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Abstract Convergence properties for arrays of rowwise φ-mixing random variables are s-

tudied. As an application, the Chung-type strong law of large numbers for arrays of rowwise

φ-mixing random variables is obtained. Our results extend the corresponding ones for inde-

pendent random variables to the case of φ-mixing random variables.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(Ω,F , P ). We say that the sequence {Xn, n ≥ 1} satisfies the strong law of large numbers if

there exist some increasing sequence {an, n ≥ 1} and some sequence {cn, n ≥ 1} such that

1

an

n∑
i=1

(Xi − ci) → 0 a.s. as n → ∞.

Many authors have extended the strong law of large numbers for sequences of random

variables to the case of triangular array of random variables and arrays of rowwise random

variables. In the case of independent random variables, Hu and Taylor [1] proved the following

strong law of large numbers.

Theorem 1.1 Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of rowwise independent random

variables. Let {an, n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞. Let g(t)

be a positive, even function such that g(|t|)/|t|p is an increasing function of |t| and g(|t|)/|t|p+1

is a decreasing function of |t|, respectively, that is,

g(|t|)
|t|p

↑, g(|t|)
|t|p+1

↓ as |t| ↑
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for some nonnegative integer p. If p ≥ 2 and

EXni = 0,

∞∑
n=1

n∑
i=1

E
g(Xni)

g(an)
< ∞,

∞∑
n=1

( n∑
i=1

E
(Xni

an

)2)2k

< ∞,

where k is a positive integer, then

1

an

n∑
i=1

Xni → 0 a.s. as n → ∞. (1.1)

Zhu [2] generalized and improved the result of Hu and Taylor [1] for triangular arrays of

rowwise independent random variables to the case of arrays of rowwise ρ̃-mixing random variables.

Wang et al. [3] generalized and improved the result of Hu and Taylor [1] to negatively associated

and linearly negative quadrant dependent random variables. Shen [4] provided some sufficient

conditions to prove the strong law of large numbers for arrays of negatively orthant dependent

random variables. Shen and Hu [5] obtained some strong law of large numbers for arrays of

rowwise ρ̃-mixing random variables under some simple and weak conditions. Inspired by Zhu

[2], Shen [4], Shen and Hu [5] and other papers above, we investigate convergence properties for

arrays of rowwise φ-mixing random variables. Firstly, let us recall the definitions of sequence of

φ-mixing random variables and array of rowwise φ-mixing random variables.

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(Ω,F , P ). Let n and m be positive integers. Write Fm
n = σ(Xi, n ≤ i ≤ m). Given σ-algebras

B,R in F , let

φ(B,R) = sup
A∈B,B∈R,P (A)>0

|P (B|A)− P (B)|.

Define the φ-mixing coefficients by

φ(n) = sup
k≥1

φ(Fk
1 ,F∞

k+n), n ≥ 0.

Definition 1.2 A sequence {Xn, n ≥ 1} of random variables is said to be a φ-mixing sequence

if φ(n) ↓ 0 as n → ∞.

An array {Xni, i ≥ 1, n ≥ 1} of random variables is called rowwise φ-mixing random vari-

ables if for every n ≥ 1, {Xni, i ≥ 1} is a sequence of φ-mixing random variables.

φ-mixing random variables were introduced by Dobrushin [6] and many applications have

been found. See for example, Dobrushin [6], Utev [7] and Chen [8] for central limit theorem,

Herrndorf [9] and Peligrad [10] for weak invariance principle, Utev [11] for weak convergence

rate, Sen [12,13] for weak convergence of empirical processes, Peligrad [14] for Ibragimov-Iosifescu

conjecture, Shao [15] for almost sure invariance principles, Hu and Wang [16] for large deviations,

Wang et al. [17] for Hájek-Rényi-type inequality and the strong law of large numbers for φ-mixing

sequence, and so forth.
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Our goal in this paper is to study convergence properties for arrays of rowwise φ-mixing

random variables. As an application, the Chung-type strong law of large numbers for arrays

of rowwise φ-mixing random variables is obtained. We will give some sufficient conditions for

the strong law of large numbers for an array of rowwise φ-mixing random variables without

assumption of identical distribution. The results presented in this paper are obtained by using

the truncated method and the classical maximal type inequality of φ-mixing random variables

(Lemma 1.3 below).

Throughout the paper, let I(A) be the indicator function of the set A. C denotes a positive

constant which may be different in various places.

The following lemma is useful for the proofs of the main results.

