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Abstract The main purpose of this paper is to study the growth of meromorphic solutions

of complex linear differential-difference equations

L(z, f) =

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = 0 or F (z)

with entire or meromorphic coefficients, and ci, i = 0, . . . , n being distinct complex numbers,

where there is only one dominant coefficient.
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1. Introduction and main results

In this paper, we assume that the readers are familiar with the standard notations and basic

results of Nevanlinna theory [1–3]. In the whole paper, let f(z) be a meromorphic function in

the whole complex plane. In addition, we use the notations σ(f) and µ(f) to denote the order

and the lower order of a meromorphic function f(z) respectively, and the notations

τ(f) = lim
r→∞

logM(r, f)

rσ(f)
and τ(f) = lim

r→∞

logM(r, f)

rµ(f)

to denote the type and the lower type of an entire function f(z), respectively.

Recently, the research on analytic properties of meromorphic solutions of complex difference

equations has become a subject of great interest from the viewpoint of Nevanlinna theory [4–11].

In particular, in 2007, Laine and Yang [10] considered complex linear difference equations

and obtained the following theorem.

Theorem 1.1 ([10]) Let A0(z), . . . , An(z) be entire functions of finite order such that among
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those having the maximal order σ = max0≤k≤n σ(Ak), exactly one has its type strictly greater

than the others. Then for any meromorphic solution f(z) ( ̸≡ 0) of

An(z)f(z + ωn) + · · ·+A1(z)f(z + ω1) +A0(z)f(z) = 0, (1.1)

where ω1, . . . , ωn are distinct complex numbers, we have σ(f) ≥ σ + 1.

In 2008, Tu and Yi [18] investigated the growth of solutions of a class of complex linear

differential equations and obtained the following theorem.

Theorem 1.2 ([12]) Let Aj(z), j = 0, . . . , k − 1, be entire functions satisfying σ(A0) = σ,

τ(A0) = τ , 0 < σ < ∞, 0 < τ < ∞, and let σ(Aj) ≤ σ, τ(Aj) < τ if σ(Aj) = σ, j ∈ {1, . . . , k−1}.
Then for every solution f(z) ( ̸≡ 0) of

f (k) +Ak−1(z)f
(k−1) + · · ·+A0(z)f(z) = 0, (1.2)

we have σ(f) = ∞, σ2(f) = σ(A0).

Note that in Theorems 1.1 and 1.2, when there is exactly one dominant coefficient among

those coefficients having the same maximal order, we may get the growth relation between

the solutions and the coefficients of complex linear difference equation (1.1) or complex linear

differential equation (1.2). We proceed in this way by combining complex differentials with

complex differences. In fact, we shall consider complex linear differential-difference equations as

follows.

We denote

L(z, f) =
n∑

i=0

m∑
j=0

Aij(z)f
(j)(z + ci),

where A00An0 ̸≡ 0 and consider complex linear differential-difference equations

L(z, f) = 0 (1.3)

and

L(z, f) = F (z), (1.4)

where ci, i = 0, . . . , n are distinct complex numbers.

The first main aim of our paper is to investigate the growth of meromorphic solutions of the

homogeneous equation (1.3) with some coefficients having the same maximal order or maximal

lower order, and we obtain the following results.

Theorem 1.3 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m be entire functions such that there exists

an integer l (0 ≤ l ≤ n) satisfying

max{σ(Aij) : (i, j) ̸= (l, 0)} ≤ σ(Al0) < ∞, (1.5)

and

τ1 = max{τ(Aij) : σ(Aij) = σ(Al0), (i, j) ̸= (l, 0)} < τ(Al0). (1.6)

If f(z) is a transcendental meromorphic solution of (1.3), then we have σ(f) ≥ σ(Al0) + 1.
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Theorem 1.4 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m be entire functions such that there exists

an integer l (0 ≤ l ≤ n) satisfying

max{σ(Aij) : (i, j) ̸= (l, 0)} ≤ µ(Al0) < ∞, (1.7)

and

τ2 = max{τ(Aij) : σ(Aij) = µ(Al0), (i, j) ̸= (l, 0)} < τ(Al0). (1.8)

If f(z) is a transcendental meromorphic solution of (1.3), then we have µ(f) ≥ µ(Al0) + 1.

