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Abstract On the basis of introducing the modified Cauchy kernel, we discuss the Hölder

continuity of the Cauchy-type singular integral operator on unbounded domains for regular

functions by dividing into the following three cases: two points are on the boundary of region;

one point is on the boundary and another point is in the interior(or exterior) of the region;

two points are in the interior (or exterior) of the region.
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1. Introduction

Clifford algebra An(R) was established by Clifford [1] in 1878, which is the extension of the

plural, quaternion and exterior algebras. It possesses both theoretical and applicable values in

many fields, such as quantum field theory [2], computer graphics [3], neural network [4] and so

on. Clifford analysis is an important branch of modern analysis that studies functions defined

on Rn+1 and valued in Clifford algebra space An(R). Since 1970, on the basis of Dirac operator,

Brackx, Delanghe, Sommen [5] etc. put forward the regular function, which is an extension of the

holomorphic function in higher dimensional space and has been investigated by many scholars

such as Xu [6], Wen [7], Huang, Qiao [8, 9] etc. In addition, because many problems in the actual

application are proposed in the case of unbounded domains, Klaus Gürlebeck, Uwe Kähler, John

Ryan [10] introduced the modified Cauchy kernel in 1997, which makes it possible to study the

Cauchy integral on unbounded domains and have obtained a series of results such as the integral

representation of the regular function and Plemelj formulae etc.

Cauchy-type integral operator is a singular integral operator and it is the core components

of the solution of the boundary value problem. Its localized properties are the theoretical ba-

sis of the boundary value problem of the analytic function and generalized analytic function.

Furthermore, the latter is closely related with the elasticity mechanics, shell theory and the air
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dynamics etc. Thus there are many scholars who have carried a lot of research for it. For ex-

ample, Lu [11] researched the properties and the corresponding boundary value problem of the

Cauchy-type integral operator and Cauchy-type singular integral for density function containing

parameter in complex plane. Gilbert [12] studied some properties and applications of Cauchy

type integral operators and higher dimensional singular integral operators. Gong [13] discussed

the stabilities of Cauchy-type singular integral operator when the boundary curve of integral

domain is perturbed. In addition, because Clifford analysis is the extension of complex analysis,

studying the properties of all kinds of singular integral operators has been a hot and significant

topics in Clifford analysis. Yang [14] and Qiao [15], for example, have studied some properties of

some singular integral operators and the corresponding boundary value problem in Quaternion

analysis and Clifford analysis, respectively.

On the basis of the above reference, this article studies some properties of the Cauchy-type

singular integral operator on unbounded domains. For example, we discuss the Hölder continuity

of the Cauchy-type singular integral operator on unbounded domains for regular functions by

dividing into the following three cases: two points are on the boundary of region; one point is

on the boundary and another point is in the interior (or exterior) of the region; two points are

in the interior (or exterior) of the region.

2. Preliminaries

Let e0, e1, . . . , en be an orthogonal basis of the Euclidean space Rn+1 and An(R) be the

2n-dimensional Clifford algebra with basis {eA : eA = eα1 · · · eαh
}, where A = {α1, . . . , αh} ⊆

{1, . . . , n}, 1 ≤ α1 < α2 < · · · < αh ≤ n and e∅ = e0 = 1. The associative and noncommutative

multiplication of the basis in An(R) is governed by the rules e2i = −1 (i = 1, 2, . . . , n), eiej =

−ejei (1 ≤ i, j ≤ n, i ̸= j), e0ei = eie0 = ei (i = 0, 1, . . . , n). Hence the real Clifford algebra is

composed of elements having the type a =
∑

A xAeA, xA ∈ R. The norm for an element a ∈
An(R) is taken to be |a| = (

∑
A |xA|2)

1
2 , and satisfies |a| = |a|, |a+ b| ≤ |a|+ |b|, |ab| ≤ 2n|a||b|.

Let U ⊂ Rn+1 be a domain. The function f which is defined in U with values in An(R)

can be expressed as f(x) =
∑

A fA(x)eA, where all fA(x) are real-valued functions. Let f(x) ∈
C(r)(U,An(R)) = {f |f : U → An(R), f(x) =

∑
A fA(x)eA, fA(x) ∈ Cr(U)}. And the Dirac

operator is defined as

Dl(f) =

n∑
i=0

ei
∂f

∂xi
=

n∑
i=0

∑
A

eieA
∂fA
∂xi

, Dr(f) =

n∑
i=0

∂f

∂xi
ei =

n∑
i=0

∑
A

∂fA
∂xi

eAei.

