Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 119–129 DOI:10.3770/j.issn:2095-2651.2015.02.001 Http://jmre.dlut.edu.cn

Ordering Graphs by the Augmented Zagreb Indices

Yufei HUANG^{1,*}, Bolian LIU²

 Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangdong 510403, P. R. China;
 College of Mathematical Science, South China Normal University,

Guangdong 510631, P. R. China

Abstract Recently, Furtula et al. proposed a valuable predictive index in the study of the heat of formation in octanes and heptanes, the augmented Zagreb index (AZI index) of a graph G, which is defined as

$$AZI(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2}\right)^3,$$

where E(G) is the edge set of G, d_u and d_v are the degrees of the terminal vertices u and v of edge uv, respectively. In this paper, we obtain the first five largest (resp., the first two smallest) AZI indices of connected graphs with n vertices. Moreover, we determine the trees of order n with the first three smallest AZI indices, the unicyclic graphs of order n with the minimum, the second minimum AZI indices, and the bicyclic graphs of order n with the minimum AZI index, respectively.

Keywords augmented Zagreb index; connected graphs; trees; unicyclic graphs; bicyclic graphs

MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). Let n = |V(G)| and m = |E(G)|. Let N(u) be the set of all neighbors of $u \in V(G)$ in G, and let $d_u = |N(u)|$ be the degree of vertex u. A vertex u is called a pendent vertex if $d_u = 1$. A connected graph G is called a tree (resp., unicyclic graph and bicyclic graph) if m = n - 1 (resp., m = n and m = n + 1).

Molecular descriptors have found a wide application in QSPR/QSAR studies [1]. Among them, topological indices have a prominent place. Inspired by recent work on the atom-bond connectivity index [2,3], Furtula et al. [4] proposed a valuable predictive index whose prediction power is better than atom-bond connectivity index in the study of the heat of formation in octanes and heptanes, the augmented Zagreb index (AZI index for short) of a graph G, which is defined as

$$AZI(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2}\right)^3.$$

Received July 25, 2014; Accepted December 22, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11326221).

^{*} Corresponding author

E-mail address: fayger@qq.com (Yufei HUANG)

Basic properties of AZI index have been studied in [5]. Besides, by using different graph parameters, some attained upper and lower bounds and the corresponding extremal graphs on the AZI indices for various classes of connected graphs have been given in [4,5].

In this paper, we obtain the first five largest (resp., the first two smallest) AZI indices of connected graphs with n vertices. Moreover, we determine the trees of order n with the first three smallest AZI indices, the unicyclic graphs of order n with the minimum, the second minimum AZI indices, and the bicyclic graphs of order n with the minimum AZI index, respectively.

2. The first five largest AZI indices of connected graphs

Denote by P_n , C_n , K_n and S_n the path, cycle, complete graph and star of order n, respectively. Let $G_1 \vee G_2$ denote the graph obtained from two graphs G_1 and G_2 by connecting the vertices of G_1 with the vertices of G_2 . Let \overline{G} be the complement of a graph G. Let G + e denote the graph obtained from a graph G by inserting an edge $e \notin E(G)$. Let G - e denote the graph obtained from a graph G by deleting the edge $e \in E(G)$. Let $S_n^+ = S_n + e$.

Let \mathbb{G}_n be the set of connected graphs of order n, and let $\mathbb{G}_{n,m}$ be the set of connected graphs with n vertices and m edges, where $n-1 \leq m \leq \binom{n}{2}$. Obviously, $\mathbb{G}_1 = \{K_1\}, \mathbb{G}_2 = \{K_2\}$ and $\mathbb{G}_n = \bigcup_{n-1 \leq m \leq \binom{n}{2}} \mathbb{G}_{n,m}$. Now we shall investigate the AZI index of $G \in \mathbb{G}_n$ for $n \geq 3$. To begin with, a key lemma to obtain our main results is given as follows.

Lemma 2.1 ([5]) Let $G \in \mathbb{G}_n$ and $G \ncong K_n$, where $n \ge 3$. Then for $e \notin E(G)$, AZI(G) < AZI(G + e).

It follows from Lemma 2.1 that

Corollary 2.2 Let n, m_1, m_2 be integers with $n \ge 3$ and $n-1 \le m_1 < m_2 \le \binom{n}{2}$.

