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Abstract In this paper, we first give the definitions of a crossed left 7-H-comodules over a
crossed weak Hopf m-algebra H, and show that the category of crossed left m- H-comodules is a
monoidal category. Finally, we show that a family 0 = {04,3 : Ha ® Hg — k}a,ger of k-linear
maps is a coquasitriangular structure of a crossed weak Hopf m-algebra H if and only if the
category of crossed left m-H-comodules over H is a braided monoidal category with braiding
defined by o.
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1. Introduction

The notion of a quasitriangular Hopf algebra was introduced by Drinfel’d [2] when he stud-
ied the Yang-Baxter equation. Because of their close connections with varied, a priori remote
areas of mathematics and physics, this theory has got fast development and many fundamental
achievements, see, for example, [5]. Recently, Turaev [7] introduced a Hopf m-coalgebra, which
generalizes the notion of a Hopf algebra. Van Daele and Wang studied algebraic properties of
weak Hopf group coalgebras and generalized many of the properties of quasitriangular weak Hopf
algebras in [1] to the setting of quasitriangular weak Hopf group coalgebras in [8]. Wang also
investigated properties of coquasitriangular Hopf group algebras in [9].

In this paper, we give the definitions of a crossed left m-H-comodules over a crossed weak
Hopf m-algebra H, and show that the categories of crossed left 7-H-comodules is a monoidal
category. Finally, we show that a family 0 = {0a.5 : Ho ® Hz — k}a ger is a coquasitriangular
structure of a crossed weak Hopf w-algebra H if and only if the category of crossed left 7-H-

comodules over H is a braided monoidal category with braiding defined by o.

2. Preliminaries

Throughout the paper, we let = be a discrete group (with neutral element 1) and k be a
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fixed field. All algebras and coalgebras, w-algebras, and Hopf w-algebras are defined over k. The
definitions and properties of algebras, coalgebras, Hopf algebras and categories can be found in
[3,4,6]. We use the standard Sweedler notation for comultiplication. The tensor product ® = ®j,
is always assumed to be over k. The following definitions and notations in this section can be
found in [9].

2.1. w-algebras

A rm-algebra is a family H = {H, }qer of k-spaces together with a family of k-linear maps
m={map: Hy® Hs — Hyp}a per (called a multiplication ) and a k-linear map n: k — H;

(called a unit), such that m is associative in the sense that, for any «, 8,v € m,

Map(Ma,p @idp,) = Mma gy (idm, ® mg ),
M1 (idg, ®n) =idy, = mi o(n®@idg, ).

2.2. Hopf w-algebras

A Hopf w-algebra H is a family {(Ha, Aa,€a)}aer of k-coalgebras, here H, is called the
ath component of H, endowed with the following data.
o A family of k-linear maps m = {mq : Ho ® H3 — Hupgla,gen, called multiplication,

that is associative, in the sense that, for any «, 8,v € 7,

Map~(Ma,p @idy) = ma gy (ida @ mg ). (2.1)
Me1(dy, @n) =idg, = m1 o(n®@idg, ). (2.2)

Given h € H, and g € Hg, with o, 3 € 7, we set hg = mqy g(h ® g). With this notation,
Eq. (2.1) can be simply rewritten as (hg)l = h(gl) for any h € H,,g € Hg,l € H,and o, 3,7y € 7.
e The map mq,5: Hy ® H3 — H,p is a morphism of coalgebras such that

Aapma,p = (Ma ® mp)Aag, (2.3)
(ea ®&p) = EapMa,p; (2.4)

where we used Sweedler’s notation: Ag(g) = g(1,8) ® g(2,5) for any h € Hy,g € Hp,l € H, and

a, B,y €m.
e A set of k-linear maps S = {S, : Ho, — H,-1}aenr, the antipode, such that,

mafl,a(sa & idHQ)Aa = 5o¢11 = ma,afl(idH(, & Soz)Aom (25)

for any h € H,, and « € 7.

Furthermore, the Hopf m-algebra H is called crossed if the following condition holds: There
exists a family of coalgebra isomorphisms & = {{3 : Hy, — Hgap-1}, called conjugation, such
that

— & is multiplicative, i.e., for any «, 8 and v € 7, one has g€, = €5y : Ho — H(gy)a(sy)-1>
in particular, & |H, = idg.

— ¢ is compatible with m, i.e., for any § € 7, we have {z(hg) = £z(h)s(g).