If Dl(f) = 0(Dr(f) = 0), then f is called a left (right) regular function.

In addition, denoting

dx̂i = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxn, i = 1, 2, . . . , n,

dσ =

n∑
i=1

(−1)i−1eidx̂i,
−→n =

n∑
i=1

eini,

where ni is i-th component of the unit outward normal vector −→n and dσ = −→n ds. ds is the

surface element and dxn = dx1 ∧ · · · ∧ dxn is the volume element.
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Next let U ⊂ Rn+1 be unbounded domains whose complement contains an internal point,

and the boundary ∂U be a differentiable, oriented and compact Liapunov surface.

Since ∂U is a Liapunov surface, from the corresponding proof in [8], we have

|dσ| = |ds| =
∣∣ D(ξ0, ξ1, . . . , ξn−1)

D(ρ0, φ1, . . . , φn−1)

∣∣|dρ0dφ1dφ2 · · · dφn−1| ≤ M0ρ
n−1
0 dρ0,

where M0 > 0 is a real constant number.

Definition 2.1 Let U, ∂U be as stated above. The integral

(T∂U [f ])(x) =
1

ωn+1

∫
∂U

l(y, x)dσ(y)f(y) (2.1)

is called Cauchy-type singular integral operator on unbounded domains, where n(y) is the normal

vector through y, l(y, x) = y−x
|y−x|n+1 − y−z

|y−z|n+1 is a modified Cauchy kernel, z is a given point in

the complement of U and ωn+1 is the area of the unit sphere in Rn+1. When x /∈ ∂U , it is clear

that the integral is well defined. When x ∈ ∂U , it is a singular integral on unbounded domains.

Definition 2.2 Let U, ∂U be as stated above and x0 ∈ ∂U . We construct a sphere E with the

center at x0 and radiu δ > 0. Then ∂U is divided into two parts by E and the part of ∂U lying

in the interior of E is denoted by λδ. Suppose

(T∂U [f ])δ(x0) =
1

ωn+1

∫
∂U−λδ

l(y, x0)dσ(y)f(y). (2.2)

If limδ→0(T∂U [f ])δ(x0) = I(x0), then I(x0) is called the Cauchy principal value of singular

integral (T∂U [f ])(x0) and we denote that I(x0) = (T∂U [f ])(x0).

Remark When f : ∂U → An(R) is both bounded and Hölder continuous with exponent

α ∈ (0, 1), the above Cauchy principal value of singular integral is well defined for each x0 ∈ ∂U .

Lemma 2.3 ([10]) There exists the positive constant C(n) > 0, such that

|l(y, x)| ≤ C(n)|x− z|
n∑

j=1

|y − x|−j |y − z|j−(n+1).

Lemma 2.4 ([10]) Let U, ∂U be as stated above. If f(x) is a bounded, left regular function on

U and extends continuously in the L∞ sense to the boundary of U . Then, we have

1

ωn+1

∫
∂U

l(y, x)dσ(y)f(y) =

{
f(x), x ∈ U,

0, x ∈ Rn+1 − Ū .

Lemma 2.5 ([10]) Let U, ∂U be as stated above. Then, in the sense of cauchy principal value,

we have
1

ωn+1

∫
∂U

l(y, x0)dσ(y) =
1

2
, x0 ∈ ∂U.

Lemma 2.6 ([10]) Let U, ∂U be as stated above, f ∈ Hα
∂U (0 < α < 1), f be bounded and x0 ∈

∂U . Suppose (T∂U [f ])
+(x0)=limx→x0,x∈U+(T∂U [f ])(x), (T∂U [f ])

−(x0)=limx→x0,x∈U−(T∂U [f ])(x),

where U+, U− are the interior and exterior of U , respectively. Then, in the sense of cauchy prin-
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cipal value, we have 
(T∂U [f ])

+(x0) =
1

2
f(x0) + (T∂U [f ])(x0),

(T∂U [f ])
−(x0) = −1

2
f(x0) + (T∂U [f ])(x0).

Lemma 2.7 ([16]) (1) If φ ∈ Hα
∂U , 0 < β ≤ α < 1, then φ ∈ Hβ

∂U ; (2) If f1(x), f2(x) ∈ Hα
∂U , then

f1(x)± f2(x) ∈ Hα
∂U ; (3) Let f(x) =

∑
A fA(x)eA. If fA(x) ∈ Hα

∂U , then f ∈ Hα
∂U , 0 < α < 1.