- (1) Let $G_1 \in \mathbb{G}_{n,m_1}$. Then there exists a graph $G_2 \in \mathbb{G}_{n,m_2}$ such that $AZI(G_2) > AZI(G_1)$.
- (2) Let $G_2 \in \mathbb{G}_{n,m_2}$. Then there exists a graph $G_1 \in \mathbb{G}_{n,m_1}$ such that $AZI(G_1) < AZI(G_2)$.

Observe that $\mathbb{G}_3 = \{K_3, P_3\}$ and $\mathbb{G}_4 = \{K_4, K_4 - e, C_4, S_4^+, P_4, S_4\}$. By Corollary 2.2 and simply calculating, we immediately get $AZI(K_3) > AZI(P_3)$ and

$$\operatorname{AZI}(K_4) > \operatorname{AZI}(K_4 - e) > \operatorname{AZI}(C_4) > \operatorname{AZI}(S_4^+) > \operatorname{AZI}(P_4) > \operatorname{AZI}(S_4).$$

For $n \geq 5$, observe that $\mathbb{G}_{n,\binom{n}{2}} = \{K_n\}, \ \mathbb{G}_{n,\binom{n}{2}-1} = \{K_n - e\}, \ \mathbb{G}_{n,\binom{n}{2}-2} = \{\overline{S_3} \lor K_{n-3}, C_4 \lor K_{n-4}\}$ and $\mathbb{G}_{n,\binom{n}{2}-3} = \{\overline{S_4} \lor K_{n-4}, \overline{K_3} \lor K_{n-3}, P_4 \lor K_{n-4}, \overline{S_3} \lor (K_{n-3}-e), C_4 \lor (K_{n-4}-e)(n \geq 6)\}.$

Lemma 2.3 Let $G \in \mathbb{G}_{n,\binom{n}{2}-3}$ and $G \ncong \overline{S_4} \lor K_{n-4}$. Then for $n \ge 5$,

$$\mathrm{AZI}(\overline{S_3} \vee K_{n-3}) > \mathrm{AZI}(C_4 \vee K_{n-4}) > \mathrm{AZI}(\overline{S_4} \vee K_{n-4}) > \mathrm{AZI}(G).$$

Proof By direct computation, for $n \ge 5$, we have

$$AZI(\overline{S_3} \lor K_{n-3}) = \frac{(n-3)(n-4)(n-1)^6}{2(2n-4)^3} + \frac{2(n-3)(n-1)^3(n-2)^3}{(2n-5)^3} + \frac{(n-2)^6 + (n-3)^4(n-1)^3}{(2n-6)^3},$$

$$\begin{split} \operatorname{AZI}(C_4 \lor K_{n-4}) &= \frac{(n-4)(n-5)(n-1)^6}{2(2n-4)^3} + \frac{4(n-4)(n-1)^3(n-2)^3}{(2n-5)^3} + \frac{4(n-2)^6}{(2n-6)^3}, \\ \operatorname{AZI}(\overline{S_4} \lor K_{n-4}) &= \frac{(n-4)(n-5)(n-1)^6}{2(2n-4)^3} + \frac{3(n-4)(n-1)^3(n-2)^3}{(2n-5)^3} + \frac{3(n-2)^6}{(2n-6)^3} + \frac{(n-1)^3(n-4)^4}{(2n-7)^3}, \\ \operatorname{AZI}(\overline{K_3} \lor K_{n-3}) &= \frac{(n-3)(n-4)(n-1)^6}{2(2n-4)^3} + \frac{3(n-1)^3(n-3)^4}{(2n-6)^3}, \\ \operatorname{AZI}(P_4 \lor K_{n-4}) &= \frac{(n-4)(n-5)(n-1)^6}{2(2n-4)^3} + \frac{2(n-4)(n-1)^3(n-2)^3}{(2n-5)^3} + \frac{2(n-4)(n-1)^3(n-3)^4 + (n-2)^6}{(2n-5)^3} + \frac{2(n-4)(n-1)^3(n-3)^3 + (n-2)^6}{(2n-6)^3}, \\ \end{split}$$

$$AZI(\overline{S_3} \lor (K_{n-3} - e)) = \frac{(n-5)(n-6)(n-1)^6}{2(2n-4)^3} + \frac{4(n-5)(n-1)^3(n-2)^3}{(2n-5)^3} + \frac{(n-5)(n-1)^3(n-3)^3 + 5(n-2)^6}{(2n-6)^3} + \frac{2(n-2)^3(n-3)^3}{(2n-7)^3},$$

$$AZI(C_4 \lor (K_{n-4} - e))(n \ge 6) = \frac{(n-6)(n-7)(n-1)^6}{2(2n-4)^3} + \frac{12(n-2)^6}{(2n-6)^3} + \frac{6(n-6)(n-1)^3(n-2)^3}{(2n-5)^3}.$$