— ¢ is compatible with 1, i.e., for any 8 € 7, we have {5(1) = 1.
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— ¢ preserves the antipode, i.e., {55, = Sga5-1§s-
The weak Hopf m-algebra H is said to be of finite type if, for all a € w, H, is finite-

dimensional as k-space. Note that it does not mean that @ ___ H, is finite dimensional (unless

aeT
H, = 0 for all but a finite number of « € 7). Hence, in this case the dual of weak Hopf m-algebra
is not a weak Hopf m-coalgebra. The antipode S = {S, }acr of H is called bijective if each S, is

bijective.
2.3. Left m-H-comodules

Assume that H = {H,}aec is a family of coalgebras. A left H-w-comodule over H is a
family M = {M, }aer of k-spaces such that M, is a left H,-comodule for any « € 7. We denote
the structure maps of left H,-comodule M, and left 7-H-comodule M by p™~ : M, — H,® M,
and pM = {pMa} ., respectively.

We use the Sweedler’s notation in the following way; for m € M, we write

M

pre(m) =m_1.q) @ M,q)-

2.4. Left m-H-comodule maps
Assume that H = {Hy}aeq is a family of coalgebras. Let M = {M,}acr, N = {Na}taen

be two left m-comodules over H. A left m-H-comodule map f : M — N is a family f = {f, :
My — Ng}aen of k-linear maps such that p™Ve f, = (idg, @ fo)p™Me for all a € 7.

3. Weak Hopf m-algebras

In this section, we mainly study some structure properties of weak Hopf m-algebras.

Definition 3.1 A weak Hopf w-algebra H is a family {(Hy, Aw,€a)}aer Of k-coalgebras, here
H,, is called the ath component of H, endowed with the following data.
o A family of k-linear maps m = {mq g : Ho ® Hg — Hapgla genr, called multiplication,

that is associative, in the sense that, for any «, 8,7 € T,
Mag(Ma,p @1dy) = Ma gy (ida @ Mgy ). (3.1)

Given h € H, and g € Hg, with o, 8 € 7, we set hg = m, g(h ® g). With this notation,
Eq. (3.1) can be simply rewritten as (hg)l = h(gl) for any h € H,,g € Hg,l € H, and o, 3,7y € 7.
e The map myp : Hy, ® Hg — H,p is a (not necessary counit-preserving) morphism of

coalgebras such that

apy(hgl) = cap(hg,p))es(92,8)0) = cap(hg(2,8))e8+(9(1,5)0) (32)

where we used Sweedler’s notation: Ag(g) = g(1,5) @ ge2,p) for any h € Hy,g € Hg,l € H, and

a,B,yem.
e An algebra morphism n : k — Hy, called unit, such that, if we set 1 = n(1y), then,

1h=h=hl, forany he€ H, with «€ T, (3.3)
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(A1 ®id)A1(L,1) = 1,1y ® Loy Ly 1) ® Lo gy = La,1) @ Ly 1y Lz @ Loy (3.4)

where 1 = 1'.

o A set of k-linear maps S = {Sy : Ho, — H,-1}acr, the antipode, such that,

ma—l,a(soé ® idOé)Aa(h) = 1(1,a—1)€a(h’1(2,o¢))7 (35)
Mey,a—1 (ida & Sa)Aa(h) = 504(1(1,(x)h)1(2,a_1), (36)
Sa(h1,0)h2,a-1)Sa(h(3,0) = Salh) (3.7)

for any h € H, and o € 7.

Definition 3.2 A weak Hopf m-algebra H is called crossed if the following condition holds:
There exists a family of coalgebra isomorphisms § = {{g : Ho, — Hpgqp-1}, called conjugation,
such that

— ¢ is multiplicative, i.e., for any o, 8 and y € m, one has §g& = §p~y : Ha — H(g)a(sy)-1>
in particular, £|H, = idg,.

— & is compatible with m, i.e., for any B € m, we have £g(hg) = £5(h)Es(g).

— & is compatible with 1, i.e., for any § € m, we have £(1) = 1.

Example 3.3 Recall that a finite groupoid G is a category, in which every morphism is an
isomorphism, with a finite number of objects. The set of objects of G will be denoted by G,
and the set of morphisms by G;. The identity morphism on x € Gy will also be denoted by =x.
The source and target maps will be denoted by s and ¢ respectively, i.e., for a : * — y in G,
we have s(o) = x and t(a) = y. For every z € G, G, = {a € G|s(a) = t(a) = 2} is a group.
Let G be a groupoid. The groupoid algebra is the direct product k[G] = @ ¢, ktia, Wwith
multiplication defined by the rule uqug = uqng if s(o) = ¢t(8) and uqug = 0 if s(a) # t(5). The
unit is 1= ), us. k[G] is a weak Hopf algebra, with comultiplication, counit and antipode

given by the formulas
Atg) = Ug @ Ug, €(Uq) =1 and S(uy) = Ug-1.

