequal{\chi} \frac{\widetilde{G}(\zeta)}{\zeta}=H(\zeta) \tag{2}
\end{equation*}
$$

in \mathbb{C}. Obviously, $H(0)=\infty$ and $H(\zeta) \neq 0$. By (2),

$$
\begin{equation*}
H_{n}^{\prime}(\zeta)-\rho_{n} \psi\left(\rho_{n} \zeta\right)=\rho_{n}\left(f_{n}^{\prime}\left(\rho_{n} \zeta\right)-\psi\left(\rho_{n} \zeta\right)\right) \Rightarrow H^{\prime}(\zeta)-\frac{1}{\zeta} \tag{3}
\end{equation*}
$$

in $\mathbb{C} \backslash E_{2}$, where $E_{2}=\{z \mid H(z)=\infty\}$.
We claim that $H^{\prime}(\zeta)=\frac{1}{\zeta}$ if and only if $\zeta=0$. For sufficiently large $n, f_{n}\left(\rho_{n} \zeta\right)-\psi\left(\rho_{n} \zeta\right) \neq 0$ in $\mathbb{C} \backslash\{0\}$. By Hurwitz's theorem and (3), we have that either $H^{\prime}(\zeta) \equiv \frac{1}{\zeta}$ or $H^{\prime}(\zeta) \neq \frac{1}{\zeta}$ in $\mathbb{C} \backslash\{0\}$. If $H^{\prime}(\zeta) \equiv \frac{1}{\zeta}$ in $\mathbb{C} \backslash\{0\}$, then $H(\zeta)$ is a multi-valued function. A contradiction. If $H^{\prime}(\zeta) \neq \frac{1}{\zeta}$ in $\mathbb{C} \backslash\{0\}$, then $H^{\prime}(\zeta)=\frac{1}{\zeta}$ if and only if $\zeta=0$.

Since $H^{\prime}(\zeta)=\frac{1}{\zeta}$ if and only if $\zeta=0$ and $H(\zeta) \neq 0$, by Lemma 2.5, $H(\zeta)$ is a rational function. Since $H(0)=\infty$ and $H(\zeta) \neq 0$ in \mathbb{C}, we have $H(\zeta)=\frac{1}{\zeta^{k} Q(\zeta)}$, where $k \geq 1$ is an integer, $Q(z)$ is a polynomial in \mathbb{C} and $Q(0) \neq 0$. By Lemma 2.6, $H^{\prime}(z)=\frac{1}{z}$ has at least one non-zero solution, which results in a contradiction. Now, we have shown that $\left\{g_{n}\right\}$ is normal at 0 .

We claim that 0 is a pole of order 2 of $f_{n}^{\prime}(z)-\psi(z)$ for sufficiently large n, and hence $f_{n}^{\prime}(z)-\psi(z) \neq 0$ in $\Delta(0, \delta)$ for sufficiently large n. Since $\left\{g_{n}\right\}$ is normal at 0 and $g_{n}(z)=$ $z f_{n}(z) \Rightarrow z f(z) \equiv 0$ in $\Delta^{\prime}(0, \delta)$, we have $g_{n}(z) \Rightarrow 0$ in $\Delta(0, \delta)$, and then

$$
\begin{equation*}
g_{n}(0) \rightarrow 0 \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

By the fact that $f_{n}(0)=\infty$, we have

$$
\begin{equation*}
g_{n}(0)=\left.z f_{n}(z)\right|_{z=0} \neq 0 \tag{5}
\end{equation*}
$$

By (4) and (5), we have $z=0$ is a simple pole of $f_{n}(z)$ for sufficiently large n. Obviously, $z=0$ is a pole of order 2 of $f_{n}^{\prime}(z)-\psi(z)$ for sufficiently large n.

Now, we have

$$
f_{n}^{\prime}(z)-\psi(z)=\left\{\frac{g_{n}(z)}{z}\right\}^{\prime}-\psi(z)=\frac{z g_{n}^{\prime}(z)-g_{n}(z)}{z^{2}}-\frac{\varphi(z)}{z} \Rightarrow-\frac{\varphi(z)}{z}
$$

on $\Gamma\left(0, \frac{\delta}{2}\right)$. By argument principle, for sufficiently large n,

$$
n\left(\frac{\delta}{2}, \frac{1}{f_{n}^{\prime}(z)-\psi(z)}\right)-n\left(\frac{\delta}{2}, f_{n}^{\prime}(z)-\psi(z)\right)=n\left(\frac{\delta}{2}, \frac{1}{-\frac{\varphi(z)}{z}}\right)-n\left(\frac{\delta}{2},-\frac{\varphi(z)}{z}\right)
$$

On the one hand, since $g_{n}(z)=z f_{n}(z) \Rightarrow 0$ in $\Delta(0, \delta)$, we have, for sufficiently large $n, f_{n}(z)$ has only one simple pole in $\Delta(0, \delta / 2)$, and then for sufficiently large n,

$$
n\left(\frac{\delta}{2}, \frac{1}{f_{n}^{\prime}(z)-\psi(z)}\right)-n\left(\frac{\delta}{2}, f_{n}^{\prime}(z)-\psi(z)\right)=0-2=-2
$$

On the other hand,

$$
n\left(\frac{\delta}{2}, \frac{1}{-\frac{\varphi(z)}{z}}\right)-n\left(\frac{\delta}{2} .-\frac{\varphi(z)}{z}\right)=0-1=-1 .
$$

This leads to a contradiction. This completes the proof of the theorem.
Acknowledgements We thank the referees for their time and comments.

References

[1] Chungchun YANG, Hongxun YI. Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers Group, Dordrecht, 2003.
[2] Yongxing GU. A criterion for normality of families of meromorphic functions. Sci. Sinica, 1979, 1: 267-274. (in Chinese)
[3] Le YANG. Normality for families of meromorphic functions. Sci. Sinica Ser. A, 1986, 29(12): 1263-1274.
[4] W. SCHWICK. Exceptional functions and normality. Bull. Lond. Math. Soc., 1997, 29(4): 425-432.
[5] Yan XU. On a result due to Yang and Schwick. Sci. Sin. Math., 2010, 40(5): 421-428. (in Chinese)
[6] Xuecheng PANG, Lawrence ZALCMAN. Normal families and shared values. Bull. Lond. Math. Soc., 2000, 32(3): 325-331.
[7] W. K. HAYMAN. Picard values of meromorphic functions and their derivatives. Ann. Math., 1959, 70(2): 9-42.
[8] W. SCHWICK. On Hayman's alternative for families of meromorphic functions. Complex Var. Elliptic Equ., 1997, 32(1): 51-57.
[9] Xuecheng PANG, S. NEVO, L. ZALCMAN. Derivatives of meromorphic functions with multiple zeros and rational functions. Comput. Methods Funct. Theory, 2008, 8(2): 483-491.

[^0]: Received August 28, 2013; Accepted February 24, 2014
 Supported by the National Natural Science Foundation of China (Grant Nos. 11371139; 11261029; 11001081) and the Scientific Research Foundation of CUIT (Grant No. KYTZ201403).

 * Corresponding author

 E-mail address: yangpai@cuit.edu.cn (Pai YANG); fywxue@163.com (Xue WANG); xcpang@math.ecnu.edu.cn (Xuecheng PANG)

