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Abstract In this paper, we first give the definitions of a crossed left π-H-comodules over a

crossed weak Hopf π-algebra H, and show that the category of crossed left π-H-comodules is a

monoidal category. Finally, we show that a family σ = {σα,β : Hα⊗Hβ → k}α,β∈π of k-linear

maps is a coquasitriangular structure of a crossed weak Hopf π-algebra H if and only if the

category of crossed left π-H-comodules over H is a braided monoidal category with braiding

defined by σ.
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1. Introduction

The notion of a quasitriangular Hopf algebra was introduced by Drinfel’d [2] when he stud-

ied the Yang-Baxter equation. Because of their close connections with varied, a priori remote

areas of mathematics and physics, this theory has got fast development and many fundamental

achievements, see, for example, [5]. Recently, Turaev [7] introduced a Hopf π-coalgebra, which

generalizes the notion of a Hopf algebra. Van Daele and Wang studied algebraic properties of

weak Hopf group coalgebras and generalized many of the properties of quasitriangular weak Hopf

algebras in [1] to the setting of quasitriangular weak Hopf group coalgebras in [8]. Wang also

investigated properties of coquasitriangular Hopf group algebras in [9].

In this paper, we give the definitions of a crossed left π-H-comodules over a crossed weak

Hopf π-algebra H, and show that the categories of crossed left π-H-comodules is a monoidal

category. Finally, we show that a family σ = {σα,β : Hα ⊗Hβ → k}α,β∈π is a coquasitriangular

structure of a crossed weak Hopf π-algebra H if and only if the category of crossed left π-H-

comodules over H is a braided monoidal category with braiding defined by σ.

2. Preliminaries

Throughout the paper, we let π be a discrete group (with neutral element 1) and k be a
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fixed field. All algebras and coalgebras, π-algebras, and Hopf π-algebras are defined over k. The

definitions and properties of algebras, coalgebras, Hopf algebras and categories can be found in

[3, 4, 6]. We use the standard Sweedler notation for comultiplication. The tensor product ⊗ = ⊗k

is always assumed to be over k. The following definitions and notations in this section can be

found in [9].

2.1. π-algebras

A π-algebra is a family H = {Hα}α∈π of k-spaces together with a family of k-linear maps

m = {mα,β : Hα ⊗Hβ −→ Hαβ}α,β∈π (called a multiplication ) and a k-linear map η : k −→ H1

(called a unit), such that m is associative in the sense that, for any α, β, γ ∈ π,

mαβ,γ(mα,β ⊗ idHγ ) = mα,βγ(idHα ⊗mβ,γ),

mα,1(idHα ⊗ η) = idHα = m1,α(η ⊗ idHα).

2.2. Hopf π-algebras

A Hopf π-algebra H is a family {(Hα,∆α, εα)}α∈π of k-coalgebras, here Hα is called the

αth component of H, endowed with the following data.

• A family of k-linear maps m = {mα,β : Hα ⊗ Hβ −→ Hαβ}α,β∈π, called multiplication,

that is associative, in the sense that, for any α, β, γ ∈ π,

mαβ,γ(mα,β ⊗ idγ) = mα,βγ(idα ⊗mβ,γ). (2.1)

mα,1(idHα ⊗ η) = idHα = m1,α(η ⊗ idHα). (2.2)

Given h ∈ Hα and g ∈ Hβ , with α, β ∈ π, we set hg = mα,β(h ⊗ g). With this notation,

Eq. (2.1) can be simply rewritten as (hg)l = h(gl) for any h ∈ Hα, g ∈ Hβ , l ∈ Hγ and α, β, γ ∈ π.

• The map mα,β : Hα ⊗Hβ −→ Hαβ is a morphism of coalgebras such that

∆αβmα,β = (mα ⊗mβ)∆αβ , (2.3)

(εα ⊗ ξβ) = ξαβmα,β , (2.4)

where we used Sweedler’s notation: ∆β(g) = g(1,β) ⊗ g(2,β) for any h ∈ Hα, g ∈ Hβ , l ∈ Hγ and

α, β, γ ∈ π.

• A set of k-linear maps S = {Sα : Hα −→ Hα−1}α∈π, the antipode, such that,

mα−1,α(Sα ⊗ idHα)∆α = εα11 = mα,α−1(idHα ⊗ Sα)∆α, (2.5)

for any h ∈ Hα and α ∈ π.

Furthermore, the Hopf π-algebra H is called crossed if the following condition holds: There

exists a family of coalgebra isomorphisms ξ = {ξβ : Hα −→ Hβαβ−1}, called conjugation, such

that

– ξ is multiplicative, i.e., for any α, β and γ ∈ π, one has ξβξγ = ξβγ : Hα −→ H(βγ)α(βγ)−1 ,

in particular, ξ1|Hα = idα.

– ξ is compatible with m, i.e., for any β ∈ π, we have ξβ(hg) = ξβ(h)ψβ(g).

– ξ is compatible with 1, i.e., for any β ∈ π, we have ξβ(1) = 1.
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– ξ preserves the antipode, i.e., ξβSα = Sβαβ−1ξβ .

The weak Hopf π-algebra H is said to be of finite type if, for all α ∈ π, Hα is finite-

dimensional as k-space. Note that it does not mean that
⊕

α∈πHα is finite dimensional (unless

Hα = 0 for all but a finite number of α ∈ π). Hence, in this case the dual of weak Hopf π-algebra

is not a weak Hopf π-coalgebra. The antipode S = {Sα}α∈π of H is called bijective if each Sα is

bijective.

2.3. Left π-H-comodules

Assume that H = {Hα}α∈G is a family of coalgebras. A left H-π-comodule over H is a

family M = {Mα}α∈π of k-spaces such that Mα is a left Hα-comodule for any α ∈ π. We denote

the structure maps of left Hα-comoduleMα and left π-H-comoduleM by ρMα :Mα → Hα⊗Mα

and ρM = {ρMα}α∈π, respectively.