3. The Hölder continuity of the singular integral operator

Theorem 3.1 Let U, ∂U,U− and (T∂U [f ])
− be stated as before, Ω ⊆ Rn+1 be a bounded

domain and Ω∩ ∂U ̸= ∅. If f ∈ Hα
∂U (0 < α < 1) and f is bounded. Then, in the sense of cauchy

principal value, we have

(1) (T∂U [f ])
− ∈ Hα

∂U∩Ω, namely, there exists M1 > 0 such that for any x1, x2 ∈ ∂U ∩ Ω,

(T∂U [f ])
− satisfies

|(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)| ≤ M1|x1 − x2|α.

(2) ∥(T∂U [f ])
−∥α ≤ J∥f∥α, where J is a constant independent of f .

Proof (1) For any x1, x2 ∈ ∂U ∩Ω, let |x1 − x2| = δ. Firstly, we suppose 6δ < d, where d is the

same as the one in the definition of Liapunov surface. Because the following formula is right

lim
|y|→∞

|y − x2|
|y − z|

= 1,

we may construct a sphere E1 with the center at x1 and radius 3δ, and construct a sphere E2

with the center at x1 and radius R, where R is big enough. The part of ∂U lying in the interior

of E1 is denoted by ∂U1, the part of ∂U lying between E1 and E2 is denoted by ∂U2 and the

part of ∂U lying in the exterior E2 is denoted by ∂U3. We take R to be big enough in order to

guarantee the following formula is right on ∂U3.

|y − x2| ≤ L1|y − z|, (3.1)

where L1 > 0 is an constant number.

In addition, by |y − x1| ≤ |y − x2|+ |x2 − x1|, |y − x2| ≤ |y − x1|+ |x1 − x2| and |y − x1| >
3δ(y ∈ ∂U − ∂U1), we know the following formula is right on both ∂U2 and ∂U3.

1

2
≤ |y − x2|

|y − x1|
≤ 2. (3.2)

By Lemmas 2.5 and 2.6, we have

|(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)|

= |[(T∂U [f ])(x1)−
1

2
f(x1)]− [(T∂U [f ])(x2)−

1

2
f(x2)]|

≤ 1

ωn+1

∣∣∣ ∫
∂U

l(y, x1)dσ(y)[f(y)− f(x1)]−
∫
∂U

l(y, x2)dσ(y)[f(y)− f(x2)]
∣∣∣

≤ J1

{∣∣∣ ∫
∂U1

l(y, x1)dσ(y)[f(y)− f(x1)]
∣∣∣+ ∣∣∣ ∫

∂U1

l(y, x2)dσ(y)[f(y)− f(x2)]
∣∣∣+
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∂U2

l(y, x1)dσ(y)[f(y)− f(x1)]−
∫
∂U2

l(y, x2)dσ(y)[f(y)− f(x2)]
∣∣∣+∣∣∣ ∫

∂U3

l(y, x1)dσ(y)[f(y)− f(x1)]−
∫
∂U3

l(y, x2)dσ(y)[f(y)− f(x2)]
∣∣∣}

≤ J1(I1 + I2 + I3 + I4). (3.3)

Firstly, in the case of 3δ < 6δ < d. Then, because y−x1

y−z and x1−z
y−z are continuous on ∂U1,

there exist constants L2, L3 > 0, such that the following formula is right for any y ∈ ∂U1.

|y − x1| < L2|y − z|, |x1 − z| < L3|y − z|.

Again by lemma 2.3, we have

|l(y, x1)| ≤ C(n)|x1 − z|
n∑

j=1

|y − x1|−j |y − z|j−(n+1)

≤ C(n)J2|y − z|
n∑

j=1

|y − x1|−j |y − z|j−(n+1)

= C(n)J3

n∑
j=1

|y − x1|−j |y − z|j−n

≤ C(n)J3

n∑
j=1

|y − x1|−j(
1

L2
)j−n|y − x1|j−n = J4|y − x1|−n.