Lemma 1.3 ([17, Lemma 1.7]) Let {Xn, n ≥ 1} be a sequence of φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞. Assume that EXn = 0 and E|Xn|q < ∞ for some q ≥ 2 and each

n ≥ 1. Then there exists a constant C depending only on q such that

E
(

max
1≤j≤n

∣∣∣ j∑
i=1

Xi

∣∣∣q) ≤ C
{ n∑

i=1

E|Xi|q +
( n∑

i=1

EX2
i

)q/2}
for every n ≥ 1.

2. Main results and their proofs

In the section, we assume that {Xni, i ≥ 1, n ≥ 1} is an array of rowwise φ-mixing random

variables with mixing coefficients {φ(n), n ≥ 1} in each row. We will provide convergence

properties for arrays of rowwise φ-mixing random variables. As an application, the Chung-type

strong law of large numbers for arrays of rowwise φ-mixing random variables is obtained.

Theorem 2.1 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ with EXni = 0, i ≥ 1, n ≥ 1 and {an, n ≥ 1} be a sequence of

positive real numbers. Assume that {gn(t), n ≥ 1} is a positive sequence of even functions such

that gn(|t|)/|t| is an increasing function of |t| and gn(|t|)/|t|p is a decreasing function of |t| for
every n ≥ 1, respectively, that is

gn(|t|)
|t|

↑, gn(|t|)
|t|p

↓ as |t| ↑

for some positive constant p > 1. If 1 < p ≤ 2, we assume

∞∑
n=1

n∑
i=1

Egn(Xni)

gn(an)
< ∞, (2.1)

then for any ε > 0,

∞∑
n=1

P
(

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

Xni

∣∣∣ > ε
)
< ∞. (2.2)
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If p > 2, we also assume that (2.1) holds and

∞∑
n=1

( n∑
i=1

E
(Xni

an

)2)v/2

< ∞, (2.3)

where v is a positive constant and v ≥ p. Then for any ε > 0, (2.2) holds. Moreover,

1

an

n∑
i=1

Xni → 0 a.s. as n → ∞.

Proof For fixed n ≥ 1, define,

X
(n)
i = XniI(|Xni| ≤ an), i ≥ 1,

T
(n)
j =

1

an

j∑
i=1

(
X

(n)
i − EX

(n)
i

)
, j = 1, 2, . . . , n.

It is easy to check that for any ε > 0,(
max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

Xni

∣∣∣ > ε
)
⊂

(
max
1≤i≤n

| Xni |> an

)
∪
(

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

X
(n)
i

∣∣∣ > ε
)
,

which implies

P
(

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

Xni

∣∣∣ > ε
)
≤ P

(
max
1≤i≤n

| Xni |> an

)
+ P

(
max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

X
(n)
i

∣∣∣ > ε
)

≤
n∑

i=1

P (| Xni |> an) + P
(

max
1≤j≤n

| T (n)
j |> ε− max

1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣). (2.4)

By conditions EXni = 0, gn(|t|)/|t| ↑ as |t| ↑ and (2.1), we have that

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣ ≤ n∑
i=1

E|Xni|I(|Xni| > an)

an

≤
n∑

i=1

Egn(Xni)I(|Xni| > an)

gn(an)

≤
n∑

i=1

Egn(Xni)

gn(an)
→ 0 as n → ∞.

So we have

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣ → 0 as n → ∞. (2.5)

Obviously, combining (2.4) with (2.5), we obtain that for n large enough,

∞∑
n=1

P
(

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

Xni

∣∣∣ > ε
)
≤

∞∑
n=1

n∑
i=1

P (| Xni |> an) +
∞∑

n=1

P
(

max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
. (2.6)

Consequently, by (2.6), in order to prove (2.2), we need to show

∞∑
n=1

n∑
i=1

P (|Xni| > an) < ∞ (2.7)
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and
∞∑

n=1

P
(
max
1≤j≤n

|T (n)
j | > ε

2

)
< ∞. (2.8)

By gn(|t|)/|t| ↑ as |t| ↑, Markov’s inequality and (2.1), it follows that

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤
∞∑

n=1

n∑
i=1

P
(
gn(Xni) > gn(an)

)
≤

∞∑
n=1

n∑
i=1

Egn(Xni)

gn(an)
< ∞,

which implies (2.7).