We use the Sweedler’s notation in the following way; for m ∈Mα, we write

ρMα(m) = m(−1,α) ⊗m(0,α).

2.4. Left π-H-comodule maps

Assume that H = {Hα}α∈G is a family of coalgebras. Let M = {Mα}α∈π, N = {Nα}α∈π

be two left π-comodules over H. A left π-H-comodule map f : M → N is a family f = {fα :

Mα → Nα}α∈π of k-linear maps such that ρNαfα = (idHα ⊗ fα)ρ
Mα for all α ∈ π.

3. Weak Hopf π-algebras

In this section, we mainly study some structure properties of weak Hopf π-algebras.

Definition 3.1 A weak Hopf π-algebra H is a family {(Hα,∆α, εα)}α∈π of k-coalgebras, here

Hα is called the αth component of H, endowed with the following data.

• A family of k-linear maps m = {mα,β : Hα ⊗ Hβ −→ Hαβ}α,β∈π, called multiplication,

that is associative, in the sense that, for any α, β, γ ∈ π,

mαβ,γ(mα,β ⊗ idγ) = mα,βγ(idα ⊗mβ,γ). (3.1)

Given h ∈ Hα and g ∈ Hβ , with α, β ∈ π, we set hg = mα,β(h ⊗ g). With this notation,

Eq. (3.1) can be simply rewritten as (hg)l = h(gl) for any h ∈ Hα, g ∈ Hβ , l ∈ Hγ and α, β, γ ∈ π.

• The map mα,β : Hα ⊗ Hβ −→ Hαβ is a (not necessary counit-preserving) morphism of

coalgebras such that

εαβγ(hgl) = εαβ(hg(1,β))εβγ(g(2,β)l) = εαβ(hg(2,β))εβγ(g(1,β)l) (3.2)

where we used Sweedler’s notation: ∆β(g) = g(1,β) ⊗ g(2,β) for any h ∈ Hα, g ∈ Hβ , l ∈ Hγ and

α, β, γ ∈ π.

• An algebra morphism η : k −→ H1, called unit, such that, if we set 1 = η(1k), then,

1h = h = h1, for any h ∈ Hα with α ∈ π, (3.3)
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(∆1 ⊗ id)∆1(1, 1) = 1(1,1) ⊗ 1(2,1)1
′
(1,1) ⊗ 1′(2,1) = 1(1,1) ⊗ 1′(1,1)1(2,1) ⊗ 1′(2,1) (3.4)

where 1 = 1′.

• A set of k-linear maps S = {Sα : Hα −→ Hα−1}α∈π, the antipode, such that,

mα−1,α(Sα ⊗ idα)∆α(h) = 1(1,α−1)εα(h1(2,α)), (3.5)

mα,α−1(idα ⊗ Sα)∆α(h) = εα(1(1,α)h)1(2,α−1), (3.6)

Sα(h(1,α))h(2,α−1)Sα(h(3,α)) = Sα(h) (3.7)

for any h ∈ Hα and α ∈ π.

Definition 3.2 A weak Hopf π-algebra H is called crossed if the following condition holds:

There exists a family of coalgebra isomorphisms ξ = {ξβ : Hα −→ Hβαβ−1}, called conjugation,

such that

– ξ is multiplicative, i.e., for any α, β and γ ∈ π, one has ξβξγ = ξβγ : Hα −→ H(βγ)α(βγ)−1 ,

in particular, ξ1|Hα = idα.

– ξ is compatible with m, i.e., for any β ∈ π, we have ξβ(hg) = ξβ(h)ξβ(g).

– ξ is compatible with 1, i.e., for any β ∈ π, we have ξβ(1) = 1.

Example 3.3 Recall that a finite groupoid G is a category, in which every morphism is an

isomorphism, with a finite number of objects. The set of objects of G will be denoted by G0,

and the set of morphisms by G1. The identity morphism on x ∈ G0 will also be denoted by x.

The source and target maps will be denoted by s and t respectively, i.e., for α : x −→ y in G1,

we have s(α) = x and t(α) = y. For every x ∈ G, Gx = {α ∈ G|s(α) = t(α) = x} is a group.

Let G be a groupoid. The groupoid algebra is the direct product k[G] =
⊕

α∈G1
kuα, with

multiplication defined by the rule uαuβ = uαβ if s(α) = t(β) and uαuβ = 0 if s(α) ̸= t(β). The

unit is 1 =
∑

x∈G0
ux. k[G] is a weak Hopf algebra, with comultiplication, counit and antipode

given by the formulas

∆(uα) = uα ⊗ uα, ε(uα) = 1 and S(uα) = uα−1 .

Using ∆(1) =
⊕

x∈G0
ux ⊗ ux, we have that εt : kG −→ kG is given by εt(uα) =∑

x∈G0
ε(uxuα) = ut(α). Similarly, we have that εs : kG −→ kG is given by εs(uα) =∑

x∈G0
ε(uαux) = us(α).

The dual of kG is the weak Hopf algebra k(G) = kG of functions G −→ k. It has a basis

(eg : G −→ k)g∈G1 defined by ⟨eg, h⟩ = δg,h. That is, as a k-space we have k[G] =
∑

g∈G1
keg.

The weak Hopf algebra structure of k(G) are given by

egeh = δg,heg; 1 =
∑
g∈G1

eg;

∆(eg) =
∑
xy=g

ex ⊗ ey =
∑

t(x)=t(g)

ex ⊗ ex−1g; ε(
∑
g∈G1

ageg) =
∑
x∈G0

axex;

S(eg) = eg−1 ; ∆(1) = 1(1) ⊗ 1(2) =
∑

t(g)=s(h)

eg ⊗ eh
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for any g, h ∈ G1.