Hence, by f ∈ Hα
∂U and local generalized spherical coordinate, we obtain

I1 =
∣∣∣ ∫

∂U1

l(y, x1)dσ(y)[f(y)− f(x1)]
∣∣∣

≤ J5H(f, ∂U, α)

∫
∂U1

|y − x1|−n+α|dσ(y)|

≤ J6H(f, ∂U, α)

∫ 3δ

0

ρα−1
0 dρ0 = J7H(f, ∂U, α)|x1 − x2|α. (3.4)

Similarly, we have

I2 ≤ J8H(f, ∂U, α)|x1 − x2|α. (3.5)

Next, we calculate I3,

I3 =
∣∣∣ ∫

∂U2

l(y, x1)dσ(y)[f(y)− f(x1)]−
∫
∂U2

l(y, x2)dσ(y)[f(y)− f(x2)]
∣∣∣

=
∣∣∣ ∫

∂U2

[l(y, x1)− l(y, x2)]dσ(y)[f(y)− f(x1)] +

∫
∂U2

l(y, x2)dσ(y)[f(x2)− f(x1)]
∣∣∣

≤
[∣∣∣ ∫

∂U2

[
y − x1

|y − x1|n+1
− y − x2

|y − x2|n+1
]dσ(y)[f(y)− f(x1)]

∣∣∣+∣∣∣ ∫
∂U2

y − x2

|y − x2|n+1
dσ(y)[f(x2)− f(x1)]

∣∣∣]+∣∣∣ ∫
∂U2

y − z

|y − z|n+1
dσ(y)[f(x2)− f(x1)]

∣∣∣
=I31 + I32.
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By [17], we have I31 ≤ J9H(f, ∂U, α)|x1 − x2|α. In addition, for I32, because the integral

has no singularity on bounded domain ∂U2, it is well defined. There is no harm to suppose

|
∫
∂U2

y−z
|y−z|n+1 dσ(y)| = J10. Thus we have

I32 ≤ J10H(f, ∂U, α)|x1 − x2|α.

So

I3 ≤ J11H(f, ∂U, α)|x1 − x2|α. (3.6)

Finally, we calculate I4,

I4 =
∣∣∣ ∫

∂U3

l(y, x1)dσ(y)[f(y)− f(x1)]−
∫
∂U3

l(y, x2)dσ(y)[f(y)− f(x2)]
∣∣∣

≤
∣∣∣ ∫

∂U3

[l(y, x1)− l(y, x2)]dσ(y)[f(y)− f(x1)]
∣∣∣+ ∣∣∣ ∫

∂U3

l(y, x2)dσ(y)[f(x2)− f(x1)]
∣∣∣

= I41 + I42.

From Hile’s lemma [2], we get

|l(y, x1)− l(y, x2)| =
∣∣∣ y − x1

|y − x1|n+1
− y − x2

|y − x2|n+1

∣∣∣
≤

n−1∑
k=0

∣∣y − x1

y − x2

∣∣−(k+1)|y − x2|−(n+1)|x1 − x2|. (3.7)

Again by (3.2), we have

I41 ≤
∫
∂U3

n−1∑
k=0

2k+1
∣∣y − x1

y − x2

∣∣α 1

|y − x2|n+1−α
H(f, ∂U, α)|x1 − x2||dσ(y)|

≤ J12H(f, ∂U, α)|x1 − x2|
∫ +∞

R

ρα−2
0 dρ0 ≤ J13H(f, ∂U, α)|x1 − x2|α.

For I42, from Lemma 2.3, (3.1), (3.2) and the boundedness of the region Ω, we obtain

|l(y, x2)| ≤ C(n)|x2 − z|
n∑

j=1

|y − x2|−j |y − z|j−(n+1)

≤ C(n)|x2 − z|
n∑

j=1

|y − x2|−j(
1

M2
)j−(n+1)|y − x2|j−(n+1)

≤ J14|y − x2|−(n+1) ≤ J15|y − x1|−(n+1).

Thus

I42 =
∣∣∣ ∫

∂U3

l(y, x2)dσ(y)[f(x2)− f(x1)]
∣∣∣

≤ J16H(f, ∂U, α)|x1 − x2|α
∫
∂U3

|y − x1|−(n+1)|dσ(y)|

≤ J17H(f, ∂U, α)|x1 − x2|α
∫ +∞

R

ρ−2
0 dρ0 = J18H(f, ∂U, α)|x1 − x2|α.

So

I4 ≤ J19H(f, ∂U, α)|x1 − x2|α. (3.8)
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Hence, by (3.3)–(3.8), we get

|(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)| ≤ J20H(f, ∂U, α)|x1 − x2|α ≤ J21∥f∥α|x1 − x2|α. (3.9)

Namely, when 6|x1 − x2| < d, (T∂U [f ])
− ∈ Hα

∂U∩Ω.