Theorem 1.5 Let H be a complex set satisfying logdens{r = |z| : z ∈ H} > 0, and let

Aij(z), i = 0, . . . , n, j = 0, . . . ,m be entire functions. If there exist two constants α1, α2 (0 <

α2 < α1) and an integer l (0 ≤ l ≤ n) such that for any given ε (0 < ε < α1 − α2),

|Al0(z)| ≥ exp{rα1−ε}, z ∈ H, (1.9)

|Aij(z)| ≤ exp{rα2}, (i, j) ̸= (l, 0), z ∈ H, (1.10)

then every transcendental meromorphic solution f(z) of (1.3) satisfies σ(f) ≥ α1 + 1.

Theorem 1.6 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m be entire functions. If there exists an

integer l (0 ≤ l ≤ n) satisfying Al0(z) is transcendental,

max{σ(Aij) : i = 0, . . . , n, j = 0, . . . ,m} ≤ σ(Al0) < ∞,

and

lim
r→∞

∑
(i,j)̸=(l,0)

m(r,Aij)

m(r,Al0)
< 1, (1.11)

then every meromorphic solution f(z)( ̸≡ 0) of (1.3) satisfies σ(f) ≥ σ(Al0) + 1.

Secondly, we consider the growth of meromorphic solutions of (1.3) with meromorphic co-

efficients and obtain the result as follows.

Theorem 1.7 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m be meromorphic functions such that there

exists an integer l (0 ≤ l ≤ n) satisfying

max{σ(Aij) : (i, j) ̸= (l, 0)} < σ(Al0) < ∞ and δ(∞, Al0) > 0.

If f(z)( ̸≡ 0) is a meromorphic solution of (1.3), then we have σ(f) ≥ σ(Al0) + 1.

Thirdly, we turn to consider the growth of entire solutions of the non-homogeneous equation

(1.4). Note that the above results may not be guaranteed now even if there is only one dominant

coefficient. But we can obtain the similar results with some additional conditions.

Theorem 1.8 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m, F (z) be entire functions such that there

exists an integer l (0 ≤ l ≤ n) satisfying

b = max{σ(Aij), (i, j) ̸= (l, 0), σ(F )} < σ(Al0) < ∞. (1.12)

If Al0(z) also satisfies one of the following conditions

(i) σ(Al0) <
1
2 ;
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or (ii) Al0(z) =
∑∞

n=0 cλnz
λn , where the sequence of exponents {λn} satisfies the Fabry

gap condition:
λn

n
→ ∞; (1.13)

or (iii)

T (r,Al0) ∼ logM(r,Al0), r → ∞, r /∈ E, (1.14)

where E ⊂ (1,+∞) has finite logarithmic measure, then every transcendental entire solution

f(z) of (1.4) satisfies σ(f) ≥ σ(Al0) + 1.

Finally, when the coefficients in (1.3) or (1.4) are polynomials, we obtain the following

results with the similar method as the one in [5, 6].

Theorem 1.9 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m, F (z) be polynomials satisfying FA00An0 ̸≡
0. Then every transcendental meromorphic solution f(z) of the equation

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + i) = F (z) (1.15)

satisfies σ(f) ≥ 1.

Theorem 1.10 Let Aij(z), i = 0, . . . , n, j = 0, . . . ,m be polynomials satisfying A00An0 ̸≡ 0

and
∑n

i=0 Ai0 ̸≡ 0. Then every transcendental meromorphic solution f(z) of the equation

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + i) = 0 (1.16)

satisfies σ(f) ≥ 1. Further, if

deg
( n∑

i=0

Ai0

)
= max{deg(Aij), i = 0, . . . , n, j = 0, . . . ,m}, (1.17)

then every meromorphic solution f(z)( ̸≡ 0) of the equation (1.16) satisfies σ(f) ≥ 1.