Set ϕ : k[G] −→ Aut(k[G]) defined by ϕg(h) = ghg−1. It is a well defined group ho-

momorphism. This data leads to a quasi-triangular weak Hopf G1-coalgebra D(k[G], k(G)) =

{D(k[G], k(G))(α,β) = D(k[G], k(G), ⟨ , ⟩, ϕ)/I(α,β)}(α,β)∈S (G1) which will be denoted byDG(G) =

{D(α,β)(G)}(α,β)∈G1
. More explicitly, DG(G) is described as follows:

For any α, β ∈ G1, the algebra structure of D(α,β)(G), which is equal to k[G] ⊗ k(G) as a

k-space, is given by

[g ⊗ eh][g
′ ⊗ eh′ ] = δαg′α−1,h−1βg′β−1h′gg′ ⊗ eh′ for all g, g′, h, h′ ∈ G1,

1
D(α,β)(G)

=
∑

x∈G0,g∈G1

[ux ⊗ eg].

The crossed weak Hopf G-coalgebra structures of DG(G) are given, for any α, β, λ, γ ∈ G1

and g, h ∈ G1, by

∆(α,β),(λ,γ)([g ⊗ eh]) =
∑
xy=h

[g ⊗ eγxγ−1 ]⊗ [g ⊗ eγαγ−1yγα−1γ−1 ],

ε([g ⊗ eh](1,1)) = δh,1,

S(α,β)([g ⊗ eh]) = [g−1 ⊗ eαβα−1gαh−1βg−1β−1α−1 ],

φ
(λ,γ)
(α,β)([g ⊗ eh]) = [β−1αgα−1β ⊗ eγα−1γ−1βhβ−1γαγ−1 ].

Then DG(G)
∗ =

⊕
α∈GDG(G)

∗
α is a crossed weak Hopf G-algebra.

Lemma 3.4 It is easy to get the following identities:

(a) ξ1 | Hα = idHα for all α ∈ π.

(b) ξ−1
α = ξα−1 for all α ∈ π.

(c) ξ preserves the antipode, i.e., ξβ ◦ Sα = Sβαβ−1 ◦ ξβ for all α, β ∈ π.

Let H be a weak Hopf π-algebra. Define a family of linear maps εt = {εtα : Hα → H1}α∈π

by εtα(h) = εα(1(1,1)h)1(2,1) and εs = {εsα : Hα → H1}α∈π by εsα(h) = 1(1,1)εα(h1(2,1)) for all

h ∈ Hα, where ε
t, εs are called the π-target and π-source counital maps. Introduce the notations

Ht := εt(H) = {Ht
1 = εtα(Hα)}α∈π and Hs := εs(H) = {Hs

1 = εsα(Hα)}α∈π for their images.

By Eq. (3.2), one immediately obtains the following identities:

εαβ(gh) = εα(gε
t
β(h)), εαβ(gh) = εβ(ε

s
α(g)h), (3.8)

εt1 ◦ εtα = εtα, εs1 ◦ εsα = εsα. (3.9)

Lemma 3.5 Let H be a weak Hopf π-algebra. Then we have, for all x ∈ Hα, y ∈ Hβ and

α, β ∈ π

(i) x(1,α) ⊗ εtα(x(2,α)) = 1(1,1)x⊗ 1(2,1), (3.10)

(ii) εsα(x(1,α))⊗ x(2,α) = 1(1,1) ⊗ x1(2,1), (3.11)

(iii) xεtβ(y) = εαβ(x(1,α)y)x(2,α), (3.12)

(iv) εsβ(y)x = x(1,α)εβα(yx(2,α)), (3.13)

(v) Ht
1 and Hs

1 are subalgebras of H1 containing the unit 1 and we have
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htgs = gsht for all ht ∈ Ht
1 and gs ∈ Hs

1 . (3.14)

Proof (i) We compute as follows

x(1,α) ⊗ εtα(x(2,α)) = x(1,α) ⊗ εα(1(1,1)x(2,1))1(2,1) = 1̃(1,1)x(1,α) ⊗ ε(1(1,1)1̃(2,1)x(2,α))1(2,1)

= 1(1,1)x(1,α) ⊗ ε(1(2,1)x(2,α))1(3,1) = 1(1,1)x⊗ 1(2,1).

(ii) is similar to (i).

(iii) and (iv) are immediate consequence of (ii) and (i).

(v) Obviously, 1 ∈ Ht
1 ∩Hs

1 since εtα(1α) = εsα(1α) = 1, and Ht
1 and Hs

1 commute with each

other. Finally, the fact that Ht
1 and Hs

1 are subalgebras of H1 follows from the formulae:

1(1,α) ⊗ εtβ(1(2,β))⊗ 1(3,γ) = 1̃(1,1)1(1,α) ⊗ 1̃(2,1) ⊗ 1(2,γ), (3.15)

1(1,γ) ⊗ εsβ(1(2,β))⊗ 1(3,α) = 1(1,γ) ⊗ 1̃(1,1) ⊗ 1(2,α)1̃(2,1), (3.16)

for all α, β, γ ∈ π. We also give a direct proof as follows

εtα(h)ε
t
β(g)

(3.12)
= εβ(ε

t
α(h)(1,1)g)ε

t
α(h)(2,1)

= εβ(1(1,1)ε
t
α(h)g)1(2,1) = εtβ(ε

t
α(h)g).

A statement about Hs
1 is proven similarly. �

Lemma 3.6 Let H be a weak Hopf π-algebra. Then we have

(i) The kernel Kerεtα is a left ideal of Hα and Kerεsα is a right ideal of Hα for all α ∈ π;

(ii) We have the following formulae

εtβ(ε
t
α(x)y) = εtα(x)ε

t
β(y), εsα(xε

s
β(y)) = εsα(x)ε

s
β(y); (3.17)

(iii) Furthermore, if H is crossed with the crossing ξ = {ξα}α∈π, then we have

ξβ ◦ εsα = εsβαβ−1 ◦ ξβ , ξβ ◦ εtα = εtβαβ−1 ◦ ξβ

for any α, β ∈ π.

Proof (i) Easy. (ii) One has

εtβ(ε
t
α(x)y) = εβ(1(1,1)ε

t
α(x)y)1(2,1)

(3.9)
= ε1(1(1,1)ε

t
α(x)ε

t
β(y))1(2,1)

(3.10)
= εtα(z) = εtα(x)ε

t
β(y).

