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1. Introduction

The search for a new concept of invariant characteristics of Lie algebras led to the defini-
tion of («, B,7)-derivations which has been studied in connection with degeneration theory of
algebras [1,2]. Recently, twisted cocycles of Lie algebras corresponding to («, 3, v)-derivations
were introduced in [3] and (a, 3, y)-derivations of complex simple Lie algebras were determined by
Burde and Dekimpe in [4]. We generalized the definition of (o, 3, y)-derivations to super-versions
and investigated some properties of (a, 3, 7)-superderivations for finite dimensional complex Lie
superalgebras in detail [5]. The aim of this paper is to give two results with respect to («, 3,7)-
superderivations of general superalgebras and the original motivation comes from the researches
of Zusmanovich [6].

Throughout this paper we will assume that C is the field of complex numbers and Zy = {0,1}
is the residue class ring modulo 2.

Let A = A @ A7 be a finite dimensional superalgebra over C. Without being men-
tioned explicitly, if deg(a) occurs in some expression in this paper, we always regard a as a
Zo-homogeneous element and deg(a) as the Zo-degree of a. The standard Lie super-commutator
and Jordan super-product will be written as usual by [a,b] = ab — (—1)d&(@dee®)pg and by
aob=2" (ab+ (—1)dee(@dee®)pg) for all a,b € A, respectively.

One may argue that the more natural approach would be to generalize the corresponding
supernotion. Recall that a Zs-homogeneous linear map D : A — A is called a superderivation of

a superalgebra A = Ag @ Ay if
D(ab) = D(a)b+ (—1)3esD)des(@)q p(p)
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for any two Zs-homogeneous elements a,b € A.

The supercentroid of A is the set of all Zy-homogeneous linear maps x : A — A such that
X(ab) = x(a)b = (—1)80wE@ay (p)

for any two Zs-homogeneous elements a,b € A.

Accordingly, a Zgs-homogeneous linear map D is called an («, 8, ~y)-superderivation of A if
aD(ab) = BD(a)h + (~1)™EP)eE) 10 p(y)

for any two Zs-homogeneous elements a,b € A. Like in the ordinary case, this generalizes
superderivations (for &« = 8 = = 1), elements of supercentroid (for « = g and v =0, for a = v

and =0 or for g =2 = 1) and elements of §-superderivations (for g =1=Y9).

2. Main results and proofs
Let a,a’, 3,5,7v,7 be elements of the complex field C.

Theorem 2.1 Let A be a superalgebra. If D is an («, 3,v)-superderivation of A and D’ is an
(o, B',7")-superderivation of A, then [D,D’] and D o D" are (ad/, 83, v7")-superderivations of
A.

Proof Let x and y be arbitrary elements of A. Then
ad/[D, D')(zy) = aa’ DD’ (zy) — (—1)38P)des(D) oo/ D' D (2y)
= aff' D(D' (x)y) + (-1 P ay/ D@D’ ()~
(_1)dcg(D)dcg(D’)a/ﬁD/(D(x)y) _ (—l)ng(D)(ng(D/)erCg(m))O/’)/D/(JZD(y))
= B'DD/ (w)y + (—1)1esP eI+ 1y DY (2) D(y) +
(_1)deg(D/)deg(w)ﬁ,y/D(x)D/(y) + (_1)deg(z)(deg(D/)-i-deg(D)),Y,y/xDD/(y)_
(_1)deg(D)deg(D’)ﬂB/D/D(x)y _ (_1)deg(D’)deg(m)/B,y/D(x)D/(y)_
(_1)deg(D)(deg(D’)+deg(r))ﬂUYD’(x)D(y)_
(_1)deg(D)deg(D/)+deg(w)(deg(D')+deg(D)),y,y/xD/D(y)
_ Bﬁ/[D7 D/]<x)y + (_1)deg(ac)(deg(D’).t,_deg(D)),y,ylx[l)7 D/](y)
Therefore, [D, D’] is an (aa/, B5’,v7y')-superderivation of A. By the similar method, D o D’ is

also an (aa/, B’,v7')-superderivation of A.

Theorem 2.2 Let A and B be two superalgebras.
(i) If D is an («a, 8, 7y)-superderivation of A, then the map D: (A® B)sg —» A® B defined

as

ap @ by + a7 ® by = D(ag) ® by + D(a1) @ by

for ay € Ay, a7 € Az, by € Bg, by € B, is an («, 8,7)-derivation of (A ® B)g with values in
A® B.
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(ii) If D is an («, 8,7)-superderivation of A and x is an element of the supercentroid of B
such that deg(D) = deg(), then the map D : (A® B)s — (A ® B)g defined as

ag ® by + a; @ by — D(ag) ® x(by) + (—1)*# ) D(a7) ® x(by)

for ag € Ag, a1 € Az, by € By, by € By, is an («, 8,~)-derivation of (A ® B)jg.