Meanwhile, it is a fact that { 1
an

(X
(n)
i −EX

(n)
i ), 1 ≤ i ≤ j} is a sequence of φ-mixing random

variables with same mixing coefficients. Next we prove that (2.8) holds for the case p > 2 and

1 < p ≤ 2. For the case p > 2, by v ≥ p and gn(|t|)/|t|p ↓ as |t| ↑, it follows that gn(|t|)/|t|v ↓ as

|t| ↑ . So, we get by Markov’s inequality, Cr’s inequality, Lemma 1.3, (2.1) and (2.3) that

∞∑
n=1

P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
≤ C

∞∑
n=1

E
(

max
1≤j≤n

|T (n)
j |v

)
≤ C

∞∑
n=1

1

avn

{ n∑
j=1

E
∣∣∣X(n)

j − EX
(n)
j

∣∣∣v + ( n∑
j=1

E
∣∣∣X(n)

j − EX
(n)
j

∣∣∣2)v/2}
≤ C

∞∑
n=1

1

avn

{ n∑
j=1

E
∣∣∣X(n)

j

∣∣∣v + ( n∑
j=1

E
∣∣∣X(n)

j

∣∣∣2)v/2}
≤ C

∞∑
n=1

1

avn

n∑
j=1

E|Xnj |vI(|Xnj | ≤ an) + C
∞∑

n=1

1

avn

( n∑
j=1

E
∣∣∣X(n)

j

∣∣∣2)v/2

≤ C
∞∑

n=1

n∑
j=1

Egn(Xnj)

gn(an)
+ C

∞∑
n=1

( n∑
j=1

E
(Xnj

an

)2)v/2

< ∞.

Hence (2.8) holds for the case p > 2.

If 1 < p ≤ 2, by gn(t)/|t|p ↓ as |t| ↑, Markov’s inequality, Lemma 1.3, and (2.1), it follows

∞∑
n=1

P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
≤ C

∞∑
n=1

E
(

max
1≤j≤n

|T (n)
j |2

)
≤ C

∞∑
n=1

1

a2n

n∑
j=1

E
∣∣∣X(n)

j

∣∣∣2
≤ C

∞∑
n=1

1

a2n

n∑
j=1

E|Xnj |2I(|Xnj | ≤ an)

≤ C

∞∑
n=1

n∑
i=1

Egn(Xni)

gn(an)
< ∞.

So (2.8) holds for the case 1 < p ≤ 2. Consequently, (2.8) holds for the case p > 2 and 1 < p ≤ 2.

By (2.6)–(2.8), we obtain (2.2) immediately.



Convergence properties for arrays of rowwise φ-mixing random variables 613

On the other hand, by Borel-Cantelli Lemma, it follows that

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

Xni

∣∣∣ → 0 a.s. as n → ∞.

So (1.1) holds.

Theorem 2.2 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. Let

{gn(t), n ≥ 1} be a nonnegative sequence of even functions such that gn(|t|) is an increasing

function of |t| for every n ≥ 1. Assume that there exists a constant α > 0 such that gn(t) ≥ αt

for 0 < t ≤ 1. If
∞∑

n=1

n∑
i=1

Egn

(Xni

an

)
< ∞, (2.9)

then for any ε > 0, (2.2) holds.

Proof We use the same notation as that in Theorem 2.1. By the proof of (2.6) in Theorem 2.1,

we have to show that (2.5), (2.7) and (2.8) hold under the conditions of Theorem 2.2. Firstly,

by the conditions that gn(t) ≥ αt for 0 < t ≤ 1 and (2.9), we have that

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣ ≤ n∑
i=1

E
( |Xni|

an
I(|Xni| ≤ an)

)
≤ 1

α

n∑
i=1

Egn

(Xni

an

)
→ 0 as n → ∞.

So (2.5) holds.

Secondly, for |Xni| > an > 0, we have gn
(
Xni

an

)
≥ gn(1) ≥ α. By gn(|t|) ↑ as |t| ↑, Markov’s

inequality and (2.9), we can get that

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤
∞∑

n=1

n∑
i=1

P
(
gn

(Xni

an

)
≥ α

)
≤ 1

α

∞∑
n=1

n∑
i=1

Egn

(Xni

an

)
< ∞.

Hence (2.7) holds.

On the other hand, by Markov’s inequality, Lemma 1.3 with q = 2, gn(t) ≥ αt for 0 < t ≤ 1

and (2.9), we get that

∞∑
n=1

P
(

max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
≤ C

∞∑
n=1

n∑
i=1

EX2
niI(|Xni| ≤ an)

a2n

≤ C
∞∑

n=1

n∑
i=1

E|Xni|I(|Xni| ≤ an)

an

≤ C
∞∑

n=1

n∑
i=1

Egn

(Xni

an

)
< ∞.