2. Lemmas for proofs of main results

Lemma 2.1 ([13]) (i) Let f(z) be a transcendental meromorphic function, Γ = {(k1, j1), . . .,
(km, jm)} be a finite set of distinct pair of integers which satisfy ki > ji ≥ 0 for i = 1, . . . ,m,

and let α > 1 be a given real constant. Then there exists a set E ⊂ (1,+∞) that has finite

logarithmic measure, and there exist constants A > 0 and B > 0 that depend only on α and Γ,

such that for all z satisfying |z| /∈ E ∪ [0, 1] and for all (k, j) ∈ Γ, we have∣∣f (k)(z)

f (j)(z)

∣∣ ≤ B
(T (αr, f)

r
logα r log T (αr, f)

)k−j
.

(ii) Let f(z) be a transcendental meromorphic function with σ(f) = σ < +∞, and let ε > 0

be a given constant. Then there exists a set E1 ⊂ (1,+∞) that has finite logarithmic measure,

such that for all z satisfying |z| /∈ E1 ∪ [0, 1] and for all (k, j) ∈ Γ, we have∣∣f (k)(z)

f (j)(z)

∣∣ ≤ |z|(k−j)(σ−1+ε).
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Remark 2.2 It is shown in [14, P.66], that for an arbitrary complex number c ̸= 0, the following

inequalities

(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z))

hold as r → ∞ for a general meromorphic function f(z). Therefore, it is easy to obtain that

σ(f(z + c)) = σ(f), µ(f(z + c)) = µ(f).

Lemma 2.3 ([7]) Let f(z) be a meromorphic function, η(̸= 0), η1, η2 (η1 ̸= η2) be arbitrary

complex numbers, and let γ > 1 and ε > 0 be given real constants. Then there exists a subset

E2 ⊂ (1,+∞) with finite logarithmic measure,

(i) and a constant A depending only on γ and η, such that for all |z| = r /∈ E2 ∪ [0, 1], we

have ∣∣ log |f(z + η)

f(z)
|
∣∣ ≤ A

(T (γr, f)
r

+
n(γr)

r
logγ r log+ n(γr)

)
;

(ii) and if in addition that f(z) has finite order σ, and such that for all |z| = r /∈ E2∪ [0, 1],

we have

exp{−rσ−1+ε} ≤
∣∣f(z + η1)

f(z + η2)

∣∣ ≤ exp{rσ−1+ε}.

Lemma 2.4 ([11]) Let f(z) be a meromorphic function with µ(f) < +∞. Then for any given

ε > 0, there exists a subset E3 ⊂ (1,+∞) having infinite logarithmic measure such that for all

|z| = r ∈ E3, we have

T (r, f) < rµ(f)+ε.

By Lemmas 2.1(i), 2.3(i) and 2.4, we obtain the following lemma.

Lemma 2.5 ([11]) Let f(z) be a transcendental meromorphic function with µ = µ(f) < +∞,

η1, η2 be distinct complex numbers, and let ε(> 0) be given real constant. Then there exists a

subset E4 ⊂ (1,+∞) of infinite logarithmic measure such that for all |z| = r ∈ E4 and for all

(k, j) ∈ Γ, we have

(i) | f
(k)(z)

f(j)(z)
| ≤ |z|(k−j)(µ−1+ε);

(ii) exp{−rµ−1+ε} ≤ | f(z+η1)
f(z+η2)

| ≤ exp{rµ−1+ε}.

Lemma 2.6 ([7]) Let η1, η2 be distinct complex numbers, and let f(z) be a finite order mero-

morphic function. Let σ be the order of f(z). Then for each ε > 0, we have

m(r,
f(z + η1)

f(z + η2)
) = O(rσ−1+ε).

Lemma 2.7 ([15]) Let f(z) be an entire function of order σ(f) = σ < 1
2 and denote A(r) =

inf |z|=r log |f(z)|, B(r) = sup|z|=r log |f(z)|. If σ < α < 1
2 , then

log dens{r : A(r) > (cosπα)B(r)} ≥ 1− σ

α
.

Lemma 2.8 ([16]) Let f(z) be an entire function with µ(f) = µ < 1
2 and µ < σ = σ(f). If

µ ≤ δ < min{σ, 1
2} and δ < α < 1

2 , then

log dens{r : A(r) > (cosπα)B(r) > rδ} > C(σ, δ, α),
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where C(σ, δ, α) is a positive constant depending only on σ, δ, α.