(iii) We just check that the first formula holds. The second one can be proved similarly. For

any h ∈ Hα and α, β ∈ π, one has

εsβαβ−1ξβ(h) = 1(1,1)εβαβ−1(ξβ(h)1(2,1)) = 1(1,1)εα(hξβ−1(1(2,1)))

= ξβ(1(1,1))εα(h1(2,1)) = ξβε
s
α(h).

This finishes the proof. �
By Eqs. (3.5)–(3.7), we have Sα(x) = Sα(x(1,α))ε

t
α(x(2,α)) = εsα(x(1,α))Sα(x(2,α)).

Theorem 3.7 Let H be a weak Hopf π-algebra. Then
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(i) Sαβ(xy) = Sβ(y)Sα(x) for any α ∈ π and x ∈ Hα, y ∈ Hβ ;

(ii) Sα(1α) = 1α−1 for any α ∈ π.

Furthermore if H is of finite type then S : H −→ H is bijective, i.e., Sα : Hα −→ Hα−1 is

bijective for any α ∈ π.

Proof Similar to [1]. �

Proposition 3.8 (i) We have the following formulae:

εtα(x) = εα−1(Sα(x)1(1,1))1(2,1), εsα(x) = 1(1,1)εα−1(1(2,1)Sα(x)),

εtα(x) = S1(1(1,1))εα(1(2,1)x), εsα(x) = εα(x1(1,1))S1(1(2,1))

for any x ∈ Hα.

(ii) the following identities hold

εtα ◦ Sα−1 = εt1 ◦ εsα−1 = S1 ◦ εsα−1 , εsα ◦ Sα−1 = εs1 ◦ εtα−1 = S1 ◦ εtα−1 .

Proof Similar to [1]. �

4. The category of crossed left π-H comodules

Definition 4.1 Let H be a crossed weak Hopf π-algebra. A left π-H-comodule M is called

crossed if it is endowed with a family ξM = {ξM,β : Mα → Mβαβ−1}α,β∈π of k-linear maps such

that the following conditions are satisfied

(i) Each ξM,β :Mα →Mβαβ−1 is a vector space isomorphism;

(ii) Each ξM,β preserves the coaction, i.e., for all α, β ∈ π, ρβαβ−1 ◦ ξM,β = (ξβ ⊗ ξM,β) ◦ ρα;
(iii) Each ξM is multiplicative in the sense that ξM,βξM,γ = ξM,βγ for all β, γ ∈ π.

Definition 4.2 Let M = {Mα}α∈π, N = {Nα}α∈π be two crossed left π-H-comodules. A

crossed left π-H-comodule morphism is a left π-H-comodule morphism f = {fα}α∈π : M → N

such that ξN,β ◦ fα = fβαβ−1 ◦ ξM,β .

Let H = ({Hα},m, η) be a crossed weak Hopf π-algebra. We denote by HMcrossed the

category of all left π-H-comodules, whose morphisms are crossed left π-H-comodule morphisms.

Suppose that M = {Mα}α∈π and N = {Nα}α∈π are crossed left π-H-comodules. Now

define Mβ � Nγ , which is the submodule of Mβ ⊗ Nγ generated by elements of the form

εβγ(m(−1,β)n(−1,γ))m(0,β) ⊗ n(0,γ) for any β, γ ∈ π and m ∈Mβ , n ∈ Nγ . It is easy to show that

Mβ � Nγ is left π-H-subcomodule of Mβ ⊗ Nγ given by ρMβ�Nγ (m � n) = m(−1,β)n(−1,γ) �
m(0,β) � n(0,γ) for any m ∈ Mβ , n ∈ Nγ . So (M � N)α :=

⊕
βγ=αMβ � Nγ is a left Hα-

comodule. Thus M � N = {(M � N)α}α∈π is a left π-H-comodule, where the structure maps

ρM�N = {ρ(M�N)α}α∈π are given by

ρ(M�N)α =
⊕
βγ=α

(mβ,γ ⊗ idMβ
⊗ idNγ )(idHβ

⊗ τMβ ,Hγ ⊗ idNγ )(ρ
Mβ ⊗ ρNγ ).

Now let g = {gα}α∈π : M → M ′ and f = {fβ}β∈π : N → N ′ be left π-H-comodule

morphisms. Now we define the monoidal product of g and f given by g ⊗ f = {gα ⊗ fβ}α,β∈π :
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M ⊗N →M ′ ⊗N ′.

Suppose P = {Pα}α∈π is also a crossed left π-H-comodule. Then we have two left π-H-

comodules (M �N)� P and M � (N � P ). By definition, for any α ∈ π, we have

((M �N)� P )α =
⊕
βγ=α

(M �N)β � Pγ =
⊕
βγ=α

(
⊕
θz=β

(Mθ �Nz)� Pγ)

=
⊕

θzγ=α

(Mθ �Nz)� Pγ

and

(M � (N � P ))α =
⊕
θβ=α

Mθ � (N � P )β =
⊕
θβ=α

Mθ � (
⊕
zγ=β

(Nz � Pγ))

=
⊕

θzγ=α

(Mθ �Nz)� Pγ .

Let θ, z, γ ∈ π. One knows that aθ,z,γ : (Mθ �Nz)� Pγ →Mθ � (Nz � Pγ), (m⊗ n)⊗ p 7→
m ⊗ (n ⊗ p), where m ∈ Mθ, n ∈ Nz, p ∈ Pγ , is an isomorphism of Hθzγ comodule. Hence,

for any α ∈ π, aα =
⊕

θzγ=α aθ,z,γ is an isomorphism of Hα comodule from ((M � N) � P )α

to (M � (N � P ))α, and a = {aα}α∈π : (M �N) � P → M � (N � P ) is a left π-H-comodule

isomorphism, it is a family of natural isomorphisms.

Let M,N be any crossed left π-H-comodules. We have proved that M �N is also a crossed

left π-H-comodule.