Using A(1) = @, cq, s @ Uz, Wwe have that ¢ : kG — kG is given by &'(uq) =
Y weq €Uatla) = Uy). Similarly, we have that e : kG — kG is given by &°(u,) =
>, (tat) = o)

The dual of kG is the weak Hopf algebra k(G) = k¢ of functions G — k. It has a basis
(eg : G — k)geq, defined by (e4,h) = 0,4.5. That is, as a k-space we have k[G] = >
The weak Hopf algebra structure of k(G) are given by

egen = 0g.neq; 1= E €g;
g€G1

A(eg) = Z Cx ®ey = Z Cx ®e:v_1g; ‘S( Z ageg) = Z Qz€y;

TY=g t(z)=t(g) g€G1 z€Go

S(eg) =eg-1; A(].) = 1(1) X 1(2) = Z eg K ep
t(g)=s(h)

s keg.
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for any g, h € G;.

Set ¢ : k[G] — Aut(k[G]) defined by ¢,(h) = ghg™!'. It is a well defined group ho-
momorphism. This data leads to a quasi-triangular weak Hopf G;-coalgebra D(k[G], k(G)) =
{D(k‘[G], k(G))(aﬁ) = D(k[G], k(G), < s >, ¢)/I(a,6)}(a,ﬁ)€5’(6‘1) which will be denoted by Dg(G) =
{D(a.8)(G)}(a,p)ec, - More explicitly, Dg(G) is described as follows:

For any «a, 5 € (G1, the algebra structure of W, which is equal to k[G] ® k(G) as a

k-space, is given by

[g ® eh“«gl ® eh/] = 5ag’a—1,h—1ﬂg’,@—1h’gg/ ®@ ey for all 979/7 h, h' e le
1D(a,B)(G) = Z [ue @ eg].
z€Go,9€G1

The crossed weak Hopf G-coalgebra structures of Dg(G) are given, for any «, 8, A,y € G,
and g, h € G, by

Z(a,B),(A,ﬂy)([g ® ep]) = Z [9® €yay-1] ® [ ® €yay-1yya—1y-1];
zy=h

Z([g ®enl1,1)) = On1,

S(a,ﬂ)([g 02y eh]) = [gil 02y eaﬁoflgahflﬁgflﬁflofl]a

A, _ _
eO (9 enl) = 1870907 B ® ey 1y 1505 1700-1-

D¢g(G);,

Then D¢ (G)* = P * is a crossed weak Hopf G-algebra.

aceG

Lemma 3.4 It is easy to get the following identities:

(a) & | Hy =1idpy, for all a € 7.

(b) &5t =¢&,-1 foralla € .

(c) & preserves the antipode, i.e., g0 Sy = Sgap-1 0&g for all a, f € 7.

Let H be a weak Hopf m-algebra. Define a family of linear maps ¢* = {e!, : Hy, — Hi }aen
by el (h) = ea(1(1,1)h)1(2,1) and € = {&}, : Hy — Hi}aer by €5(h) = 111)ea(hl(2,1)) for all
h € H,, where €', &° are called the m-target and m-source counital maps. Introduce the notations
H':=e"(H) ={H! =€, (Ha)}aecr and H® :=e%(H) = {H; = £5,(Ha) }acn for their images.

By Eq. (3.2), one immediately obtains the following identities:

ap(gh) = ealgeh(h)), caplgh) = es(el(9)h), (3-8)

gloel =¢t, efoed =¢85, (3.9)

Lemma 3.5 Let H be a weak Hopf m-algebra. Then we have, for all x € H,,y € Hg and
a,ferm
(i) 21,0 @b (@@,0) = 11,1)2 ® 12,1), (
(i) ea(r.m) ®Tea) = 1oy @212, (
(iii) weh(y) = cap(®1,0)¥)T(2,0); (3.12
(iv) e53(y)r = 21,0)e80(YT(2,a))s (
(v) H! and Hf are subalgebras of Hy containing the unit 1 and we have
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htg® = g°h! for all h* € H! and ¢* € Hj. (3.14)
Proof (i) We compute as follows
T(1,.0) ® Ea(B2.0) = T(1.0) @ Eallan@En)len = lanzee @ lanlenea)len
=l @elentea)len =1onr @ e
(ii) is similar to (i).
(iii) and (iv) are immediate consequence of (ii) and (i).
(v) Obviously, 1 € Hi N H§ since €, (1,) = €,(1,) = 1, and H{ and H{ commute with each
other. Finally, the fact that H! and H{ are subalgebras of H; follows from the formulae:
e ®e5(12,6) ©1am = Tanlaw @ T ©1eq), (3.15)
Ly ©@e5(1les) @ 1ea = lam @ Tan ©lewlen, (3.16)

for all a, 8,y € m. We also give a direct proof as follows

(3.12)
52(11)52(9) = Eﬁ(gg(h)(l,l)g)gfx(h)(ll)

=es(La,nea(h)g) e = p(ea(h)g).
A statement about HY is proven similarly. [J
Lemma 3.6 Let H be a weak Hopf m-algebra. Then we have
(i) The kernel Kere!, is a left ideal of H, and Kere? is a right ideal of H,, for all « € T;
(ii) We have the following formulae
ehlea(@)y) = o ()ep(v), ealzel(v)) = ea(x)e(y); (3.17)
(iii) Furthermore, if H is crossed with the crossing & = {4 }acx, then we have
§poes, =€hap1 088, Epocl, =eh,510&s
for any o, f € .