Secondly, when 6|x1 − x2| ≥ d. By Lemmas 2.5 and 2.6, we know for arbitrary given

x ∈ ∂U ∩ Ω,

|(T∂U [f ])
−(x)| = |(T∂U [f ])(x)−

1

2
f(x)|

=
1

ωn+1

∣∣∣ ∫
∂U

l(y, x)dσ(y)[f(y)− f(x)]
∣∣∣

≤ 1

ωn+1
H(f, ∂U, α)

∫
∂U

|l(y, x)||y − x|α|dσ(y)|. (3.10)

Again

lim
|y|→∞

|y − x|
|y − z|

= 1.

Hence, there exists a constant r > 0 such that the following formula is right for any y ∈ ∂U −λr.

|y − x| ≤ L4|y − z|, (3.11)

where λr = B(x, r) ∩ ∂U and L4 > 0 is a constant number. Thus∫
∂U

|l(y, x)||y − x|α|dσ(y)| =
∫
λr

|l(y, x)||y − x|α|dσ(y)|+
∫
∂U−λr

|l(y, x)||y − x|α|dσ(y)|

= O1 +O2.

Again

O1 =

∫
λr

|l(y, x)||y − x|α|dσ(y)|

≤
∫
λr

|y − x|
|y − x|n+1

|y − x|α|dσ(y)|+
∫
λr

|y − z|
|y − z|n+1

|y − x|α|dσ(y)|

= O11 +O12.

For O11, by the local generalized spherical coordinate, we know it is convergent. For O12, because

it is normal integral on bounded domain, it is convergent. So there is no harm to suppose

O1 ≤ J22. (3.12)

For O2, by Lemma 2.3, (3.11), the boundedness of the region Ω and the local generalized

spherical coordinate, we have

O2 =

∫
∂U−λr

|l(y, x)||y − x|α|dσ(y)|

≤
∫
∂U−λr

C(n)|x− z|
n∑

j=1

|y − x|−j |y − z|j−(n+1)|y − x|α|dσ(y)|

≤ J23

∫
∂U−λr

|y − x|α−(n+1)|dσ(y)| ≤ J24

∫
∂U−λr

ρα−2
0 dρ0 = J25. (3.13)

Thus by (3.10), (3.12) and (3.13), we get

|(T∂U [f ])
−(x)| ≤ J26H(f, ∂U, α) ≤ J26∥f∥α. (3.14)
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So, when 6|x1 − x2| ≥ d, we have

|(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)| ≤ |(T∂U [f ])
−(x1)|+ |(T∂U [f ])

−(x2)|

≤ 2J26∥f∥α6α
|x1 − x2|α

dα
≤ J27∥f∥α|x1 − x2|α. (3.15)

Namely, when 6|x1 − x2| ≥ d, (T∂U [f ])
− ∈ Hα

∂U∩Ω. Hence, we have

(T∂U [f ])
− ∈ Hα

∂U∩Ω, 0 < α < 1.

(2) From (3.14), we know

max
x∈∂U∩Ω

|(T∂U [f ])
−(x)| ≤ J26∥f∥α.

In addition, from (3.9) and (3.15), we get

sup
x1,x2∈∂U∩Ω,x1 ̸=x2

|(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)|
|x1 − x2|α

≤ J28∥f∥α.

So, ∥(T∂U [f ])
−(x)∥α ≤ J29||f ||α. Taking J = J29, we get ∥(T∂U [f ])

−(x)∥α ≤ J ||f ||α, where J is

a constant independent of f . �

Theorem 3.2 Let U, ∂U,U− and Ω be stated as above. If f ∈ Hα
∂U (0 < α < 1) and f is

bounded. Then we can obtain

(1) T∂U [f ] ∈ Hα
∂U∩Ω.

(2) ∥T∂U [f ]∥α ≤ J ′∥f∥α, where J ′ is a constant independent of f .

Proof From Lemma 2.6, we know

(T∂U [f ])(x) = (T∂U [f ])
−(x) +

1

2
f(x), x ∈ ∂U ∩ Ω.

Again by Theorem 3.1, we have (T∂U [f ])
− ∈ Hα

∂U∩Ω. Hence, by Lemma 2.7, we get T∂U [f ] ∈
Hα

∂U∩Ω.

