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Abstract In this paper, we mainly discuss some generalized metric properties and the cardinal

invariants of almost topological groups. We give a characterization for an almost topological

group to be a topological group and show that: (1) Each almost topological group that is

of countable π-character is submetrizable; (2) Each left λ-narrow almost topological group is

λ-narrow; (3) Each separable almost topological group is ω-narrow. Some questions are posed.
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1. Introduction

All spaces are T2 unless stated otherwise. We denote by N the set of all natural numbers

and ω = N∪{0}. The letter e denotes the neutral element of a group. Readers may refer [3, 5, 7]

for notations and terminology not explicitly given here.

A group G endowed with a topology τ is called a semitopological group if the left and right

translations of G are continuous. We also say that G is a paratopological group if the multiplica-

tion in G is continuous as a mapping of G×G into G, where G×G is given product topology. A

topological group is a paratopological group with continuous inversion. Obviously, each topolog-

ical group is a paratopological group, and each paratopological group is a semitopological group.

Paratopological groups were discussed and many results have been obtained in [1, 3, 8, 9, 11–14].

In the class of paratopological groups, it is well known that the closure of a subgroup of

a paratopological group is not necessarily a subgroup. Therefore, Fernéandez in [6] introduced

some class of paratopological groups (that is, almost topological groups) such that the closure

of each subgroup of arbitrary such paratopological group must be a subgroup. In this paper, we

shall discuss some generalized metric properties and the cardinal invariants of almost topological

groups.

2. Preliminaries
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Definition 2.1 ([3]) Let λ be a cardinal. A subset H of a semitopological group is left λ-narrow

(resp., right λ-narrow) if for every open neighborhood U of the neutral element e in G, there

exists a subset F of H such that |F | ≤ λ and H ⊂ FU (resp., H ⊂ UF ). A subset H of a

semitopological group is λ-narrow if it is left λ-narrow and right λ-narrow.

Definition 2.2 ([15]) A semitopological group is left precompact (resp., right precompact) if

for each open neighborhood U of the neutral element e in G, there exists a finite set A ⊂ G such

that AU = G (resp., UA = G). A semitopological group is precompact if it is left precompact

and right precompact.

Remark 2.3 Recently, the following results have been obtained:

(1) Every left precompact paratopological group is right precompact [17];

(2) Every left ω-narrow Baire paratopological group is ω-narrow [15];

(3) A dense subgroup of a precompact paratopological group is precompact [18].

However, in the class of topological groups, the following results are well known:

(i) Every left ω-narrow topological group is ω-narrow;

(ii) The subgroup H of an ω-narrow topological group is ω-narrow [3].

Definition 2.4 ([6]) An almost topological group is a paratopological group (G, τ) which satisfies

the following conditions:

(a) The group G admits a Hausdorff topological group topology γ weaker than τ , and

(b) There exists a local base B at the neutral element e of the paratopological group (G, τ)

such that the set V = U \ {e} is open in (G, γ) for each U ∈ B.

We will say that G is an almost topological group with structure (τ, γ,B).

Remark 2.5 (1) It is easy to check that Sorgenfrey line is an almost topological group. However,

Sorgenfrey line is not a topological group.

(2) The closure of any subgroup of the product of a family of almost topological groups is

a subgroup [6].

(3) Any discrete subgroup of a product of a family of almost topological groups is closed

[6].

Recall that a family U of non-empty open sets of a space X is called a π-base at a point

x if for each non-empty open neighborhood V of x in X, there exists U ∈ U such that U ⊂ V .

The π-character of x in X is defined by

πχ(x,X) = min{|U | : U is a local π-base at x in X}.

The π-character of X is defined by

πχ(X) = sup{πχ(x,X) : x ∈ X}.

The character of x in X is defined by

χ(x,X) = min{|U | : U is a neighborhood base at x in X}.
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The character of X is defined by

χ(X) = sup{χ(x,X) : x ∈ X}.

The density of X is defined by

d(X) = min{|F | : F ⊂ X,F = X}.

The cellurarity of X is defined by

c(X) = sup{|U | : U is a disjoint family of open subsets of X}.