Lemma 2.9 ([17]) Let f(z) =
∑∞

n=1 cλnz
λn be an entire function of order 0 < σ(f) < +∞. If

the sequence of exponents {λn} satisfies the Fabry gap condition (1.13), then for any β < σ(f),

there exists a set E5 with positive upper logarithmic density such that for all |z| = r ∈ E5, we

have that logL(r, f) > rβ , where L(r, f) = min|z|=r |f(z)|.

Lemma 2.10 ([11]) Let f(z) be an entire function of order 0 < σ(f) = σ < +∞. Then for any

β < σ, there exists a set E6 with positive upper logarithmic density such that for all |z| = r ∈ E6,

we have that logM(r, f) > rβ , where M(r, f) = max|z|=r |f(z)|.

Lemma 2.11 ([11]) Let g(r) and h(r) be monotone nondecreasing functions on [0,+∞) such

that g(r) ≤ h(r) for all r /∈ E7 ∪ [0, 1], where E7 ⊂ (1,+∞) is a set of finite logarithmic measure.

Let α > 1 be a given constant. Then there exists an r0 = r0(α) > 0 such that g(r) ≤ h(αr) for

all r ≥ r0.

Lemma 2.12 ([19]) Let g(z) be a function transcendental and meromorphic in the complex

plane of order less than 1. Let h > 0. Then there exists an ε-set E8 such that

g′(z + c)

g(z + c)
→ 0,

g(z + c)

g(z)
→ 1 as z → ∞ in C\E8,

uniformly in c for |c| ≤ h. Further, E8 may be chosen so that for large z not in E8, the function

g(z) has no zeros or poles in |ζ − z| ≤ h.

Remark 2.13 ([11]) Following Hayman [20, P.75-76], we define an ε-set to be a countable union

of open discs not containing the origin and satisfying the sum of subtending angles of these discs

at the origin is finite. If E is an ε-set, then the set of r ≥ 1 for which the circle S(0, r) meets

E has finite logarithmic measure, and for almost all real θ the intersection of E with the ray

arg z = θ is bounded.

3. Proofs of Theorems 1.3-1.10

Proof of Theorem 1.3 Suppose that f(z) is a transcendental meromorphic solution of (1.3)

satisfying σ(f) < σ(Al0) + 1 < ∞.

Set σ1 = max{σ(Aij) : σ(Aij) < σ(Al0), (i, j) ̸= (l, 0)} < σ(Al0). In relation to (1.5) and

(1.6), for any given ε(> 0) and sufficiently large r, we have that

|Aij(z)| ≤ exp{rσ1+ε}, if σ(Aij) < σ(Al0), (3.1)

and

|Aij(z)| ≤ exp{(τ1 + ε)rσ(Al0)}, if σ(Aij) = σ(Al0), (i, j) ̸= (l, 0). (3.2)

By Lemma 2.1 and Remark 2.2, there exists a subset E1 ⊂ (1,+∞) of finite logarithmic measure

such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have∣∣f (j)(z + ci)

f(z + ci)

∣∣ ≤ rj(σ(f(z+ci))−1)+ε = rj(σ(f)−1)+ε, i = 0, . . . , n, j = 1, . . . ,m. (3.3)
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By Lemma 2.3, there exists a subset E2 ⊂ (1,+∞) of finite logarithmic measure such that for

all z satisfying |z| = r /∈ [0, 1] ∪ E2, we have∣∣f(z + ci)

f(z + cl)

∣∣ ≤ exp{rσ(f)−1+ε}, i = 0, . . . , n, i ̸= l. (3.4)

Then we can choose ε(> 0) sufficiently small to satisfy

max{σ1, σ(f)− 1}+ 2ε < σ(Al0), τ1 + 2ε < τ(Al0). (3.5)

Now, we divide (1.3) by f(z + l) to get

−Al0(z) =
n∑

i=0
i ̸=l

m∑
j=0

Aij(z)
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z + cl)
+

m∑
j=1

Alj(z)
f (j)(z + cl)

f(z + cl)
. (3.6)