(2) From Lemma 2.6, we know |(T∂U [f ])(x)| = |(T∂U [f ])
−(x) + 1

2f(x)|. Thus

max
x∈∂U∩Ω

|(T∂U [f ])(x)| ≤ max
x∈∂U∩Ω

|(T∂U [f ])
−(x)|+ 1

2
max
x∈∂U

|f(x)|.

Again by Lemma 2.6, we have

|(T∂U [f ])(x1)− (T∂U [f ])(x2)|

= |(T∂U [f ])
−(x1) +

1

2
f(x1)− (T∂U [f ])

−(x2)−
1

2
f(x2)|

≤ |(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)|+
1

2
|f(x1)− f(x2)|.

So

sup
x1,x2∈∂U∩Ω,x1 ̸=x2

|(T∂U [f ])(x1)− (T∂U [f ])(x2)|
|x1 − x2|α

≤ sup
x1,x2∈∂U∩Ω,x1 ̸=x2

|(T∂U [f ])
−(x1)− (T∂U [f ])

−(x2)|
|x1 − x2|α

+
1

2
sup

x1,x2∈∂U,x1 ̸=x2

|f(x1)− f(x2)|
|x1 − x2|α

.

Namely,

H(T∂U [f ], ∂U ∩ Ω, α) ≤ H((T∂U [f ])
−, ∂U ∩ Ω, α) +

1

2
H(f, ∂U, α).



Some properties of Cauchy-type singular integral operator on unbounded domains 583

So

∥T∂U [f ]∥α ≤ ∥(T∂U [f ])
−∥α +

1

2
H(f, ∂U, α)

≤ J29∥f∥α +
1

2
∥f∥α = J30∥f∥α.

Taking J ′ = J30, we can obtain ∥T∂U [f ]∥α ≤ J ′∥f∥α, where J ′ is a constant independent of f . �

Theorem 3.3 Let U, ∂U,U+,Ω be stated as above. If f ∈ Hα
∂U (0 < α < 1) and f is bounded,

then for any points x0 ∈ ∂U ∩ Ω, x ∈ U+ ∩ Ω, we have

|T∂U [f ](x)− (T∂U [f ])
+(x0)| ≤ M2|x− x0|α,

where M2 > 0 is a constant independent of x, x0.

Proof Let |x−x0| = δ. We suppose 6δ < d. Similarly to the theorem 3.1, we construct a sphere

E1 with the center at x0 and radius 3δ. Then we construct a sphere E2 with the center at x0

and radius R, where R is big enough. The part of ∂U lying in the interior of E1 is denoted by

∂U1, the part of ∂U lying between E1 and E2 is denoted by ∂U2, and the part of ∂U lying in

the exterior E2 is denoted by ∂U3. Thus by Lemmas 2.4, 2.5 and 2.6, we have

|T∂U [f ](x)− (T∂U [f ])
+(x0)|

= |T∂U [f ](x)− T∂U [f ](x0)−
1

2
f(x0)|

=
∣∣∣ 1

ωn+1

∫
∂U

l(y, x)dσ(y)f(y)− 1

ωn+1

∫
∂U

l(y, x0)dσ(y)f(y)−
1

2
f(x0)

∣∣∣
=

∣∣∣ 1

ωn+1

∫
∂U

l(y, x)dσ(y)f(y)− f(x0) + f(x0)−
1

ωn+1

∫
∂U

l(y, x0)dσ(y)f(y)−
1

2
f(x0)

∣∣∣
=

∣∣∣ 1

ωn+1

∫
∂U

l(y, x)dσ(y)(f(y)− f(x0)) +
1

2
f(x0)−

1

ωn+1

∫
∂U

l(y, x0)dσ(y)f(y)
∣∣∣

=
∣∣∣ 1

ωn+1

∫
∂U

l(y, x)dσ(y)(f(y)− f(x0)) +
1

ωn+1

∫
∂U

l(y, x0)dσ(y)(f(x0)− f(y))
∣∣∣

=
∣∣∣ 1

ωn+1

∫
∂U

(l(y, x)− l(y, x0))dσ(y)(f(y)− f(x0))
∣∣∣

≤
∣∣∣ 1

ωn+1

∫
∂U1

(l(y, x)− l(y, x0))dσ(y)(f(y)− f(x0))
∣∣∣+∣∣∣ 1

ωn+1

∫
∂U2

(l(y, x)− l(y, x0))dσ(y)(f(y)− f(x0))
∣∣∣+∣∣∣ 1

ωn+1

∫
∂U3

(l(y, x)− l(y, x0))dσ(y)(f(y)− f(x0))
∣∣∣

= I5 + I6 + I7.