Proof (i) Easy. (ii) One has
(3.9)
es(ea(@)y) = es(lanea(@y)le = el nea(®)es) e
(3.10)
=" eh(2) = el (@)ep(y).
(iii) We just check that the first formula holds. The second one can be proved similarly. For
any h € H, and «, 8 € m, one has
€3a5-168(N) = L1, 1)88as-1(§a(M)1(2,1) = L(1,1)€a(hés-1(1(2,1)))
=&a(La,1))ealhliz ) = aeq (h).
This finishes the proof. [J
By Egs. (3.5)(3.7), we have So () = Sa(2(1,0))e4 (2(2,0)) = €5(%(1,0))Sa(T(2,0))-

Theorem 3.7 Let H be a weak Hopf m-algebra. Then
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(1) Sap(zy) = Sp(y)Sa(z) for any o € m and x € Hy,y € Hg;
(ii) Sa(1y) = 14-1 for any o € 7.
Furthermore if H is of finite type then S : H — H is bijective, i.e., S, : Hy, — Hy-1 is

bijective for any o € .
Proof Similar to [1]. O
Proposition 3.8 (i) We have the following formulae:
el (@) = eq-1(Sa(@)1(11))12,1), €0(®) =11 1)Ea-1(1(2,1)5(2)),

57;(.’[]) = 51(1(171))501(1(271)1'), EZ(Z’) = Ea(xl(lvl))sl(l(gyl))

for any x € H,.
(ii) the following identities hold

t _ .t s _ s s _ S t _ t
€q084-1=cjo0es1=810¢e_1, € 05,1 =¢jo0e, 1 =510¢,,1.

Proof Similar to [1]. O

4. The category of crossed left 7-H comodules

Definition 4.1 Let H be a crossed weak Hopf m-algebra. A left w-H-comodule M is called
crossed if it is endowed with a family &y = {€m,p : Mo — Mpag—1}a,per of k-linear maps such
that the following conditions are satisfied

(i) Each &ar,p : Mo — Mg -1 is a vector space isomorphism;

(ii) Each &y g preserves the coaction, i.e., for all a, B € 7, pgap-1 0 &np = (£ @ Enr,B) © Pa;

(iii) Each &y is multiplicative in the sense that &y g€ary = &,y for all B,y € 7.

Definition 4.2 Let M = {Ms}aer, N = {Naotacr be two crossed left m-H-comodules. A
crossed left w-H-comodule morphism is a left w-H-comodule morphism f = {fo}acs : M = N
such that {n,g 0 fo = fgap—1 © & ,p-

Let H = ({H,},m,n) be a crossed weak Hopf 7-algebra. We denote by ¥ M ossed the
category of all left - H-comodules, whose morphisms are crossed left m- H-comodule morphisms.

Suppose that M = {Ms}aer and N = {Ny}aer are crossed left w-H-comodules. Now
define Mg X N,, which is the submodule of Mz ® NN, generated by elements of the form
€6 (M(—1,8)(=1,7))M(0,8) ® N(0,y) for any B,y € m and m € Mpg,n € N,. It is easy to show that
Mg & N, is left m-H-subcomodule of Mg ® N, given by pMe®¥No(m K n) = m_y gyn_y.,) X
mo,p) X ) for any m € Mg,n € Ny. So (MK N)o := @g,_, Msg KN, is a left Hq-
comodule. Thus M XN = {(M ® N),}aer is a left m-H-comodule, where the structure maps

pMIZIN _ {p(M'XN)“}aew are given by

pMEN)a — @ (mp, ®idp, ®idw, ) (ida, ® Tar,,m, @ idn, ) (p™? @ p™7).
By=a
Now let ¢ = {gataer : M — M’ and f = {fs}ser : N — N’ be left m-H-comodule
morphisms. Now we define the monoidal product of g and f given by ¢ ® f = {94 ® fs}a.senr :
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M®N —- M @ N'.
Suppose P = {Py}acx is also a crossed left m-H-comodule. Then we have two left 7-H-
comodules (M X N)X P and M X (N X P). By definition, for any « € m, we have

(MEN)®P)o= P (MEN)sRP, = P (P (MR N.)RP,)
By=a By=a 0z=p
= P (MyRN.)IP,

Ozy=«a
and
(MR (NRP))a= @ MyR(NRP)s = P My R (P (N. R P,))
08=a 08=c zy=0
= P MRN.)RP,.