It can be checked by calculator that for $n \geq 5$, $\operatorname{AZI}(\overline{S_3} \vee K_{n-3}) - \operatorname{AZI}(C_4 \vee K_{n-4}) > 0$, $\operatorname{AZI}(C_4 \vee K_{n-4}) - \operatorname{AZI}(\overline{S_4} \vee K_{n-4}) > 0$ and $\operatorname{AZI}(\overline{S_4} \vee K_{n-4}) - \operatorname{AZI}(G) > 0$, where $G \in \{\overline{K_3} \vee K_{n-3}, P_4 \vee K_{n-4}, \overline{S_3} \vee (K_{n-3} - e), C_4 \vee (K_{n-4} - e) \ (n \geq 6)\}$. \Box

The following theorem gives the first five largest AZI indices of connected graphs with n vertices, where $n \ge 5$.

Theorem 2.4 Let $G \in \mathbb{G}_n$ and $G \notin \{K_n, K_n - e, \overline{S_3} \lor K_{n-3}, C_4 \lor K_{n-4}, \overline{S_4} \lor K_{n-4}\}$, where $n \ge 5$. Then $\operatorname{AZI}(K_n) > \operatorname{AZI}(K_n - e) > \operatorname{AZI}(\overline{S_3} \lor K_{n-3}) > \operatorname{AZI}(C_4 \lor K_{n-4}) > \operatorname{AZI}(\overline{S_4} \lor K_{n-4}) > \operatorname{AZI}(G)$.

Proof Since $G \in \mathbb{G}_n$ $(n \geq 5)$ and $G \notin \{K_n, K_n - e, \overline{S_3} \lor K_{n-3}, C_4 \lor K_{n-4}, \overline{S_4} \lor K_{n-4}\}$, we have $G \in \bigcup_{n-1 \leq m \leq \binom{n}{2} - 3} \mathbb{G}_{n,m}$. If $G \in \bigcup_{n-1 \leq m \leq \binom{n}{2} - 4} \mathbb{G}_{n,m}$, then by Corollary 2.2, there exists a graph $G^* \in \mathbb{G}_{n,\binom{n}{2} - 3}$ such that $\operatorname{AZI}(G) < \operatorname{AZI}(G^*)$. It follows from Lemma 2.3 that

$$AZI(G) < AZI(G^*) \le AZI(\overline{S_4} \lor K_{n-4}).$$
(2.1)

If $G \in \mathbb{G}_{n,\binom{n}{2}-3}$, since $G \cong \overline{S_4} \vee K_{n-4}$, then we also have

$$AZI(G) < AZI(\overline{S_4} \lor K_{n-4})$$
(2.2)

by Lemma 2.3. Moreover, $K_n \cong (K_n - e) + e$ and $K_n - e \cong (\overline{S_3} \vee K_{n-3}) + e$, then by Lemma 2.1, we obtain that

$$AZI(K_n) > AZI(K_n - e) > AZI(\overline{S_3} \lor K_{n-3}).$$
(2.3)

Combining inequalities (2.1)-(2.3) with the inequality

$$\operatorname{AZI}(\overline{S_3} \lor K_{n-3}) > \operatorname{AZI}(C_4 \lor K_{n-4}) > \operatorname{AZI}(\overline{S_4} \lor K_{n-4})$$

in Lemma 2.3, we obtain the desired results. \Box

3. Ordering trees by the AZI indices

Let x_{ij} be the number of edges of a graph G connecting vertices of degrees i and j, and let $A_{ij} = (\frac{ij}{i+j-2})^3$, where i, j are positive integers. Obviously, $x_{ij} = x_{ji}$ and $A_{ij} = A_{ji}$. Then the augmented Zagreb index of a graph G can be rewritten as $AZI(G) = \sum_{i < j} x_{ij}A_{ij}$.

Lemma 3.1 (1) A_{1j} is decreasing for $j \ge 2$.