Again, when y ∈ ∂U1, the following inequalities hold.

|y − x| ≤ L5|y − z|, |x− z| ≤ L5|y − z|, |y − x0| ≤ L6|y − z|, |x0 − z| ≤ L6|y − z|,

where L5 > 0, L6 > 0 is a constant number.
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And

I5 =
∣∣∣ 1

ωn+1

∫
∂U1

(l(y, x)− l(y, x0))dσ(y)(f(y)− f(x0))
∣∣∣

≤
∣∣∣ 1

ωn+1

∫
∂U1

|l(y, x)|dσ(y)|f(y)− f(x0)
∣∣∣+ ∣∣∣ 1

ωn+1

∫
∂U1

|l(y, x0)|dσ(y)|f(y)− f(x0))
∣∣∣

= I51 + I52.

So, similarly to the estimation method of I1, I2 in Theorem 3.1, we have

I51 ≤ J31|x− x0|α, I52 ≤ J32|x− x0|α.

And similarly to the estimation method of I31, I41 in Theorem 3.1, we have

I6 ≤ J33|x− x0|α, I7 ≤ J34|x− x0|α.

Hence, we obtain

|T∂U [f ](x)− (T∂U [f ])
+(x0)| ≤ M2|x− x0|α, x ∈ U+ ∩ Ω, x0 ∈ ∂U ∩ Ω,

where M2 = J31 + J32 + J33 + J34.

In addition, the case when 6|x1 − x2| ≥ d is similar to the proof of Theorem 3.1. �

Theorem 3.4 Let U, ∂U,U+,Ω be stated as above. If f ∈ Hα
∂U (0 < α < 1) and f is bounded,

then for any points x1, x2 ∈ U+ ∩ Ω, we have

|T∂U [f ](x1)− (T∂U [f ])
+(x2)| ≤ M3|x1 − x2|α,

where M3 > 0 is a constant independent of x1, x2.

Proof Let |x1 − x2| = δ. Because x1x2 and ∂U ∩ Ω are compact, there exist a point x̃ ∈ x1x2

and a point ỹ0 ∈ ∂U ∩ Ω such that

x̃− ỹ0 = inf
x∈x1x2,y∈∂U∩Ω

|x− y|.

Let |x̃− ỹ0| = δ0. Next we discuss |T∂U [f ](x1)− T∂U [f ](x2)| in three cases.

(1) If δ0 = 0, then x̃ = ỹ0 ∈ ∂U ∩ Ω. Thus from Theorem 3.3, we have

|T∂U [f ](x1)− T∂U [f ](x2)|

≤ |T∂U [f ](x1)− T∂U [f ](x̃)|+ |T∂U [f ](x̃)− T∂U [f ](x2)| ≤ 2M2|x1 − x2|α.

(2) If δ0 > 0 and δ ≥ δ0, then we have

|x1 − ỹ0| ≤ |x1 − x̃|+ |x̃− ỹ0| ≤ |x1 − x2|+ |x̃− ỹ0| = δ + δ0 ≤ 2δ.

Similarly, we have |x2 − ỹ0| ≤ 2δ. Thus, by Theorem 3.3, we get

|T∂U [f ](x1)− T∂U [f ](x2)| ≤ |T∂U [f ](x1)− T∂U [f ](ỹ0)|+ |T∂U [f ](ỹ0)− T∂U [f ](x2)|

≤ M2|x1 − ỹ0|α +M2|ỹ0 − x2|α

≤ 2α+1M2|x1 − x2|α.

(3) If δ0 > 0 and δ < δ0, then by Lemma 2.4, we have

|T∂U [f ](x1)− T∂U [f ](x2)|
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= |T∂U [f ](x1)− f(ỹ0) + f(ỹ0)− T∂U [f ](x2)|

=
∣∣∣ 1

ωn+1

∫
∂U

l(y, x1)dσ(y)f(y)−
1

ωn+1

∫
∂U

l(y, x1)dσ(y)f(ỹ0)+

1

ωn+1

∫
∂U

l(y, x2)dσ(y)f(ỹ0)−
1

ωn+1

∫
∂U

l(y, x2)dσ(y)f(y)
∣∣∣

=
∣∣∣ 1

ωn+1

∫
∂U

[l(y, x1)− l(y, x2)]dσ(y)(f(y)− f(ỹ0))
∣∣∣.