Then we obtain (2.8). By (2.5), (2.7) and (2.8), we have (2.2) finally.
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Corollary 2.3 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. If there

exists a constant β ∈ (0, 1] such that

∞∑
n=1

n∑
i=1

E
( |Xni|β

aβn + |Xni|β
)
< ∞,

then (2.2) holds.

Proof In Theorem 2.2, we take

gn(t) =
|t|β

1 + |t|β
, 0 < β ≤ 1, n ≥ 1.

It is easy to check that {gn(t), n ≥ 1} is a sequence of nonnegative, even functions such that

gn(|t|) is an increasing function of |t| for every n ≥ 1, and

gn(t) ≥
1

2
tβ ≥ 1

2
t, 0 < t ≤ 1, 0 < β ≤ 1.

Therefore, we apply Theorem 2.2 and get (2.2) immediately. �

Theorem 2.4 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. EXni =

0, i ≥ 1, n ≥ 1. Let {gn(t), n ≥ 1} be a sequence of nonnegative and even functions. Assume

that there exist β ∈ [1, 2] and α > 0 such that gn(x) ≥ αxβ for 0 < x ≤ 1 and there exists α > 0

such that gn(x) ≥ αx for x > 1. If (2.9) is satisfied, then for any ε > 0, (2.2) holds.

Proof We also use the same notation as that in Theorem 2.1. By the proof of (2.6) in Theorem

2.1, we have to show that (2.5), (2.7) and (2.8) hold under the conditions of Theorem 2.4. Firstly,

by the conditions that EXni = 0, gn(x) ≥ αx for x > 1 and (2.9), it follows

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣ ≤ 1

an

n∑
i=1

E(|Xni|I(|Xni| > an))

≤ 1

α

n∑
i=1

Egn

(Xni

an

)
I(|Xni| > an)

≤ 1

α

n∑
i=1

Egn

(
Xni

an

)
→ 0 as n → ∞

which implies (2.5).

Obviously, the conditions gn(x) ≥ αx for x > 1 and (2.9) yield that

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤
∞∑

n=1

n∑
i=1

E
( |Xni|

an
I(|Xni| > an)

)
≤ 1

α

∞∑
n=1

n∑
i=1

Egn

(Xni

an

)
I(|Xni| > an)

≤ 1

α

∞∑
n=1

n∑
i=1

Egn

(Xni

an

)
< ∞,
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which implies (2.7).

Meanwhile, by Markov’s inequality, Lemma 1.3 with q = 2, gn(x) ≥ αxβ for 1 ≤ β ≤ 2,

0 < x ≤ 1 and (2.9), it follows that

∞∑
n=1

P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
≤ C

∞∑
n=1

n∑
i=1

EX2
niI(|Xni| ≤ an)

a2n

≤ C

∞∑
n=1

n∑
i=1

E|Xni|βI(|Xni| ≤ an)

aβn

≤ C
∞∑

n=1

n∑
i=1

Egn

(Xni

an

)
I(|Xni| ≤ an)

≤ C
∞∑

n=1

n∑
i=1

Egn

(Xni

an

)
< ∞,

which implies (2.8). This completes the proof of the theorem. �

Corollary 2.5 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. EXni =

0, i ≥ 1, n ≥ 1. If there exists a constant β ∈ (1, 2] such that

∞∑
n=1

n∑
i=1

E
( |Xni|β

an|Xni|β−1 + aβn

)
< ∞,

then (2.2) holds.

Proof In Theorem 2.4, we take

gn(t) =
|t|β

1 + |t|β−1
, 1 < β ≤ 2, n ≥ 1.

It is easy to check that {gn(t), n ≥ 1} is a sequence of nonnegative, even functions such that

gn(|t|) is an increasing function of |t| for every n ≥ 1. And

gn(x) ≥
1

2
xβ , 0 < x ≤ 1, 1 < β ≤ 2 and gn(x) ≥

1

2
x, x > 1.

Therefore, by Theorem 2.4, we can easily get (2.2). �
On the other hand, by Corollaries 2.3 and 2.5, we get the following important Chung-type

strong law of large numbers for arrays of rowwise φ-mixing random variables.

Corollary 2.6 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. Assume

that there exists some β ∈ (0, 2] such that

∞∑
n=1

n∑
i=1

E|Xni|β

aβn
< ∞.