3. Generalized metric properties on almost topological groups

First, we shall give a condition under which an almost topological group is a topological

group.

Proposition 3.1 A non-discrete almost topological group G is a topological group if and only

if G satisfies the following (♡):

(♡) For each open neighborhood U of the neutral element e there exist a point y ∈ U \ {e}
and an open neighborhood V of e such that e ∈ yV ⊂ U.

Proof Let G be an almost topological group with structure (τ, γ,B).

Let (G, τ) be a topological group. For each open neighborhood U of e in τ , there exists a

symmetric open neighborhood V of e in τ such that e ∈ V 2 ⊂ U . Since (G, τ) is non-discrete,

there exists a point y ∈ V \ {e}. Obviously, we have e ∈ yV ⊂ U.

Conversely, it suffices to show that e ∈ intτ (U
−1) for each open neighborhood U of e in τ .

By (♡), there exist a point y ∈ U \ {e} and an open neighborhood V of e in (G, τ) such that

e ∈ yV ⊂ U. We can assume that V ∈ B, then e ∈ y(V \ {e}) ⊂ U . Since V ∈ B, we know that

y(V \{e}) is an open neighborhood of e in (G, γ). Therefore, (y(V \{e}))−1 is also a neighborhood

of e in γ, thus e ∈ intγ((y(V \ {e}))−1). Since γ ⊂ τ , the set intγ((y(V \ {e}))−1) ⊂ U−1 is an

open neighborhood of e in (G, τ). Therefore, e ∈ intτ (U
−1). �

Example 3.2 There exists a Hausdorff paratopological group G which satisfies (♡). However,

it is not a topological group.

Proof Consider the additive group (R,+). Fix a natural number k and put Un(k) = k(N ∪
{0}) + (− 1

n ,
1
n ) for each n ∈ N. Let U = {Un(k) : k, n ∈ N}. Then there exists a topology σ on

R such that G = (R, σ) is a Hausdorff paratopological group and the family U is a local base at

0 in G, see [10]. Obviously, G is not a topological group and satisfies (♡). �
The following question is still open in the class of paratopological groups.

Question 3.3 ([2, Problem 20]) Is every regular first countable paratopological group sub-

metrizable?

However, in the class of almost topological groups, the following theorem gives a positive

answer to Question 3.3.
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Theorem 3.4 Let G be an almost topological group that is of countable π-character. Then G

is submetrizable.

Proof Let G be an almost topological group with structure (τ, γ,B), and let {Un : n ∈ w} be a

countable π-base at the neutral element e in (G, τ). If G is discrete, then it is obvious that G is

submetrizable. Therefore, we may assume that G is non-discrete. For each n ∈ ω, take xn ∈ Un.

Then we can find Bn ∈ B such that xnBn ⊂ Un since (G, τ) is a paratopological group. Note

that G is a non-discrete almost topological group, hence the set Bn \ {e} is a non-empty open

set in (G, γ) for each n ∈ ω. So xn(Bn \ {e}) = xnBn \ {xn} is also an open set in (G, γ). Then

the family V = {xnBn \ {xn} : n ∈ ω} is countable. We claim that V is a π-base at the neutral

element e of (G, γ). Indeed, let W be an arbitrary open neighbourhood of the neutral element

e in (G, γ). Clearly, W is also an open neighbourhood of the neutral element e in (G, τ), hence

there exists n ∈ ω such that Un ⊂ W . Therefore, we have xnBn\{xn} ⊂ xnBn ⊂ Un ⊂ W . Thus

V is a π-base at the neutral element e of (G, γ). It is well known that a Hausdorff topological

group with a countable π-character is metrizable, so G is submetrizable. �
By the proof of Theorem 3.4, we have the following.

Corollary 3.5 If G is an almost topological group with structure (τ, γ,B), then πχ(G, γ) ≤
πχ(G, τ).

However, the following question is still open.

Question 3.6 Let G be an almost topological group with structure (τ, γ,B). Does the equation

χ(G, τ) = χ(G, γ) hold?

The following question is posed by Liu and Lin.

Question 3.7([14, Question 2.2]) Let G be a first-countable paratopological group. If G is a

p-space, is G developable?