02y=a
Let 0, z,v € m. One knows that ag .~ : (Mg®IN,)RP, - MgR(N,KP,), (m®n)®p—
m® (n ® p), where m € My, n € N,, p € P,, is an isomorphism of Hy., comodule. Hence,
for any a € 7, an = @y,,—, 16,2,y 1s an isomorphism of H, comodule from ((M X N) K P),
to (MR (NK P))y, and a = {aq}aecr : (MR N)XP — M X (N KX P) is a left 7-H-comodule
isomorphism, it is a family of natural isomorphisms.
Let M, N be any crossed left m-H-comodules. We have proved that M X N is also a crossed

left m-H-comodule.

Definition 4.3 With the above notations. A left w-H-comodule M X N is called crossed if it is
endowed with a family {yry = {Eumn,. - (M X N)y = (M X N),p.-1}a,zex of k-linear maps
such that the following conditions are satisfied:

(i) Each {ymryp: (MXN)y = (M XN),,.—1 Is a vector space isomorphism;
(i) Each ymn,zimsgN, = a2 vy R EN 2w, , where for any o, 3,7,z € 7.
Since (M X N)a = Dy, Ms K N, and
(MBN).qoi= P Mpr BN = @ Map s BN,
2Byz—l=zaz"1 By=a
Emen,z is well defined k-linear isomorphism from (M K N), to (M K N), .1 for any o,z € 7.
Moreover, for any m € Mg and n € N, we have

(MBN),,.-1 4 (Emmn,z)(m @ n)

= pMEN) oot o (£ ® En ) (M @ n)

= pMBEN).az1 (g4 (M) @ En(n))

= &(m(-1,6)8:(n(-19) ® Ear2(Meo,6)) @ Ens(n0)
e 5M®W)p(MeaN)a(m ®@mn).

P

Now let M, N and P be crossed left m-H-comodules. Then one can easily check that
EMR(NRP), 200 = Gza.—1§MRN)RP,. fOr any «,z € m, and hence a = {aq}aer : (M X N)X P —
MK (N X P) is a crossed left m-H-comodule morphism.
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Since H! = ¢! (H,) for every a € 7, let p™i : Hi — H! @ H!, X\ +— Ay 1()\). Hence, H!
is a left m-H-comodule. For any left m-H-comodule M, we have (H'X M), = Hi X M, and
(MX HY), = M,X H!, a € . Define isomorphisms Iy, : H*®AM — M and rpy : MR H' — M
by

(Inf)e : HE X My, — My, A @ mo— e(A\)m,

(rar)a s Mo R HY — My, m @ X me(N),

and
(lM);l M, — H{ X M,,m— Eg(m(l’a)) @ M(0,a)5

(rar)at s Mo — Moy B HY, m = mga) ® S~ €8 ((1,0))-

Then ! = {lys} and r = {rps} are two families of natural isomorphisms of left 7-H-comodules.

We summarize the above discussion as follows.

Theorem 4.4 (¥ M rossea, ™, HY, a,1,7) is a monoidal category, where H! is the unit object.

5. The Braided monoidal category

Throughout this section, assume that H = ({H,},m,n) is a crossed weak Hopf m-algebra

with a crossing .

Definition 5.1 A coquasitriangular weak Hopf m-algebra is a crossed weak Hopf m-algebra (with
crossing &) endowed with a family o = {og, : Hg ® Hy — k}g yecr of k-linear maps such that
08, is weak convolution invertible for any 8,y € m and the following conditions are satisfied:
(i) For any §3,v,0 € m and x € Hg,y € H,,p € Hy,
0570(,YP) = 08.4(T(1,8), Y)01-158+.0(&-1(T(2,5)), P); (5.1)
(ii) For any 3,7,z € m and v € Hg,y € Hy,p € H,
Uﬁ'y,z(xyap) = O—B,z(xap(Z,z))o—’y,z(yvp(l,z)); (52)
(iii) For any B,y € m and x € Hg,y € H,,
75.4(T(1,8), Y1 m)Yemé 1 (T@.8) = a8 Y17T64(T(2.8): Yem); (5.3)
(iv) For any B,v,z € m and x € Hg,y € H,
Jﬂﬁ(xuy) = Usz—l,z'yz_l(gz(x)ﬂgz(y>); (54)
(v) For any 8,y € mandx € Hg,y € Hy,
0y.8(U, %) = €7(T(1,8)Y(1,7))07.8(U2.7): ©(2,8))E48 (U(3.) T (3.,8))- (5.5)

Here weak convolution invertible means that there exist a family of k-linear maps o' = {Uﬁ_’l7 :
Hg W H., — k}ger such that:
(vi) For any B,y €mand x € Hg,y € H,,

084 (T(1,8), U(1,7)) 54 (T(2.8), U(2,0)) = €y (TY); (5.6)
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(vii) For any 8,y €m and x € Hg,y € H,,

05 (T(1,8), Y(1.7) 6.4 (T (2,8)s Y(2.) = Evs(y2); (5.7)