- (2) $A_{2j} = 8$ for $j \ge 1$.
- (3) If $i \geq 3$ is fixed, then A_{ij} is increasing for $j \geq 2$.

Proof Clearly, $A_{2j} = (\frac{2j}{2+j-2})^3 = 8$ for $j \ge 1$. Note that

$$\frac{\partial(A_{ij})}{\partial j} = \frac{3i^3j^2(i-2)}{(i+j-2)^4}$$

Hence A_{1j} is decreasing and A_{ij} is increasing for $j \ge 2$, where $i \ge 3$ is fixed. \Box

Let \mathbb{T}_n be the set of trees of order $n \geq 3$, and let $\mathbb{T}_{n,p}$ be the set of trees with n vertices and p pendent vertices, where $2 \leq p \leq n-1$. Then $\mathbb{T}_n = \bigcup_{2 \leq p \leq n-1} \mathbb{T}_{n,p}$. Let $DS_n(p_1, p_2)$ be the tree of order n formed from the path of order $n - p_1 - p_2$ by attaching p_1 and p_2 pendent vertices to its end vertices respectively, where $p_2 \geq p_1 \geq 1$ and $p_1 + p_2 \leq n-2$. Clearly, $\mathbb{T}_{n,n-1} = \{S_n\}$, $\mathbb{T}_{n,n-2} = \{DS_n(p_1, n-2-p_1) | 1 \leq p_1 \leq \lfloor \frac{n-2}{2} \rfloor\}$ and $\mathbb{T}_{n,2} = \{DS_n(1,1)\} = \{P_n\}$.

Theorem 3.2 Let $T \in \mathbb{T}_{n,p}$, where $2 \leq p \leq n-3$. Then

$$\operatorname{AZI}(T) \ge \frac{\left(\lfloor \frac{p}{2} \rfloor + 1\right)^3}{\lfloor \frac{p}{2} \rfloor^2} + \frac{\left(\lceil \frac{p}{2} \rceil + 1\right)^3}{\lceil \frac{p}{2} \rceil^2} + 8(n - 1 - p)$$

with equality if and only if $T \cong DS_n(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil)$.

Proof The case of p = 2 is trivial since $\mathbb{T}_{n,2} = \{DS_n(1,1)\} = \{P_n\}$. Notice that there are t vertices, denoted by v_1, v_2, \ldots, v_t , such that $\cup_{i=1}^t N(v_i)$ contains all pendent vertices of T. Suppose that there are p_i pendent vertices in $N(v_i)$, where $i = 1, 2, \ldots, t$ and $\sum_{i=1}^t p_i = p$. Without loss of generality, we may assume that $p_i \ge 1$ for $1 \le i \le t$. Since $p \ne n-1$ (namely, T is not a star), then $t \ge 2$. Hence

$$AZI(T) = \sum_{i=1}^{t} p_i A_{1,d_{v_i}} + \sum_{2 \le i \le j \le n-1} x_{ij} A_{ij}.$$
(3.1)

Note that the terminal vertices of a diameter-achieving path P of T are two pendent vertices. Without loss of generality, suppose that the neighbors of the terminal vertices are v_1 and v_2 , respectively. By the choice of the diameter-achieving path P, we have $d_{v_1} = p_1 + 1$ and $d_{v_2} =$

 $p_2 + 1$. Note that $d_{v_i} \ge 2$ for $1 \le i \le t$ and

$$\sum_{i=1}^{t} d_{v_i} \le 2(n-1) - p - 2(n-p-t) = p + 2t - 2.$$

We claim that $d_{v_i} \leq p + 2 - d_{v_1}$ for $2 \leq i \leq t$. Otherwise, if $d_{v_i} > p + 2 - d_{v_1}$ for some $i \neq 1$, then

$$p + 2t - 2 \ge \sum_{i=1}^{t} d_{v_i} > d_{v_1} + (p + 2 - d_{v_1}) + 2(t - 2) = p + 2t - 2,$$

which is a contradiction. Therefore, by Lemma 3.1, we have

$$\sum_{i=1}^{t} p_i A_{1,d_{v_i}} = p_1 A_{1,d_{v_1}} + \sum_{i=2}^{t} p_i A_{1,d_{v_i}} \ge p_1 A_{1,d_{v_1}} + \sum_{i=2}^{t} p_i A_{1,p+2-d_{v_1}}$$
$$= p_1 A_{1,p_1+1} + (p-p_1) A_{1,p-p_1+1}.$$