Let EXni = 0, i ≥ 1, n ≥ 1. I f β ∈ (1, 2], then (2.2) holds. Furthermore, 1
an

∑n
i=1 Xni → 0 a.s.

Theorem 2.7 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables
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satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. Let

{gn(t), n ≥ 1} be a nonnegative sequence of even functions. Assume that there exists an α > 0

such that gn(x) ≥ αx for x > 0. If (2.9) satisfies, then for any ε > 0, (2.2) holds.

Proof We also use the same notation as that in Theorem 2.1. By the conditions that gn(x) ≥ αx

for x > 0 and (2.9), we have

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣ ≤ 1

an

n∑
i=1

E|Xni|I(|Xni| ≤ an)

≤ 1

α

n∑
i=1

Egn

(Xni

an

)
→ 0 as n → ∞,

which implies (2.5).

Obviously, the conditions gn(x) ≥ αx for x > 0 and (2.9) yield that

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤
∞∑

n=1

n∑
i=1

E
( |Xni|

an
I(|Xni| > an)

)
≤ 1

α

∞∑
n=1

n∑
i=1

Egn

(Xni

an

)
< ∞,

which implies (2.7).

Meanwhile, by Markov’s inequality, Lemma 1.3 with q = 2, gn(x) ≥ αx for x > 0 and (2.9),

it can be checked that

∞∑
n=1

P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
≤ C

∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)

a2n

≤ C

∞∑
n=1

n∑
i=1

E|Xni|I(|Xni| ≤ an)

an

≤ C
∞∑

n=1

n∑
i=1

Egn

(Xni

an

)
I(|Xni| ≤ an)

≤ C
∞∑

n=1

n∑
i=1

Egn

(Xni

an

)
< ∞,

which implies (2.8). This completes the proof of the theorem. �

Theorem 2.8 Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise φ-mixing random variables

satisfying
∑∞

n=1 φ
1/2(n) < ∞ and {an, n ≥ 1} be a sequence of positive real numbers. Let

{gn(t), n ≥ 1} be a nonnegative sequence of even functions. Assume that there exist β ∈ [2,∞)

and α > 0 such that gn(x) ≥ αxβ for x > 0. If

∞∑
n=1

n∑
i=1

(
Egn

(Xni

an

))1/β

< ∞, (2.10)

then for any ε > 0, (2.2) holds.
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Proof We use the same notation as that in Theorem 2.1. One can see that (2.10) implies that

∞∑
n=1

n∑
i=1

Egn

(Xni

an

)
< ∞ (2.11)

and
∞∑

n=1

n∑
i=1

(
Egn

(Xni

an

))2/β

< ∞. (2.12)

Firstly, by Hölder’s inequality, gn(x) ≥ αxβ for β ≥ 2, x > 0, and (2.10), it follows

max
1≤j≤n

∣∣∣ 1
an

j∑
i=1

EX
(n)
i

∣∣∣ ≤ 1

an

n∑
i=1

E|Xni|I(|Xni| ≤ an)

≤
n∑

i=1

(
E
( |Xni|β

aβn
I(|Xni| ≤ an)

))1/β

≤ C
n∑

i=1

(
Egn

(Xni

an

)
I(|Xni| ≤ an)

)1/β

≤ C

n∑
i=1

(
Egn

(Xni

an

))1/β

→ 0 as n → ∞,

which implies (2.5).

Secondly, by the conditions gn(x) ≥ αxβ for β ≥ 2, x > 0 and (2.11), it can be seen that

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤
∞∑

n=1

n∑
i=1

E
( |Xni|β

anβ
I(|Xni| > an)

)
≤ 1

α

∞∑
n=1

n∑
i=1

Egn

(Xni

an

)
< ∞,

which implies (2.7).

Meanwhile, by Markov’s inequality, Lemma 1.3 with q = 2 and Hölder’s inequality, gn(x) ≥
αxβ for β ≥ 2, x > 0 and (2.12), we obtain that

∞∑
n=1

P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε

2

)
≤ C

∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)

a2n

≤ C
∞∑

n=1

n∑
i=1

(
E
|Xni|β

aβn
I(|Xni| ≤ an)

)2/β

≤ C
∞∑

n=1

n∑
i=1

(
Egn

(Xni

an

)
I(|Xni| ≤ an)

)2/β

≤ C
∞∑

n=1

n∑
i=1

(
Egn

(Xni

an

))2/β

< ∞,

which implies (2.8). Therefore, by (2.5), (2.7) and (2.8), we obtain (2.2) finally. �
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