(viii) For any B,y € m and x € Hg,y € H,,

o5, 2) = €7 (T 1,0 U(17)) 7.8 (Y(2)s T(2,8))Ev8 (Y34 T (3,8)) (5.8)

where 071 = {JE}Y}@%W is called a weak convolution inverse of 0 = {og ~} 5 ~en-

Let 0 = {0p~ : Hg ® Hy — k}g~er be a family of linear maps such that os, is weak
convolution invertible for any 3, € w. Let M and N be any crossed left 7-H-comodules. For
any 3,7 € m, define cpr, N, Mg XN, — Ny W M, -5, by

My N, (M @) = 05 (M(—1,), 1(=1.4)) (M0,7) @ Enry-1 (M(0,8)))
where m € Mg and n € N,,. For any a € 7, define
(crN)a: (MBN)y = P MgBRN, —» (NRM)o = P Ny BM,-15,
By=a By=a
by (¢, N)a = 657204 ¢y, N, - Then it is obvious that (caz,n)q is a k-linear isomorphism for any

a € 7 if and only if so is cpz, v, for any 3,y € 7.

Lemma 5.2 With the above notations, we have

(i) (em,N)a is a k-linear isomorphism for any crossed left m-H-comodules M and N, and
« € 7 if and only if o is a family of weak convolution invertible k-linear maps.

(ii)) cun: MR N — N X M is a left m-H-comodule morphism for any crossed left w-H-
comodules M and N if and only if

o87/(2(1,6): Y1)V &1 (T2,8) = T1,8)Y1.78~(T2,8): Y2))
for all B,y € m and x € Hg,y € H,.

Proof (i) Assume that ¢ = {03, : Hs®H, — k} g yecr is a family of weak convolution invertible

k-linear maps. Then define cj_\,i M1, Ny WM, 15, — Mg X N, by
) 'Y_l ~

CJT/.{,MW,IBV (n@p) = 05 (& (P(=14-187))> T=1,71))EM 1 (P0.7-157)) © 10,4

where p € M,-13, and n € N,. Then ¢y, v, is a k-linear isomorphism as follows:

-1
C C m n
Ny M1y Mg,N, (M ®n)
-1

=y M, 1y, (T8 (M1, (=17 (R0,7) ® €1 (10,))))

1oy
= 0 (M(—1,8):1U=17))75 (& (€71 (M(0,6)) (~17-17))s VU= 1,7))
Ear(Enry-1(m(0,8)) (0,-18v)) @ (0,7)
= 085(M(-1,8), (=175 5 (M(0.8)(=1,8), T0.9) (~17) (M(0.6)(0.8) © T0.7)(0.))
= €6y (M(-1,5)~1,7)) (M(0,5) @ N(0,7)) = M D 1.
Conversely, let M = N = H. Then cy, n, : HgX Hy, — H, X H 13, is a left 7m-H-comodule
isomorphism. Then o = {05, : Hz ® Hy — k}g er by 05,(7,y) = (5 @ eg-145)cH, H; (Y @
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x), ¢ € Hg,y € H,. Define a family of k-linear maps 7 = {73, : Hg ® Hy — k}g ycr by
T8(T®Y) = (€pyp—1 ® 56)‘3117ﬁ ( ®vy), v € Hg,y € H,.

Then

1, (@ ®Y) = (€5(W2m) ® 22.5)Tovs—1,5(E6(Ue2m) 2p), © € Ha,y € Hy.

Thus for any = € Hg,y € H.,, we have

T@y=cu, . HChy (T OY)
=i, o105 ((E8(W2m) © T2)7.8(0,7),0,8))
= 2(3,8) @ Y(3.)9878-1.8(E8 (Y21 T(2.8))Tav8-1,8(E6 (W1, T(1.8))
and
2 @Y = epy(T1,8)Y(1.7)%(2.8) Ok Y(2.7)-

Applying €5 @y €4 to the above two equations, one gets

0+,8U(2.7) T(2.8)) .8 U(1.1): T1,8)) = €y (TY).

Then an argument similar to the above shows that

084(T(1,8),Y(1,7)) 78,4 (Z(2,8): Y(2,7))) = €y (TY).

And we have

95,4(2,y) = (€5 @ €5-198)(94,8(Y1,7), Z(1,8)) (T (2,8) © E5-1 (Y(2,1))))
= (g8 ® €5-148)(E48(Y(1,7)7(1,6))97.8(U(2,7), T(2,8)) (T(3,8) ® E5-1 (U(3,7))))
= ev8(¥(1,7)%(1,8)) (€8 ® €-148)(0,8(U(2,7)5 T(2,8)) (T(3,8) ® Ep-1(Y(3,7))))
= evp(Y1mT,8)(Es © €148

Nep @ep-145) (S8 ® Sp-148)(Ch, 15 (Y(2,7) © T(2,8)))

)

)

(
( ( Yem, v, (Y.~ @ T2,8)))
( ( )