Substituting (3.1)–(3.4) into (3.6) results in

M(r,Al0) ≤O(exp{rσ1+ε}+ exp{(τ1 + ε)rσ(Al0)}) · exp{rσ(f)−1+ε}·

rm(σ(f)−1)+ε, (3.7)

where |z| = r /∈ [0, 1] ∪ E1 ∪ E2, and |Al0(z)| = M(r,Al0). Then, (3.5), (3.7) together with

Lemma 2.11 imply that

τ(Al0) ≤ τ1 + ε < τ(Al0)− ε,

a contradiction.

Therefore, σ(f) ≥ σ(Al0) + 1 holds. �

Proof of Theorem 1.4 We use the method similar to the one in the proof of Theorem 1.3

here. Suppose that f(z) is a transcendental meromorphic solution of (1.3) satisfying µ(f) <

µ(Al0) + 1 < ∞.

Set σ2 = max{σ(Aij) : σ(Aij) < µ(Al0)(i, j) ̸= (l, 0)} < µ(Al0). In relation to (1.7) and

(1.8), for any given ε(> 0) and sufficiently large r, we have that

|Aij(z)| ≤ exp{rσ2+ε}, if σ(Aij) < µ(Al0), (3.8)

and

|Aij(z)| ≤ exp{(τ2 + ε)rµ(Al0)}, if σ(Aij) = µ(Al0), (i, j) ̸= (l, 0). (3.9)

By Lemma 2.5 and Remark 2.2, there exists a subset E3 ⊂ (1,+∞) having infinite logarithmic

measure such that for all |z| = r ∈ E3,∣∣f (j)(z + ci)

f(z + ci)

∣∣ ≤ rj(µ(f)−1)+ε, i = 0, . . . , n, j = 1, . . . ,m (3.10)

and ∣∣f(z + ci)

f(z + cl)

∣∣ ≤ exp{rµ(f)−1+ε}, i = 0, . . . , n, i ̸= l (3.11)

hold simultaneously. Then we can choose ε(> 0) sufficiently small to satisfy

max{σ2, µ(f)− 1}+ 2ε < µ(Al0), τ2 + 2ε < τ(Al0). (3.12)
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Now, substituting (3.8)–(3.11) into (3.6) results in

M(r,Al0) ≤O(exp{rσ2+ε}+ exp{(τ2 + ε)rµ(Al0)}) · exp{rµ(f)−1+ε}·

rm(µ(f)−1)+ε, (3.13)

where |z| = r ∈ E3, and |Al0(z)| = M(r,Al0). Then, (3.12), (3.13) imply that

τ(Al0) ≤ lim
r→∞
r∈E3

logM(r,Al0)

rµ(Al0)
≤ τ2 + ε < τ(Al0)− ε,

a contradiction.

Therefore, µ(f) ≥ µ(Al0) + 1 holds. �

Proof of Theorem 1.5 Without loss of generality, we assume f(z) to be a finite order tran-

scendental meromorphic solution of (1.3).

Denote H1 = {r = |z| : z ∈ H}. Since log densH1 > 0, H1 is a set of r of infinite logarithmic

measure. Clearly, (3.3) and (3.4) hold for all z satisfying |z| = r /∈ [0, 1]∪E1 ∪E2, where E1 and

E2 are defined similarly as in the proof of Theorem 1.3. Substituting (1.9), (1.10), (3.3), (3.4)

into (3.6) yields that

exp{rα1−ε} ≤ O
(
exp{rα2}

)
· exp{rσ(f)−1+ε} · rm(σ(f)−1)+ε,

where z ∈ H and |z| = r ∈ H1\([0, 1] ∪ E1 ∪ E2). Consequently, σ(f) ≥ α1 + 1 holds by the

assumption that α1 > α2. �

Proof of Theorem 1.6 Without loss of generality, we assume f(z) to be a finite order mero-

morphic solution to (1.3).