Definition 4.3 With the above notations. A left π-H-comodule M �N is called crossed if it is

endowed with a family ξM�N = {ξM�N,z : (M �N)α → (M �N)zαz−1}α,z∈π of k-linear maps

such that the following conditions are satisfied:

(i) Each ξM�N,β : (M �N)α → (M �N)zαz−1 is a vector space isomorphism;

(ii) Each ξM�N,z|Mβ�Nγ
:= ξM,z|Mβ

� ξN,z|Nγ
, where for any α, β, γ, z ∈ π.

Since (M �N)α =
⊕

βγ=αMβ �Nγ and

(M �N)zαz−1 =
⊕

zβγz−1=zαz−1

Mzβz−1 �Nzγz−1 =
⊕
βγ=α

Mzβz−1 �Nzγz−1 .

ξM⊗N,z is well defined k-linear isomorphism from (M �N)α to (M �N)zαz−1 for any α, z ∈ π.

Moreover, for any m ∈Mβ and n ∈ Nγ , we have

ρ(M�N)zαz−1 ◦ (ξM�N,z)(m⊗ n)

= ρ(M�N)zαz−1 ◦ (ξM,z ⊗ ξN,z)(m⊗ n)

= ρ(M�N)zαz−1 (ξM,γ(m)⊗ ξN,γ(n))

= ξz(m(−1,β))ξz(n(−1,γ))⊗ ξM,z(m(0,β))⊗ ξN,z(n(0,γ))

= (ξz ⊗ ξM⊗N,z)ρ
(M⊗N)α(m⊗ n).

Now let M,N and P be crossed left π-H-comodules. Then one can easily check that

ξM�(N�P ),zaα = azαz−1ξ(M�N)�P,z for any α, z ∈ π, and hence a = {aα}α∈π : (M �N)� P →
M � (N � P ) is a crossed left π-H-comodule morphism.
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Since Ht
1 = εtα(Hα) for every α ∈ π, let ρH

t
1 : Ht

1 → Ht
1 ⊗ Ht

1, λ 7→ ∆1,1(λ). Hence, Ht
1

is a left π-H-comodule. For any left π-H-comodule M , we have (Ht �M)α = Ht
1 �Mα and

(M �Ht)α =Mα �Ht
1, α ∈ π. Define isomorphisms lM : Ht �M →M and rM :M �Ht →M

by

(lM )α : Ht
1 �Mα →Mα, λ⊗m 7→ ε(λ)m,

(rM )α :Mα �Ht
1 →Mα,m⊗ λ 7→ mε(λ),

and

(lM )−1
α :Mα → Ht

1 �Mα,m 7→ εtα(m(1,α))⊗m(0,α),

(rM )−1
α :Mα →Mα �Ht

1,m 7→ m(0,α) ⊗ S−1εsα(m(1,α)).

Then l = {lM} and r = {rM} are two families of natural isomorphisms of left π-H-comodules.

We summarize the above discussion as follows.

Theorem 4.4 (HMcrossed,�,Ht
1, a, l, r) is a monoidal category, where Ht

1 is the unit object.

5. The Braided monoidal category

Throughout this section, assume that H = ({Hα},m, η) is a crossed weak Hopf π-algebra

with a crossing ξ.

Definition 5.1 A coquasitriangular weak Hopf π-algebra is a crossed weak Hopf π-algebra (with

crossing ξ) endowed with a family σ = {σβ,γ : Hβ ⊗Hγ → k}β,γ∈π of k-linear maps such that

σβ,γ is weak convolution invertible for any β, γ ∈ π and the following conditions are satisfied:

(i) For any β, γ, θ ∈ π and x ∈ Hβ , y ∈ Hγ , p ∈ Hθ,

σβ,γθ(x, yp) = σβ,γ(x(1,β), y)σγ−1βγ,θ(ξγ−1(x(2,β)), p); (5.1)

(ii) For any β, γ, z ∈ π and x ∈ Hβ , y ∈ Hγ , p ∈ Hz

σβγ,z(xy, p) = σβ,z(x, p(2,z))σγ,z(y, p(1,z)); (5.2)

(iii) For any β, γ ∈ π and x ∈ Hβ , y ∈ Hγ ,

σβ,γ(x(1,β), y(1,γ))y(2,γ)ξγ−1(x(2,β)) = x(1,β)y(1,γ)σβ,γ(x(2,β), y(2,γ)); (5.3)

(iv) For any β, γ, z ∈ π and x ∈ Hβ , y ∈ Hγ ,

σβ,γ(x, y) = σzβz−1,zγz−1(ξz(x), ξz(y)); (5.4)

(v) For any β, γ ∈ π and x ∈ Hβ , y ∈ Hγ ,

σγ,β(y, x) = εβγ(x(1,β)y(1,γ))σγ,β(y(2,γ), x(2,β))εγβ(y(3,γ)x(3,β)). (5.5)

Here weak convolution invertible means that there exist a family of k-linear maps σ−1 = {σ−1
β,γ :

Hβ �Hγ → k}β,γ∈π such that:

(vi) For any β, γ ∈ π and x ∈ Hβ , y ∈ Hγ ,

σβ,γ(x(1,β), y(1,γ))σ
−1
β,γ(x(2,β), y(2,γ)) = εβγ(xy); (5.6)
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(vii) For any β, γ ∈ π and x ∈ Hβ , y ∈ Hγ ,

σ−1
β,γ(x(1,β), y(1,γ))σβ,γ(x(2,β), y(2,γ)) = εγβ(yx); (5.7)

(viii) For any β, γ ∈ π and x ∈ Hβ , y ∈ Hγ ,

σ−1
γ,β(y, x) = εβγ(x(1,β)y(1,γ))σγ,β(y(2,γ), x(2,β))εγβ(y(3,γ)x(3,β)) (5.8)

where σ−1 = {σ−1
β,γ}β,γ∈π is called a weak convolution inverse of σ = {σβ,γ}β,γ∈π.