If $\sum_{i=1}^{t} p_i A_{1,d_{v_i}} = p_1 A_{1,p_1+1} + (p-p_1) A_{1,p-p_1+1}$ and $t \ge 3$, then we get

$$p + 2t - 2 \ge \sum_{i=1}^{t} d_{v_i} \ge d_{v_1} + 2(p + 2 - d_{v_1}) + 2(t - 3) = (p + 2t - 2) + (p - d_{v_1}),$$

equivalently, $d_{v_1} = p_1 + 1 \ge p$, which is a contradiction. Consequently, we conclude that

$$\sum_{i=1}^{t} p_i A_{1,d_{v_i}} \ge p_1 A_{1,p_1+1} + (p-p_1) A_{1,p-p_1+1} = \frac{(p_1+1)^3}{p_1^2} + \frac{(p-p_1+1)^3}{(p-p_1)^2}$$

with equality if and only if t = 2 and $d_{v_2} = p + 2 - d_{v_1} = p - p_1 + 1$, namely, $p_1 + p_2 = p$. Moreover, the function $f(x) = \frac{(x+1)^3}{x^2}$ is convex increasing for $x \ge 2$, since

$$f'(x) = \frac{(x+1)^2(x-2)}{x^3} \ge 0$$
 and $f''(x) = \frac{6(x+1)}{x^4} > 0.$

Besides, $f(1) = 8 > f(2) = \frac{27}{4}$, and then

$$f(1) + f(p-1) > f(2) + f(p-2) \ge \dots \ge f(\lfloor \frac{p}{2} \rfloor) + f(\lceil \frac{p}{2} \rceil).$$

It leads to

$$\sum_{i=1}^t p_i A_{1,d_{v_i}} \geq \frac{(p_1+1)^3}{p_1^2} + \frac{(p-p_1+1)^3}{(p-p_1)^2} \geq \frac{(\lfloor \frac{p}{2} \rfloor + 1)^3}{\lfloor \frac{p}{2} \rfloor^2} + \frac{(\lceil \frac{p}{2} \rceil + 1)^3}{\lceil \frac{p}{2} \rceil^2}.$$

The equality holds if and only if t = 2, $p_1 = \lfloor \frac{p}{2} \rfloor$ and $p_2 = \lceil \frac{p}{2} \rceil$.

On the other hand, it follows from Lemma 3.1 that

$$\sum_{2 \le i \le j \le n-1} x_{ij} A_{ij} \ge \sum_{2 \le i \le j \le n-1} x_{ij} A_{2j} = 8(n-1-p)$$

with equality holding if and only if all edges of T are pendent edges or the edges with one end vertex of degree 2.

All in all, it follows from Equation (3.1) that

$$\operatorname{AZI}(T) \ge \frac{\left(\lfloor \frac{p}{2} \rfloor + 1\right)^3}{\lfloor \frac{p}{2} \rfloor^2} + \frac{\left(\lceil \frac{p}{2} \rceil + 1\right)^3}{\lceil \frac{p}{2} \rceil^2} + 8(n - 1 - p)$$

with equality if and only if $T \cong DS_n(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil)$. This completes the proof. \Box

Corollary 3.3 Let $T \in \bigcup_{2 \leq p \leq n-3} \mathbb{T}_{n,p}$. Then

$$\operatorname{AZI}(T) \ge \frac{\left(\lfloor \frac{n-3}{2} \rfloor + 1\right)^3}{\lfloor \frac{n-3}{2} \rfloor^2} + \frac{\left(\lceil \frac{n-3}{2} \rceil + 1\right)^3}{\lceil \frac{n-3}{2} \rceil^2} + 16$$

with equality if and only if $T \cong DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)$.