It follows by Lemma 2.6 that for sufficiently large r and any given ε(> 0),

m
(
r,
f(z + ci)

f(z + cl)

)
= O(rσ(f)−1+ε), i = 0, 1, . . . , n, i ̸= l. (3.14)

The logarithmic derivative lemma and Remark 2.2 result in

m
(
r,
f (j)(z + ci)

f(z + ci)

)
= O(log r). (3.15)

Substituting (3.14) and (3.15) into (3.6) yields that

m(r,Al0) ≤
∑

(i,j)̸=(l,0)

m(r,Aij) +O(rσ(f)−1+ε) +O(log r). (3.16)

Then (3.16) and the assumption (1.11) result in σ(f) ≥ σ(Al0) + 1. �

Proof of Theorem 1.7 Clearly, (1.3) has no nonzero rational solution. Now suppose that f(z)

is a transcendental meromorphic solution of (1.3) with σ(f) < ∞. Set

s = max{σ(Aij) : (i, j) ̸= (l, 0)} < σ(Al0) = σ and δ(∞, Al0) = δ > 0. (3.17)

Thus, we have m(r,Al0) > 1
2δT (r,Al0). By Lemma 2.6 and the logarithmic derivative lemma,
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we see that for any given ε > 0,

m
(
r,
f(z + ci)

f(z + cl)

)
= O(rσ(f)−1+ε), i ̸= l, m

(
r,
f (j)(z + ci)

f(z + ci)

)
= O(log r), j ̸= 0.

Thus, we have

1

2
δT (r,Al0) ≤m(r,Al0)

≤
m∑
j=0

n∑
i=0
i ̸=l

m(r,Aij) +

m∑
j=1

m(r,Alj) +

m∑
j=1

n∑
i=0

m
(
r,
f (j)(z + ci)

f(z + ci)

)
+

n∑
i=0
i ̸=l

m
(
r,
f(z + ci)

f(z + cl)

)
+O(1)

≤
m∑
j=0

n∑
i=0
i ̸=l

T (r,Aij) +
m∑
j=1

T (r,Alj) +O(rσ(f)−1+ε) +O(log r). (3.18)

By (3.18), we can obtain that

σ(Al0) ≤ max{σ(Aij), (i, j) ̸= (l, 0), σ(f)− 1 + ε}. (3.19)

Then (3.17) and (3.19) result in σ(f) ≥ σ(Al0) + 1. �

Proof of Theorem 1.8 Without loss of generality, we assume f(z) to be a finite order tran-

scendental entire solution of (1.4). We divide (1.4) by f(z + cl) to get

−Al0(z) =
n∑

i=0
i ̸=l

m∑
j=0

Aij(z)
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z + cl)
+

m∑
j=1

Alj(z)
f (j)(z + cl)

f(z + cl)
−

F (z)

f(z)
· f(z)

f(z + cl)
. (3.20)

It follows by (1.12) that for all sufficiently large |z| = r,

|Aij(z)| ≤ exp{rb+ε}, (i, j) ̸= (l, 0), (3.21)

|F (z)| ≤ exp{rb+ε}. (3.22)

Since M(r, f) > 1, for all sufficiently large r = |z|, we have by (3.22) that∣∣ F (z)

M(r, f)

∣∣ ≤ |F (z)| ≤ exp{rb+ε}. (3.23)

Moreover, (3.3), (3.4) hold for all |z| = r /∈ [0, 1] ∪ E1 ∪ E2.

(i) If σ(Al0) <
1
2 , then by Lemmas 2.7 or 2.8, there exists a subset E4 ⊂ (1,+∞) having

infinite logarithmic measure such that for all |z| = r ∈ E4, we have

|Al0(z)| ≥ exp{rσ(Al0)−ε}. (3.24)

Substituting (3.3), (3.4), (3.21)–(3.24) into (3.20) yields that for all z satisfying |z| = r ∈
E4\([0, 1] ∪ E1 ∪ E2),

exp{rσ(Al0)−ε} ≤ |Al0(z)| ≤ O(exp{rb+ε}) · exp{rσ(f)−1+ε} · rm(σ(f)−1)+ε. (3.25)
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Then (3.25) results in σ(f) ≥ σ(Al0) + 1.

(ii) By using Lemma 2.9 instead of Lemmas 2.7 or 2.8 in the proof of (i), we can prove (ii)

similarly.