Let σ = {σβ,γ : Hβ ⊗ Hγ → k}β,γ∈π be a family of linear maps such that σβ,γ is weak

convolution invertible for any β, γ ∈ π. Let M and N be any crossed left π-H-comodules. For

any β, γ ∈ π, define cMβ ,Nγ :Mβ �Nγ → Nγ �Mγ−1βγ by

cMβ ,Nγ (m⊗ n) = σβ,γ(m(−1,β), n(−1,γ))(n(0,γ) ⊗ ξM,γ−1(m(0,β))),

where m ∈Mβ and n ∈ Nγ . For any α ∈ π, define

(cM,N )α : (M �N)α =
⊕
βγ=α

Mβ �Nγ → (N �M)α =
⊕
βγ=α

Nγ �Mγ−1βγ

by (cM,N )α =
⊕

βγ=α cMβ ,Nγ . Then it is obvious that (cM,N )α is a k-linear isomorphism for any

α ∈ π if and only if so is cMβ ,Nγ for any β, γ ∈ π.

Lemma 5.2 With the above notations, we have

(i) (cM,N )α is a k-linear isomorphism for any crossed left π-H-comodules M and N , and

α ∈ π if and only if σ is a family of weak convolution invertible k-linear maps.

(ii) cM,N : M �N → N �M is a left π-H-comodule morphism for any crossed left π-H-

comodules M and N if and only if

σβ,γ(x(1,β), y(1,γ))y(2,γ)ξγ−1(x(2,β)) = x(1,β)y(1,γ)σβ,γ(x(2,β), y(2,γ))

for all β, γ ∈ π and x ∈ Hβ , y ∈ Hγ .

Proof (i) Assume that σ = {σβ,γ : Hβ⊗Hγ → k}β,γ∈π is a family of weak convolution invertible

k-linear maps. Then define c−1
Nγ ,Mγ−1βγ

: Nγ �Mγ−1βγ →Mβ �Nγ by

c−1
Nγ ,Mγ−1βγ

(n⊗ p) = σ−1
β,γ(ξγ(p(−1,γ−1βγ)), n(−1,γ))ξM,γ(p(0,γ−1βγ))⊗ n(0,γ),

where p ∈Mγ−1βγ and n ∈ Nγ . Then cMβ ,Nγ is a k-linear isomorphism as follows:

c−1
Nγ ,Mγ−1βγ

cMβ ,Nγ (m⊗ n)

= c−1
Nγ ,Mγ−1βγ

(σβ,γ(m(−1,β), n(−1,γ))(n(0,γ) ⊗ ξM,γ−1(m(0,β))))

= σβ,γ(m(−1,β), n(−1,γ))σ
−1
β,γ(ξγ(ξM,γ−1(m(0,β))(−1,γ−1βγ)), n(−1,γ))

ξM,γ(ξM,γ−1(m(0,β))(0,γ−1βγ))⊗ n(0,γ)

= σβ,γ(m(−1,β), n(−1,γ))σ
−1
β,γ(m(0,β)(−1,β), n(0,γ)(−1,γ)(m(0,β)(0,β) ⊗ n(0,γ)(0,γ))

= εβγ(m(−1,β)n(−1,γ))(m(0,β) ⊗ n(0,γ)) = m⊗ n.

Conversely, let M = N = H. Then cHβ ,Hγ : Hβ �Hγ → Hγ �Hγ−1βγ is a left π-H-comodule

isomorphism. Then σ = {σβ,γ : Hβ ⊗ Hγ → k}β,γ∈π by σβ,γ(x, y) = (εβ ⊗ εβ−1γβ)cHγ ,Hβ
(y ⊗



Coquasitriangular weak Hopf group algebras and braided monoidal categories 665

x), x ∈ Hβ , y ∈ Hγ . Define a family of k-linear maps τ = {τβ,γ : Hβ ⊗Hγ → k}β,γ∈π by

τβ,γ(x⊗ y) = (εβγβ−1 ⊗ εβ)c
−1
Hβ ,Hγ

(x⊗ y), x ∈ Hβ , y ∈ Hγ .

Then

c−1
Hβ ,Hγ

(x⊗ y) = (ξβ(y(2,γ))⊗ x(2,β))τβγβ−1,β(ξβ(y(2,γ)), x(1,β)), x ∈ Hβ , y ∈ Hγ .

Thus for any x ∈ Hβ , y ∈ Hγ , we have

x⊗ y = cHβγβ−1 ,Hβ
c−1
Hβ ,Hγ

(x⊗ y)

= cHβγβ−1 ,Hβ
((ξβ(y(2,γ))⊗ x(2,β))τγ,β(y(1,γ), x(1,β)))

= x(3,β) ⊗ y(3,γ)σβγβ−1,β(ξβ(y(2,γ)), x(2,β))τβγβ−1,β(ξβ(y(1,γ)), x(1,β))

and

x⊗ y = εβγ(x(1,β)y(1,γ))x(2,β) ⊗k y(2,γ).

Applying εβ ⊗k εγ to the above two equations, one gets

σγ,β(y(2,γ), x(2,β))τγ,β(y(1,γ), x(1,β)) = εβγ(xy).

Then an argument similar to the above shows that

σβ,γ(x(1,β), y(1,γ))τβ,γ(x(2,β), y(2,γ))) = εβγ(xy).