Similarly to the theorem 3.1, we construct a sphere E1 with the center at ỹ0 and radius 3δ.

Then we construct a sphere E2 with the center at ỹ0 and radius R, where R is big enough. The

part of ∂U lying in the interior of E1 is denoted by ∂U1, the part of ∂U lying between E1 and

E2 is denoted by ∂U2, and the part of ∂U lying in the exterior E2 is denoted by ∂U3.

In this case, for any y ∈ ∂U, we have

|y − x1| ≤ |y − x2|+ |x2 − x1| = |y − x2|+ δ ≤ |y − x2|+ δ0 ≤ 2|y − x2|.

Similarly, we have |y − x2| ≤ 2|y − x1|.
Hence, for any y ∈ ∂U, we have

1

2
≤ |y − x1|

|y − x2|
≤ 2.

In addition, for any y ∈ ∂U, we have

|y − ỹ0| ≤ |y − x2|+ |x2 − x̃|+ |x̃− ỹ0| = |y − x2|+ δ + δ0 ≤ 3|y − x2|.

Thus, by (3.7), f ∈ Hα
∂U , |x1 − x2| = δ < δ0 ≤ |y − x2| and the above inequalities, we have∣∣∣ 1

ωn+1

∫
∂U1

[l(y, x1)− l(y, x2)]dσ(y)(f(y)− f(ỹ0))
∣∣∣

≤ H(f, ∂U, α)
∣∣∣ 1

ωn+1

∫
∂U1

n−1∑
k=0

∣∣y − x1

y − x2

∣∣−(k+1)|y − x2|−(n+1)|x1 − x2||y − ỹ0|αdσ(y)

≤ J35

∣∣∣ 1

ωn+1

∫
∂U1

|y − x2|−n|y − ỹ0|αdσ(y)

≤ J36

∣∣∣ 1

ωn+1

∫
∂U1

1

|y − ỹ0|n−α
dσ(y)

≤ J37

∣∣∣ 1

ωn+1

∫ 3δ

0

1

ρ1−α
0

dρ0

= J37
1

α
3αδα = J38|x1 − x2|α.

And ∣∣∣ 1

ωn+1

∫
∂U2

[l(y, x1)− l(y, x2)]dσ(y)(f(y)− f(ỹ0))
∣∣∣

≤ H(f, ∂U, α)| 1

ωn+1

∫
∂U2

n−1∑
k=0

∣∣y − x1

y − x2

∣∣−(k+1)|y − x2|−(n+1)|x1 − x2||y − ỹ0|αdσ(y)

≤ J38

∣∣∣ 1

ωn+1

∫
∂U2

|y − x2|−(n+1)|y − ỹ0|αdσ(y)|x1 − x2|



586 Liping WANG, Yuying QIAO and Weiping ZHANG

≤ J39

∣∣∣ 1

ωn+1

∫
∂U2

1

|y − ỹ0|n+1−α
dσ(y)|x1 − x2|

≤ J40

∣∣∣ 1

ωn+1

∫ R

3δ

1

ρ2−α
0

dρ0|x1 − x2|

≤ J41|x1 − x2|α.

In addition, by the boundedness of f , we have∣∣∣ 1

ωn+1

∫
∂U3

[l(y, x1)− l(y, x2)]dσ(y)(f(y)− f(ỹ0))
∣∣∣

≤ J42

∣∣∣ 1

ωn+1

∫ +∞

R

1

ρ20
dρ0|x1 − x2|

≤ J43|x1 − x2|α.

Therefore, from the above inequality, we obtain

|T∂U [f ](x1)− T∂U [f ](x2)| ≤ M3|x1 − x2|α,

where M3 = J38 + J41 + J43. �
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[10] K. GÜRLEBECK, U. KÄHLER, J. RYAN. Clifford analysis over unbounded domains. Adv. in Appl. Math.,

1997, 19(2): 216–239.

[11] Jianke LU. Boundary Value Problem of Analytical Function (the Second Edition). Wuhan University Press,

Hubei, 2004. (in Chinese)

[12] R. P. GILBERT, Zongyi HOU, Xiangwu MENG. Vekua theory in higher-dimensional complex spaces: the

Π-operator in Cn. Complex Variables Theory Appl., 1993, 21(1-2): 99–105.

[13] Xiaolin WANG, Yafang GONG. The stabilities of Cauchy kernel integral about the integral surface. Chin.

Ann. Math. Ser. A, 2001, 22(4): 447–452.
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