Proof By Theorem 3.2, it will suffice to show that $\operatorname{AZI}(DS_n(\lfloor \frac{p-1}{2} \rfloor, \lceil \frac{p-1}{2} \rceil)) > \operatorname{AZI}(DS_n(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil))$, where $3 \leq p \leq n-3$. By Lemma 3.1, we have

$$\begin{split} \operatorname{AZI}(DS_{n}(\lfloor \frac{p}{2} \rfloor, \lceil \frac{p}{2} \rceil)) &= \lfloor \frac{p}{2} \rfloor A_{1, \lfloor \frac{p}{2} \rfloor + 1} + \lceil \frac{p}{2} \rceil A_{1, \lceil \frac{p}{2} \rceil + 1} + 8(n - 1 - p) \\ &= \lceil \frac{p - 1}{2} \rceil A_{1, \lceil \frac{p - 1}{2} \rceil + 1} + \lfloor \frac{p - 1}{2} \rfloor A_{1, \lceil \frac{p}{2} \rceil + 1} + A_{1, \lceil \frac{p}{2} \rceil + 1} + 8(n - 1 - p) \\ &< \lceil \frac{p - 1}{2} \rceil A_{1, \lceil \frac{p - 1}{2} \rceil + 1} + \lfloor \frac{p - 1}{2} \rfloor A_{1, \lfloor \frac{p - 1}{2} \rfloor + 1} + 8 + 8(n - 1 - p) \\ &= \operatorname{AZI}(DS_{n}(\lfloor \frac{p - 1}{2} \rfloor, \lceil \frac{p - 1}{2} \rceil)). \quad \Box \end{split}$$

An order of trees in $\mathbb{T}_{n,n-2}$ $(n \ge 4)$ by their AZI indices is given as follows.

Lemma 3.4 Observe that $\mathbb{T}_{n,n-2} = \{DS_n(p_1, n-2-p_1) | 1 \le p_1 \le \lfloor \frac{n-2}{2} \rfloor\}$. Then

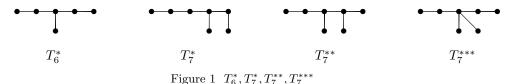
$$\operatorname{AZI}(DS_n(\lfloor \frac{n-2}{2} \rfloor, \lceil \frac{n-2}{2} \rceil)) > \dots > \operatorname{AZI}(DS_n(2, n-4)) > \operatorname{AZI}(DS_n(1, n-3)).$$

Proof For $1 \le p_1 \le \lfloor \frac{n-2}{2} \rfloor$, note that

$$AZI(DS_n(p_1, n-2-p_1)) = \frac{(p_1+1)^3}{p_1^2} + \frac{(n-1-p_1)^3}{(n-2-p_1)^2} + \frac{(p_1+1)^3(n-1-p_1)^3}{(n-2)^3} := f(p_1).$$

The result follows since the function $f(p_1)$ is increasing for $1 \le p_1 \le \lfloor \frac{n-2}{2} \rfloor$. \Box

Let $T_6^*, T_7^*, T_7^{**}, T_7^{***}$ be the trees as shown in Figure 1.



Now we obtain an order of \mathbb{T}_n for $3 \le n \le 7$ by their AZI indices. Observe that $\mathbb{T}_3 = \{S_3\}$, $\mathbb{T}_4 = \{P_4, S_4\}, \mathbb{T}_5 = \{P_5, DS_5(1, 2), S_5\},$

$$\operatorname{AZI}(P_4) > \operatorname{AZI}(S_4) \quad \text{and} \quad \operatorname{AZI}(P_5) > \operatorname{AZI}(DS_5(1,2)) > \operatorname{AZI}(S_5). \tag{3.2}$$

Note that $\mathbb{T}_6 = \{P_6, T_6^*, DS_6(1, 2), DS_6(2, 2), DS_6(1, 3), S_6\},\$

$$AZI(P_6) > AZI(T_6^*) > AZI(DS_6(1,2))$$

> AZI(DS_6(2,2)) > AZI(DS_6(1,3)) > AZI(S_6), (3.3)

and $\mathbb{T}_7 = \{P_7, T_7^*, DS_7(1,2), T_7^{**}, T_7^{***}, DS_7(1,3), DS_7(2,2), DS_7(2,3), DS_7(1,4), S_7\},\$ $AZI(P_7) > AZI(T_7^*) > AZI(DS_7(1,2)) > AZI(T_7^{**})$

$$>AZI(T_7^{***}) > AZI(DS_7(1,3)) > AZI(DS_7(2,2))$$

$$>AZI(DS_7(2,3)) > AZI(DS_7(1,4)) > AZI(S_7).$$
(3.4)

Moreover, the trees of order $n \ge 8$ with the first three smallest AZI indices are determined.