And we have

σβ,γ(x, y) = (εβ ⊗ εβ−1γβ)(σγ,β(y(1,γ), x(1,β))(x(2,β) ⊗ ξβ−1(y(2,γ))))

= (εβ ⊗ εβ−1γβ)(εγβ(y(1,γ)x(1,β))σγ,β(y(2,γ), x(2,β))(x(3,β) ⊗ ξβ−1(y(3,γ))))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)(σγ,β(y(2,γ), x(2,β))(x(3,β) ⊗ ξβ−1(y(3,γ))))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)(cHγ ,Hβ
(y(2,γ) ⊗ x(2,β)))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)(Sβ ⊗ Sβ−1γβ)(cHγ ,Hβ
(y(2,γ) ⊗ x(2,β)))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)cHγ−1 ,Hβ−1 (Sγ ⊗ Sβ)(y(2,γ) ⊗ x(2,β))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)cHγ−1 ,Hβ−1 (Sγ(y(2,γ))⊗ Sβ(x(2,β)))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)cHγ−1 ,Hβ−1 (Sγ(y(2,γ))⊗ Sβ(x(2,β)))

εγ−1β−1(Sγ(y(3,γ))Sβ(x(3,β)))

= εγβ(y(1,γ)x(1,β))(εβ ⊗ εβ−1γβ)cHγ ,Hβ
(y(2,γ) ⊗ x(2,β))εβγ(x(3,β)y(3,γ))

= εγβ(y(1,γ)x(1,β))σβ,γ(x(2,β), y(2,γ))εβγ(x(3,β)y(3,γ)).

Similarly, we have

τβ,γ(x, y) = εβγ(x(1,β)y(1,γ))τβγ(x(2,β), y(2,γ))εγβ(y(3,γ)x(3,β)).

This shows that σ = {σβ,γ} is a family of weak convolution invertible k-linear maps with inverse

τ = {τβ,γ}.
(ii) Now we claim that cM,N = {(cM,N )α}α∈π : M � N → N �M is a morphism of left
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π-H-comodules. In fact, for β, γ ∈ π,m ∈Mβ and n ∈ Nγ , we have

ρ(N�M)βγ cMβ ,Nγ
(m⊗ n)

= ρ(N⊗M)βγ (n(0,γ) ⊗ ξM,γ−1(m(0,β)))σβ,γ(m(−1,β), n(−1,γ))

= n(−1,γ)ξγ−1(m(−1,β))⊗ n(0,γ) ⊗ ξM,γ−1(m(0,β))σβ,γ(m(−2,β), n(−2,γ))

and

(idHβγ
� cMβ ,Nγ )ρ

(N�M)βγ (m⊗ n)

= m(−2,β)n(−2,γ) ⊗ n(0,γ) ⊗ ξM,γ−1(m(0,β))σβ,γ(m(−1,β), n(−1,γ)).

Because ξM,γ−1 is an isomorphism, if

σβ,γ(x(1,β), y(1,γ))y(2,γ)ξγ−1(x(2,β)) = x(1,β)y(1,γ)σβ,γ(x(2,β), y(2,γ)),

we have cMβ ,Nγ is an isomorphism of left Hβγ-comodules. Conversely, let M = N = H. Since

cH,H is a left π-H-comodule map, ρ(H�H)βγ (cHβ ,Hγ ) = (idHβγ
�cHβ ,Hγ )ρ

(H�H)βγ for all β, γ ∈ π.

Now let β ∈ π and x ∈ Hβ , y ∈ Hγ . We have

ρ(H�H)βγ cHβ ,Hγ (x⊗ y) = ρ(H�H)βγ (y(2,γ) ⊗ ξγ−1(x(2,β)))σβ,γ(x(1,β), y(1,β))

= σβ,γ(x(1,β), y(1,γ))y(2,γ)ξγ−1(x(2,β))⊗ y(3,γ) ⊗ ξγ−1(x(3,β)).

On the other hand, we have

(idHβγ
� cHβ ,Hγ )ρ

(H�H)βγ (x⊗ y) = (idHβγ
� cHβ ,Hγ )(x(1,β)y(1,γ) ⊗ x(2,β) ⊗ y(2,γ))

= σβ,γ(x(2,β), y(2,γ))x(1,β)y(1,γ) ⊗ y(3,γ) ⊗ ξγ−1(x(3,β)).

Hence, we have

σβ,γ(x(1,β), y(1,γ))y(2,γ)ξγ−1(x(2,β))⊗ y(3,γ) ⊗ ξγ−1(x(3,β))

= σβ,γ(x(2,β), y(2,γ))x(1,β)y(1,γ) ⊗ y(3,γ) ⊗ ξγ−1(x(3,β)).

Applying idHβγ
⊗ εγ ⊗ εγ−1βγ to the both sides of the above equation, one gets

σβ,γ(x(1,β), y(1,γ))y(2,γ)ξγ−1(x(2,β)) = x(1,β)y(1,γ)σβ,γ(x(2,β), y(2,γ)). �

Lemma 5.3 The following two statements are equivalent:

(i) ξN�M,z(cM,N )α = (cM,N )zαz−1ξM�N,z for any crossed left π-H-comodules M and N ,

and α, z ∈ π.

(ii) σβ,γ(x, y) = σzβz−1,zγz−1(ξz(x), ξz(y)) for any β, γ, z ∈ π and x ∈ Hβ , y ∈ Hγ .

Proof Let M and N be crossed left π-H-comodules. For any α, β, z ∈ π,m ∈Mβ and n ∈ Nγ ,

we have

ξN�M,z(cM,N )βγ(m⊗ n) = (ξN,z ⊗ ξM,z)(cMβ ,Nγ )

= (ξN,z ⊗ ξM,z)σβ,γ(m(−1,β), n(−1,γ))(n(0,γ) ⊗ ξM,γ−1(m(0,β)))

= σβ,γ(m(−1,β), n(−1,γ))(ξN,z(n(0,γ))⊗ ξM,zξM,γ−1(m(0,β)))

= σβ,γ(m(−1,β), n(−1,γ))(ξN,z(n(0,γ))⊗ ξM,zγ−1(m(0,β)))
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and

(cM,N )zβγz−1ξM�N,z(m⊗ n) = cMzβz−1 ,Nzγz−1 ξM�N,z(m⊗ n)

= cMzβz−1 ,Nzγz−1 (ξz(m)⊗ ξz(n))

= σzβz−1,zγz−1(ξz(m(−1,β)), ξz(n(−1,γ)))(ξN,z(n(0,γ))⊗ ξM,zγ−1z−1ξM,z(m(0,β))).