Proof (i) A direct verification shows that

aD ((ag @ by + a3 ® by)(cg @ dg + ¢1 ® dy))
= aD (ages ® bydg + ager ® bydi + ajcg ® bidg — ajep © bidi)

= aD(agcy) ® bydy + aD(ager) ® bydi+

(—1)* &P aD(a1c5) @ bidg — aD(ajer) ® byd;

= BD(ag)cg ® bydg + vyagD(cg) ® bgdg+
BD(ag)ei & bgdi + vagD(cq) & bgdi+

D(az)cg @ bidg + (—1)*&P) a1 D(c5) @ brdg—

BD(ar)er ® bydy — (—1)*#PlyaiD(er) © bids
= B((D(ag) ® bg)(co ® dg) + (D(ap) @ bg)(c1 ® di)+

(D(a1) ® bi)(co ® d) + (D(a1) ® bi)(e1 ® di))+

¥((ag ® bg)(D(cp) @ dp) + (ag ® bg)(D(cr) @ dy)+

(a1 ® b1)(D(cg) ® dg) + (a1 ® b1)(D(cq) ® di))
= B(D(ap) ® x(bs) + D(a1) ® x(b1))(cog ® dg + 1 @ d1)+

Y(ap ® b + a1 ® b1)(D(cg) @ x(dg) + D(c1) @ x(dp))
= BD (ag ® bg + a7 @ by) (cg @ dg + 1 @ di )+

v(ag ® by + a; @ by)D (cg @ dg + 1 ® d)

sy

for all ¢g € Ay, ¢1 € Az, dg € By, di € By. Thus, the desired result is obtained.

(ii) For all ¢5 € A(), ci € Aj, dg € Bg, di € Bi, we have

aD ((ag ® by + a3 @ br)(cy @ dy + 1 @ dy))
aﬁ(

ageg ® bydg + ager ® bydi + ajcg ® bidg — ajer @ bidy)

= aD(ageg) @ x(byd) + (1) P aD(ager) @ x(bods)+
(1) aD(aicq) @ x(bids) — aD(aier) @ x(bids)

BD(ag)es @ x(bg)do + vagD(c5) ® x(bg)do+

(=1)*5 P 8D (ag)er @ x(bo)di + (~1)**#P)yag D(er) @ x(bo)di+
(—=1)%EP) 8D (a1)cy ® x(b1)ds + vai D(cg) @ x(br)dg—

BD(a1)er @ x(br)ds — (=1)** P yas D(er) @ x(by)ds.

(
(



630 Keli ZHENG and Yongzheng ZHANG
On the other side,

BD (ag @ by + ai @ b) (c5 @ dg + ¢i @ di)+

v(ag ® bg + a7 ® by)D (¢ ® dg + 1 @ di)

B(D(ag) ® x(bg) + (—1)*5P) D(az) @ x(b1))(c5 @ dg + 1 @ di)+
Y(ag @ bg + a1 ® by)(D(cg) @ x(dg) + (=1)**”) D(eq) @ x(dy))
B(D(ag)cy ® x(bg)ds + (—1)*8P) D(ag)er @ x(bg)di+
(—1)*8P) D(a1)cy @ x(br)dy — D(ag)er @ x(bi)dy)+
Y(agD(c5) © byx(dg) + (—1)* P agD(er) @ byx(di)+
(—=1)*8P)az D(cg) @ bix(dg) — azD(er) © bix(di))

= BD(ag)co ® x(bg)dy + (—1)*5P) 8D (ag)c; @ x(by)di+
(=)= BD(ag)cg ® x(b1)ds — BD(az)er ® x(bi)di+
~vagD(eg) © x(bg)do + (— )eg%aoD( 1) ® x(bg)di+
~vaiD(cg) @ x(b1)ds — (—=1)*¥P)yas D(e1) @ x(by)ds.

Therefore, D is an (v, 3,7)-derivation of (A ® B)g.

Remark 2.3 Theorem 2.2 is a generalization of Lemma 4.2 in [6]. But there is an error in [6,
Lemma 4.2 (ii)]. Recently, Prof. Pasha Zusmanovich has given an erratum [7] to correct this

€error.
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