A space X is a w∆-space [4] if there exists a sequence {Hn} of open covers of X such that

if xn ∈ st(x,Hn) for each n ∈ N, then the set {xn : n ∈ N} has a cluster point in X.

Definition 3.8 ([19]) Let X be a space and {Pn}n a sequence of collections of open subsets of

X.

(1) {Pn}n is called a development for X if {st(x,Pn)}n is a neighborhood base at x in X

for each point x ∈ X.

(2) X is called developable, if X has a development.

(3) X is called Moore, if X is regular and developable.

Clearly, each developable space is a w∆-space.

The following corollary gives a partial answer to Question 3.7.

Corollary 3.9 Let G be an almost topological group that is of countable π-character. If G is

a w∆-space, then G is developable.

Proof It follows from Theorem 3.4 that G is submetrizable. Then (G, τ) is developable since G
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is a w∆-space [7]. �
It is well known that a topological group with countable pseudocharacter is submetrizable.

Moreover, the authors in [11] have given a paratopological group which is of countable pseu-

docharacter and non-submetrizable. Therefore, we have the following question.

Question 3.10 Let G be an almost topological group that is of countable pseudocharacter. Is

G submetrizable?

The authors in [11] showed that a Moore paratopological group needs not be metrizable.

Indeed, that paratopological group is an almost topological group. However, the following ques-

tions are still open in the class of paratopological groups.

Question 3.11 Let G be a regular paratopological group or an almost topological group. If G

is regular and has a uniform base, is G metrizable?

Question 3.12 Let G be a paratopological group or an almost topological group. If G is regular

and has a point-countable base, is G metrizable?

4. Some cardinal invariants of almost topological groups

The following question was posed by Guran.

Question 4.1 ([15, Question 2.2]) Is every left ω-narrow paratopological group right ω-narrow?

The following theorem gives a partial answer to Question 4.1.

Theorem 4.2 Let G be an almost topological group with structure (τ, γ,B). If (G, τ) is left

λ-narrow, then (G, τ) is λ-narrow.

Proof It suffices to show that (G, τ) is right λ-narrow. If (G, τ) is discrete, then it is obvious

that (G, τ) is right λ-narrow. Therefore, we may assume that (G, τ) is non-discrete. Let U be

an arbitrary open neighborhood of the identity e in (G, τ). Since (G, τ) is left λ-narrow, we can

find a subset F0 of (G, τ) such that |F0| ≤ λ and F0U = G. Since e ∈ U , there exists B0 ∈ B
such that B0 ⊂ U and B0 \ {e} is open in (G, γ). Since G is non-discrete, we have B0 \ {e} ̸= ∅.
Let y ∈ B0 \ {e}. Then (B0 \ {e})y−1 ∈ γ and e ∈ (B0 \ {e})y−1. Since (G, τ) is left λ-narrow,

topological group (G, γ) is λ-narrow. So there exists a subset F1 of G such that |F1| ≤ λ and

(B0 \ {e})y−1F1 = G. Thus G = U(y−1F1) and |y−1F1| ≤ λ. �

Theorem 4.3 Let G be an almost topological group with structure (τ, γ,B). Then (G, γ) is

λ-narrow if and only if (G, τ) is λ-narrow.

Proof Obviously, if (G, τ) is discrete, then theorem holds. Therefore, we may assume that

(G, τ) is non-discrete.

Sufficiency. Since (G, γ) is weaker than (G, τ), it is obvious that (G, γ) is λ-narrow if (G, τ)

is λ-narrow.

Necessity. By Theorem 4.2, it suffices to show that (G, τ) is left λ-narrow. Let U be an
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arbitrary non-empty open neighborhood of e in (G, τ). Then there exists B ∈ B such that B ⊂ U

and B \ {e} is a non-empty open set in (G, γ). Take x ∈ B \ {e}. Since (G, γ) is topological

group, there exists an open neighborhood V of e in (G, γ) such that xV ⊂ B \{e}. Since (G, γ) is

λ-narrow, there exists a subset F of G such that |F | ≤ λ and FV = G. Let H = Fx−1. Clearly,

|H| ≤ λ. Then

G = FV = Fx−1xV ⊂ H(B \ {e}) ⊂ HU.