= e8(Ya.mT(1,8)) (€8 @ Eg-1yp)cr 1, H, 1 (Sy © 98)(Y(2,7) ® T(2,5))
( ( )
( (

= Ey8\Y1,7)%(1,8)

= 48U, (E8 ®Eg-1yp)cn i a1 (51 (Uz) ® Sp(22,8)))

ev8(HamT,p)(Es ® 55—176)0H7717Hﬁ71 (S5 (Y2,) @ Sp(x(2,8)))
ey-15-1 (95 (Y31 98(2(3,8)))

= e5(Yam2.8)(Ep @ es-1yp)Ch, 1, (Y(27) @ T(2,8))€6+(%(3,8)Y(3.4))

=8 (Y17 %(1,8))987(T(2,8), Y(2,7)) €8+ (T (3,8)¥(3,7))-

Similarly, we have

T5.(2,4) = €7 (21,0050 87 ((2.8) Y21))E8 (U3, T (3.8 )-
This shows that o = {0} is a family of weak convolution invertible k-linear maps with inverse

7= {784}
(ii) Now we claim that cpy v = {(em N)ataer : M KN — N XK M is a morphism of left
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m-H-comodules. In fact, for 8,y € m,m € Mg and n € N,, we have

p(N&M)ﬁWCMﬁ7N7 (m X n)
= pNEM (g ) @ Epry-1(M0,6))) 8,4 (M(—1,8), N(~1,))
= 11,781 (M(=1,8)) ® N(0,7) ® &ary=1(M(0,8))0 8,7 (M(=2,8): N(=2,))

and
(idHﬁ'y X CMﬁ,Nw)p(NgM)M (m®@mn)
= M(—2,8)1(—2,y) ® N(0,7) B Enry=1(M(0,6)) T84 (M(—1,6), (—1,7))-

Because {71 is an isomorphism, if

08,4(T1,8), Y(1,))Y &1 (T2.8) = 1,8)Y1.78+(T2,8), Y2)

we have ¢y, v, is an isomorphism of left Hg,-comodules. Conversely, let M = N = H. Since

cu.p is aleft - H-comodule map, p(H%H) s~ (cHg,m,) = (idm,, XcHﬁ’Hw)p(HgH)ﬁv forall B8,v € .

Now let B € m and « € Hg,y € H,. We have

p(ngH)BWCHﬁ,HW (x 39 y) = p(HgH)B’Y(

Y2y ® &1 (22,8)))08,(2(1,6) ¥(1,8))
= 08~(T(1,8), Y1)V 1 (T(2,8) @ Y3,y @ E-1(T(3,8))-

On the other hand, we have

(idp,, Bem, m,)p ™05 (@ @ y) = (idu,, Rem, 1) (@060 © 2,6 ©Ye,q)
= 08(T(2,6), Y(2,9)T(1,8)U(1,7) R Y37 © &y-1(T(3,8))-

Hence, we have

084(T(1,8),Y(1,7)Y 211 (T2,8) Y@ @& -1(2(3,8))
= 03~(2(2,8), Y(2,9)T(1,5)Y(1,7) ®Y3,7) ®&-1(2(3,8))-

Applying idg,, ® 4 ® €,-13, to the both sides of the above equation, one gets

T87(21,6), Y1)V €1 (T@.8) = 21.8)Y01.) 8+ (T2,8), Y2m)- T
Lemma 5.3 The following two statements are equivalent:

(1) &nmm,z(cm,N)a = (CM,N)za—1EMRN,» for any crossed left m-H-comodules M and N,

and o, z € .

(ii) op~(T,y) = 02p2-1 2v.-1(82(2), & (y)) for any 8,7,z € m and v € Hg,y € H,.

Proof Let M and N be crossed left m-H-comodules. For any o, 3,2 € m,m € Mg and n € N,
we have
Enmm,z (e N)py(m@n) = (En,. @ Eur2) (e N,)
= (Evz @ &a1,2)5,4(M(=1,6), 1(-1,7)) (N0,7) @ Eary-1(M(0,)))
= 05,7 (M(=1,8), 1(~17) (€N .2 (7(0,7)) @ Enr,2€r7-1 (M(0,)))
= 06,9 (M(=1,8),1(=1,7)) (€N, (1(0,)) © &M, 271 (M0,)))
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and

2pe—1 N, -1 §MIZIN,z(m ® n)

_1(&(m) ®&:(n))
= 028z 1,zyz—1 (gz (m(fl,ﬁ)% 62 (n(fl,'y)))(fN,z(n(O,’y)) Y gM,zwflzflfM,Z(m(O,ﬁ)))'

(CM,N)zﬁ'yzflfM@N,z(m & n) =CM

= CMZB271 N

zyz

Then gNXlM,z(CM,N),B’y = (CMJV)ZB'yz*lgM@N,z if and Only if 0'677(1}, y) = Usz*Hz*yz*1 (fz (-T)a fz (y))
[l