(iii) Since m(r,Al0) ∼ logM(r,Al0) as r → ∞, r /∈ E, by the definition of m(r, f), there

exists a set H ⊂ [0, 2π) having linear measure zero such that for all z satisfying arg z = θ ∈
[0, 2π)\H, we have

|Al0(re
iθ)| > M(r,Al0)

1−ε, r → ∞, r /∈ E. (3.26)

By Lemma 2.10, for any given ε > 0, there exists a set E5 ⊂ (1,+∞) with positive upper

logarithmic density, such that

M(r,Al0) > exp{rσ(Al0)−(ε/2)}. (3.27)

By (3.26) and (3.27), for any given ε > 0 and for all z satisfying |z| = r ∈ E5\E, and arg z =

θ ∈ [0, 2π)\H, we have

|Al0(re
iθ)| > M(r,Al0)

1−ε > (exp{rσ(Al0)−(ε/2)})1−ε > exp{rσ(Al0)−ε}. (3.28)

Substituting (3.3), (3.4), (3.21)-(3.23) and (3.28) into (3.20) yields that for all |z| = r ∈ E5\(E ∪
E1 ∪ E2), and arg z = θ ∈ [0, 2π)\H, we have

exp{rσ(Al0)−ε} ≤ |Al0(re
iθ)| ≤ O(exp{rb+ε}) · exp{rσ(f)−1+ε} · rm(σ(f)−1)+ε. (3.29)

Then (3.29) results in σ(f) ≥ σ(Al0) + 1. �

Proof of Theorem 1.9 Without loss of generality, we suppose that f(z) is a finite order

transcendental meromorphic solution of (1.15). We divide this proof into the following two

cases.

Case 1 Suppose that f(z) has only finitely many poles. Now we suppose that σ(f) < 1, then

σ(f (k)) < 1, k ∈ N. By Lemma 2.12, there exist ε-sets Gj , j = 0, . . . ,m− 1 such that

f (j+1)(z + i) = o(1)f (j)(z + i), i = 0, . . . , n, as z → ∞ in C\Gj , (3.30)

and

f (j)(z + i) = f (j)(z)(1 + o(1)), i = 1, . . . , n, as z → ∞ in C\Gj . (3.31)

Set Hj = {|z| = r > 1 : z ∈ Gj}, j = 0, . . . ,m − 1, and H=
∪m−1

j=0 Hj . By Remark 2.13,

H0,H1, . . . , Hm−1 are of finite logarithmic measure, then so is H. By (1.15), we obtain that, as

|z| = r /∈ H, z → ∞,

A00(z)f(z) +

n∑
i=1

Ai0(z)(1 + o(1))f(z) +

m∑
j=1

n∑
i=0

Aij(z)o(1)f(z) = F (z). (3.32)

Then we have

f(z) =
F (z)

A00(z) +
n∑

i=1

Ai0(z)(1 + o(1)) +
m∑
j=1

n∑
i=0

Aij(z)o(1)
. (3.33)
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Thus, noting that f(z) has only finitely many poles, we deduce from (3.33) that when |z| = r /∈
[0, 1] ∪H,

T (r, f) =m(r, f) +N(r, f) = m(r, f) +O(log r)

=m(r,
F

A00 +
n∑

i=1

Ai0(1 + o(1)) +
m∑
j=1

n∑
i=0

Aijo(1)
) +O(log r)

≤T (r,
F

A00 +
n∑

i=1

Ai0(1 + o(1)) +
m∑
j=1

n∑
i=0

Aijo(1)
) +O(log r)

≤T (r, F ) +

m∑
j=0

n∑
i=0

T (r,Aij) +O(log r) = O(log r),

which contradicts the fact that f(z) is transcendental.

Hence, σ(f) ≥ 1 holds for Case 1.

Case 2 Suppose that f(z) is a meromorphic function with infinitely many poles. Since

F (z), Aij(z), i = 0, . . . , n, j = 0, . . . ,m are polynomials, we see that there is a constant M > 0

such that all zeros of F (z), Aij(z), i = 0, . . . , n, j = 0, . . . ,m are in E6 = {z : |Re z| < M, |Im z| <
M}.