Therefore, (G, τ) is left λ-narrow. �

Theorem 4.4 If G is an almost topological group with structure (τ, γ,B), then d(G, γ) =

d(G, τ).

Proof Obviously, we have d(G, τ) ≥ d(G, γ). Next, we shall show that d(G, γ) ≥ d(G, τ).

Clearly, if (G, τ) is discrete, then theorem holds. Therefore, we may assume that (G, τ) is non-

discrete. Let D be a dense subset of (G, γ). Next we shall show that D is a dense subset in

(G, τ). Indeed, for an arbitrary non-empty open set U in (G, τ), take x ∈ U . There exists

B ∈ B such that xB ⊂ U and xB \ {x} is open in (G, γ). Since (G, γ) is non-discrete, the

interior of xB \ {x} in (G, γ) is non-empty. So we have (xB \ {x}) ∩ D ̸= ϕ, and therefore

(xB \ {x}) ∩D ⊂ xB ∩D ⊂ U ∩D ̸= ϕ. Therefore, D is dense in (G, τ). �

Theorem 4.5 Every separable almost topological group is ω-narrow.

Proof Let G be an almost topological group with structure (τ, γ,B). Since (G, τ) is separable,

(G, γ) is also separable since (G, γ) is weaker than (G, τ). So (G, γ) is w-narrow [3]. Therefore,

Theorem 4.3 implies that (G, τ) is w-narrow. �

Theorem 4.6 If G is an almost topological group with structure (τ, γ,B), then c(G, τ) =

c(G, γ).

Proof Obviously, c(G, γ) ≤ c(G, τ). Next, it suffices to show that c(G, τ) ≤ c(G, γ). Let

c(G, τ) = κ. If (G, τ) is discrete, then the theorem holds. Therefore, we may assume that (G, τ)

is non-discrete. Let U be the maximum family of pairwise disjoint open sets in (G, τ). Since

c(G, τ) = κ, we may assume that U = {Uα : α ∈ κ}. For each α ≤ κ, take xα ⊂ Uα, then

there exists Bα ∈ B such that xαBα ⊂ Uα. By Definition 2.4, we know that xαBα \ {xα} is a

non-empty open set in (G, γ). Let

V = {xαBα \ xα : α ≤ κ}.

Clearly, V is the family of pairwise disjoint open sets in (G, γ), hence |V | ≤ c(G, γ). Moreover,

it is obvious that |V | = |U |. Thus κ ≤ c(G, γ). Therefore, we have c(G, τ) ≤ c(G, γ). �

Theorem 4.7 Suppose that G is an almost topological group with structure (τ, γ,B). If

c(G, τ) ≤ ω, then (G, τ) is ω-narrow.

Proof Suppose c(G, τ) ≤ ω. Then it follows from Theorem 4.6 that c(G, γ) ≤ ω. Since (G, γ)

is topological group, (G, γ) is ω-narrow [3]. By Theorem 4.3, (G, τ) is ω-narrow. �
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In [16], the author showed that a paratopological group G is λ-narrow if it contains a dense

λ-narrow subgroup. The following theorem is complementary to I. Sánchez’s result.

Theorem 4.8 Every subgroup H of an ω-narrow almost topological group G is ω-narrow.

Proof Let G be an almost topological group with structure (τ, γ,B). If (G, τ) is discrete, then

the theorem holds. Therefore, we may assume that (G, τ) is non-discrete. Suppose H is an

arbitrary subgroup of G. By Theorem 4.3, (G, γ) is ω-narrow, so H is w-narrow in (G, γ). For

an arbitrary open neighborhood U of the neutral element e in (G, τ), take x ∈ U . Then there

exists B ∈ B such that xB ⊂ U and xB \ {x} is a non-empty open subset of (G, γ). So there

exists a countable subset A of H such that (xB \ {x}) ·A ⊇ H. Then

H ⊂ (xB \ {x}) ·A ⊂ xB ·A ⊂ UA.

Therefore, H is w-narrow in (G, τ). �
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