Lemma 5.4 The following two statements are equivalent:
(i) cm,nmp = (idy Mep,p)(ey,ny Widp) for any crossed left m-H-comodules M ,N and P,
if and only if for any «, 8,7 € m and x € H,,y € Hg,p € H,,
T,y (T:YP) = 0a,5(T(1,0), ¥) 05180~ (Ea-1 (T(2,0)): P);
(ii) eymn,p = (em,p Ridy)(ida M e, p) for any crossed left m-H-comodules M ,N and P,
if and only if for any o, 8,7 € m and x € Hy,y € Hg,p € H,
0ap (7Y D) = Oan (¥, P(2))08.4 Y P1y))-
Proof We only prove Part (2). The proof of Part (1) is similar. Let M, N, P be any crossed left
m-H-comodules for «, 3,y € . Then for any m € M,, n € N3 and p € P,, we have
(cMRN,P)apy(M @1 & p) = ey rN, P, (M @1 & p)
= P0,7) ® Emy-1(M0,0)) ® ENy-1(1(0,8))T a8 (TM(=1,0)(=1,8)5 P(~1,7))
= D7) @ EM -1 (10,0)) @ EN -1 (n(0,8))Tariy (M~ 1,0)s P(—1,7)(27))
76,7 (M(-1,8): P(~1,7) (1.7))

and

((em,p Bidy)(idy Hen,p))apy(m @ n @ p)
= (em,.p, Midy _,, )(idar, Ken,, p,)(m®@n @ p)
= (em,p, Widy _,, )M @ P(o,) @ Eny-1(1(0,8)))08,4 (R(=1,8), P(~1,7))-

Thus, if o0ap(2Y,p) = Caq (T, P2,4))08~ (Y, P(1,y)) for any a, 8,y € 7 and x € Hy,y € Hp,p €
H,, then cymn p = (eam,p Widy)(idas W ey, p) for any crossed left m-H-comodules M,N and
P. Conversely, let M = N = P = H. Since c is a braiding, we have ¢y xp, n, = (ca,,m, X
idHB)(idHa X CHava)' Thus, for any x € H,,y € Hg,z € H,, we have

CH RHs H, (TR YR 2) = 22,4 ®E-1(T(2,0)) @ §-1(Y(2,8))Ta8.~(T(1,0)¥(1,8) 2(1,7))

and
(CHQ,H»Y X idHﬁ)(idHa X CHﬁ,H.Y)(-T QYR Z)

= (cHo,m, Bidp, ) (T ® 2(2,9) @ §4-1(Y(2,8))) 8.~ (Y(1,8)» Z(1,4))
= 2(2,7)(2,7) © &-1(Z(2,0)) © &-1(42,8)) 0y (T(1,0) ® 2(27)(1,4)) 8.4 (Y(1,8), 2(1,7))-
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Applying €y ® £4-14y ® £4-13, to the above two equations, one gets

Ua,ﬁv(xayz) = Ua,ﬁ(x(l,a)a y)o-,li’*loc,ﬁ,'y(éb*l(x(la))a Z) O

Theorem 5.5 Let H = ({H,},m,n) be a crossed weak Hopf w-algebra and let 0 = {03, : H3®
H., — k}g ~er be afamily of k-linear maps. Then the monoidal category (T M rossed; X, HE a1, 1)
of crossed left m-H-comodules is a braided monoidal category with the braiding c if and only if

H = ({H,},m,n) is a coquasitriangular weak Hopf m-algebra where c is defined by o as above.

Proof If c is a braiding of the monoidal category (¥ M rossed; X, HY, a,1,7), then it follows from
Lemmas 5.2, 5.3 and 5.4 that o is a weak coquasitriangular structure. Conversely, assume that
o is a weak coquasitriangular structure. Then by Lemmas 5.2, 5.3 and 5.4, it suffices to show
that ¢ = {cap v} is natural. Now let ¢ = {9 taer : M — M’ and f = {fs}per : N = N’ be left

m-H-comodule morphisms. Then for any o, 3 € m, m € M, and n € Ng, we have

(f ®g)em,N)as(m@n) = (fz ® gg-1a8)CM., N, (M @ N)
= (f8 ® 9p-108)(n0,8) @ Es-1(M(0,0))0a,8(M(~1,0), (~1,8)))
= f5(1n00.8) ® gp-1ap(Es-1(M(0,0)))00,8(1M(~1,0): 7(~1,6))
= f8(n)(0,8) ® &a-1(9a(M) (0,0))7a,8(ga (M) (~1,0), f3(1)(~1,8))
= ey, vy, (9a(m) ® fa(n))
= CM&,Né(goz ® fp)(m ®@n)
= (em v (9 @ f))ap(m @ n).

Hence (f ® g)emr,nv = cymr,n(g ® f). The proof is completed. O
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