Set D1 = {z : Re z > M1}, D2 = {z : Re z < −M1}, D3 = {z : Im z > M1}, D4 = {z :

Im z < −M1}, where M1 = M +n. Since f(z) has infinitely many poles, we see that there exists

at least one of Dj , j = 1, 2, 3, 4, say D1, such that f(z) has infinitely many poles in D1. Suppose

that a point z0 ∈ D1 satisfies f(z0) = ∞. Then, we claim that there exist i1 ∈ {1, . . . , n} and

j1 ∈ {0, · · · ,m} such that z0+i1 ∈ D1 and f (j1)(z0+i1) = ∞, then f(z0+i1) = ∞. Indeed, if not,

then by (1.15), there must be some j ∈ {1, . . . ,m} such that f (j)(z0) = ∞. However, f (i)(z) and

f (j)(z) (j ̸= i) have different pole multiplicities at z0, then (1.15) is a contradiction. Similarly,

there is a sequence {id : d = 1, . . .} satisfying id ∈ {1, . . . , n}(d = 1, . . .), z0 + i1 + · · ·+ id ∈ D1

and z0 + i1 + · · · + id are poles of f(z). Since |id| ≤ n for d = 1, . . . and n is fixed, we see that

λ( 1f ) ≥ 1, consequently σ(f) ≥ 1.

If f(z) has infinitely many poles in D3 (or D4), then we may use the similar method as

above.

If f(z) has infinitely many poles in D2, then we can consider the other form of (1.15), that

is
n∑

i=0

m∑
j=0

Aij(z − n)f (j)(z + i− n) = F (z − n),

and get a sequence {ld : d = 1, . . .} satisfying ld ∈ {−1, . . . ,−n}. So, λ( 1f ) ≥ 1, and σ(f) ≥ 1.

Hence, σ(f) ≥ 1 holds for Case 2. �

Proof of Theorem 1.10 Suppose that f(z) is a transcendental meromorphic solution of (1.16)

with σ(f) < 1 and d(̸= 0) is a constant. Set g(z) = f(z) − d, then σ(g) = σ(f). Substituting
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f(z) = g(z) + d into (1.16) results in

n∑
i=0

m∑
j=0

Aij(z)g
(j)(z + i) = −d

( n∑
i=0

Ai0

)
. (3.34)

Since
∑n

i=0 Ai0 ̸≡ 0, we see that the coefficients of (3.34) satisfy the conditions of Theorem 1.9.

Hence, if f(z) is a transcendental meromorphic solution of (1.16), then σ(f) ≥ 1.

Now, it suffices to prove that (1.16) has no nonzero rational solution, when (1.17) holds.

Since
∑n

i=0 Ai0 ̸≡ 0, we clearly know that (1.16) has no nonzero constant solution. Now we

suppose that (1.16) has a non-constant rational solution

f(z) =
cmzm + cm−1z

m−1 + · · ·+ c0
dszs + ds−1zs−1 + · · ·+ d0

= azm−s(1 + o(1)), (3.35)

where a ̸= 0,m, s ∈ N,m+ s ≥ 1. Then, we have

f(z + i) = azm−s(1 + o(1)), i = 1, . . . , n, (3.36)

and

f (j)(z + i) = O(zm−s−j), i = 0, . . . , n, j = 1, . . . ,m. (3.37)

Substituting (3.35)-(3.37) into (1.16) results in( n∑
i=0

Ai0

)
azm−s +

n∑
i=0

(Ai0o(az
m−s)) +

m∑
j=1

n∑
i=0

(AijO(zm−s−1)) = 0.

Thus, we have ( n∑
i=0

Ai0

)
+

n∑
i=0

(Ai0o(1)) +

m∑
j=1

n∑
i=0

(Aijo(1)) = 0. (3.38)

Since (1.17) holds, we see that (3.38) is a contradiction. Thus, (1.16) has no nonzero rational

solution. That is, every meromorphic solution f(z)( ̸≡ 0) of (1.16) satisfies σ(f) > 1 when (1.17)

holds. �
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