Then ξN�M,z(cM,N )βγ = (cM,N )zβγz−1ξM�N,z if and only if σβ,γ(x, y) = σzβz−1,zγz−1(ξz(x), ξz(y)).

�

Lemma 5.4 The following two statements are equivalent:

(i) cM,N�P = (idN � cM,P )(cM,N � idP ) for any crossed left π-H-comodules M ,N and P ,

if and only if for any α, β, γ ∈ π and x ∈ Hα, y ∈ Hβ , p ∈ Hγ ,

σα,βγ(x, yp) = σα,β(x(1,α), y)σβ−1βα,γ(ξβ−1(x(2,α)), p);

(ii) cM�N,P = (cM,P � idN )(idM � cN,P ) for any crossed left π-H-comodules M ,N and P ,

if and only if for any α, β, γ ∈ π and x ∈ Hα, y ∈ Hβ , p ∈ Hγ

σαβ,γ(xy, p) = σα,γ(x, p(2,γ))σβ,γ(y, p(1,γ)).

Proof We only prove Part (2). The proof of Part (1) is similar. Let M,N,P be any crossed left

π-H-comodules for α, β, γ ∈ π. Then for any m ∈Mα, n ∈ Nβ and p ∈ Pγ , we have

(cM�N,P )αβγ(m⊗ n⊗ p) = cMα�Nβ ,Pγ
(m⊗ n⊗ p)

= p(0,γ) ⊗ ξM,γ−1(m(0,α))⊗ ξN,γ−1(n(0,β))σαβ,γ(m(−1,α)n(−1,β), p(−1,γ))

= p(0,γ) ⊗ ξM,γ−1(m(0,α))⊗ ξN,γ−1(n(0,β))σα,γ(m(−1,α), p(−1,γ)(2,γ))

σβ,γ(n(−1,β), p(−1,γ)(1,γ))

and

((cM,P � idN )(idM � cN,P ))αβγ(m⊗ n⊗ p)

= (cMα,Pγ � idNγ−1βγ
)(idMα � cNβ ,Pγ )(m⊗ n⊗ p)

= (cMα,Pγ � idNγ−1βγ
)(m⊗ p(0,γ) ⊗ ξN,γ−1(n(0,β)))σβ,γ(n(−1,β), p(−1,γ)).

Thus, if σαβ,γ(xy, p) = σα,γ(x, p(2,γ))σβ,γ(y, p(1,γ)) for any α, β, γ ∈ π and x ∈ Hα, y ∈ Hβ , p ∈
Hγ , then cM�N,P = (cM,P � idN )(idM � cN,P ) for any crossed left π-H-comodules M ,N and

P . Conversely, let M = N = P = H. Since c is a braiding, we have cHα�Hβ ,Hγ
= (cHα,Hγ �

idHβ
)(idHα � cHβ ,Hγ ). Thus, for any x ∈ Hα, y ∈ Hβ , z ∈ Hγ , we have

cHα�Hβ ,Hγ
(x⊗ y ⊗ z) = z(2,γ) ⊗ ξγ−1(x(2,α))⊗ ξγ−1(y(2,β))σαβ,γ(x(1,α)y(1,β), z(1,γ))

and

(cHα,Hγ � idHβ
)(idHα � cHβ ,Hγ )(x⊗ y ⊗ z)

= (cHα,Hγ � idHβ
)(x⊗ z(2,γ) ⊗ ξγ−1(y(2,β)))σβ,γ(y(1,β), z(1,γ))

= z(2,γ)(2,γ) ⊗ ξγ−1(x(2,α))⊗ ξγ−1(y(2,β))σα,γ(x(1,α) ⊗ z(2,γ)(1,γ))σβ,γ(y(1,β), z(1,γ)).
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Applying εγ ⊗ εγ−1αγ ⊗ εγ−1βγ to the above two equations, one gets

σα,βγ(x, yz) = σα,β(x(1,α), y)σβ−1αβ,γ(ξβ−1(x(2,a)), z). �

Theorem 5.5 Let H = ({Hα},m, η) be a crossed weak Hopf π-algebra and let σ = {σβ,γ : Hβ⊗
Hγ → k}β,γ∈π be a family of k-linear maps. Then the monoidal category (HMcrossed,�,Ht

1, a, l, r)

of crossed left π-H-comodules is a braided monoidal category with the braiding c if and only if

H = ({Hα},m, η) is a coquasitriangular weak Hopf π-algebra where c is defined by σ as above.

Proof If c is a braiding of the monoidal category (HMcrossed,�,Ht
1, a, l, r), then it follows from

Lemmas 5.2, 5.3 and 5.4 that σ is a weak coquasitriangular structure. Conversely, assume that

σ is a weak coquasitriangular structure. Then by Lemmas 5.2, 5.3 and 5.4, it suffices to show

that c = {cM,N} is natural. Now let g = {gα}α∈π :M →M ′ and f = {fβ}β∈π : N → N ′ be left

π-H-comodule morphisms. Then for any α, β ∈ π, m ∈Mα and n ∈ Nβ , we have

((f ⊗ g)cM,N )αβ(m⊗ n) = (fβ ⊗ gβ−1αβ)cMα,Nβ
(m⊗ n)

= (fβ ⊗ gβ−1αβ)(n(0,β) ⊗ ξβ−1(m(0,α))σα,β(m(−1,α), n(−1,β)))

= fβ(n(0,β))⊗ gβ−1αβ(ξβ−1(m(0,α)))σα,β(m(−1,α), n(−1,β))

= fβ(n)(0,β) ⊗ ξβ−1(gα(m)(0,α))σα,β(gα(m)(−1,α), fβ(n)(−1,β))

= cM ′
α,N ′

β
(gα(m)⊗ fβ(n))

= cM ′
α,N ′

β
(gα ⊗ fβ)(m⊗ n)

= (cM ′,N ′(g ⊗ f))αβ(m⊗ n).

Hence (f ⊗ g)cM,N = cM ′,N ′(g ⊗ f). The proof is completed. �
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