Theorem 3.5 Let $T \in \mathbb{T}_n$ and $T \ncong S_n$, $DS_n(1, n-3)$, $DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)$, where $n \ge 8$. Then $AZI(S_n) < AZI(DS_n(1, n-3)) < AZI(DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)) < AZI(T)$.

Proof It is obvious that

$$\begin{split} \operatorname{AZI}(S_n) &= (n-3)A_{1,n-1} + 2A_{1,n-1} < (n-3)A_{1,n-2} + 16 = \operatorname{AZI}(DS_n(1,n-3)) \\ &< \lceil \frac{n-3}{2} \rceil A_{1,\lceil \frac{n-3}{2} \rceil + 1} + \lfloor \frac{n-3}{2} \rfloor A_{1,\lfloor \frac{n-3}{2} \rfloor + 1} + 16 \\ &= \operatorname{AZI}(DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)). \end{split}$$

Since $T \in \mathbb{T}_n$ $(n \ge 8)$ and $T \not\cong S_n, DS_n(1, n-3), DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)$, we consider the following two cases.

Case 1 $T \in \mathbb{T}_{n,n-2} = \{DS_n(p_1, n-2-p_1) | 1 \le p_1 \le \lfloor \frac{n-2}{2} \rfloor\}$. By Lemma 3.4, we need to prove that $\operatorname{AZI}(DS_n(2, n-4)) > \operatorname{AZI}(DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil))$ for $n \ge 8$. By Theorem 3.2,

$$\begin{split} \mathrm{AZI}(DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)) &< \mathrm{AZI}(DS_n(2, n-5)) \\ &= 2A_{1,3} + 16 + (n-5)A_{1,n-4} \\ &< 2A_{1,3} + A_{3,n-3} + (n-4)A_{1,n-3} \\ &= \mathrm{AZI}(DS_n(2, n-4)). \end{split}$$

Case 2 $T \in \bigcup_{2 \le p \le n-3} \mathbb{T}_{n,p}$. By Corollary 3.3, we immediately get

$$\mathrm{AZI}(DS_n(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil)) < \mathrm{AZI}(T). \ \ \Box$$

By using Theorem 3.5, we obtain the first two smallest AZI indices of connected graphs with $n \ge 5$ vertices as follows.

Theorem 3.6 Let $G \in \mathbb{G}_n$ and $G \ncong S_n, DS_n(1, n-3)$, where $n \ge 5$. Then

$$\operatorname{AZI}(S_n) < \operatorname{AZI}(DS_n(1, n-3)) < \operatorname{AZI}(G).$$

Proof From inequalities (3.2)–(3.4) and Theorem 3.5, the inequality $AZI(S_n) < AZI(DS_n(1, n-3))$ holds for $n \ge 5$. Note that $G \in \bigcup_{n-1 \le m \le \binom{n}{2}} \mathbb{G}_{n,m}$. We have the following two cases.

Case 1 $G \in \mathbb{G}_{n,n-1} = \mathbb{T}_n \ (n \ge 5)$. By inequalities (3.2)–(3.4) and Theorem 3.5,

$$\operatorname{AZI}(DS_n(1, n-3)) < \operatorname{AZI}(G).$$

Case 2 $G \in \bigcup_{n \le m \le \binom{n}{2}} \mathbb{G}_{n,m}$. By Corollary 2.2, there exists a graph $G^* \in \mathbb{G}_{n,n-1}$ such that $\operatorname{AZI}(G^*) < \operatorname{AZI}(G)$. If $G^* \ncong S_n$, then we immediately get $\operatorname{AZI}(DS_n(1, n-3)) \le \operatorname{AZI}(G^*) < \operatorname{AZI}(G)$. If $G^* \cong S_n$, then by Lemma 2.1, we conclude that G is obtained from S_n by inserting

some edges. It follows that

$$AZI(G) \ge AZI(S_n^+) = 24 + (n-3)A_{1,n-1}$$

> 16 + (n-3)A_{1,n-2} = AZI(DS_n(1, n-3)). \Box

4. Unicyclic graphs with the first two smallest AZI indices

Denote by $C_{n,p}$ the unicyclic graph of order n formed by attaching p pendent vertices to a vertex of the cycle C_{n-p} , where $0 \le p \le n-3$. Let $C_{n,p}^{p_1,p_2,\ldots,p_{n-p}}$ denote the unicyclic graph of order n obtained from the cycle $C_{n-p} = v_1 v_2 \cdots v_{n-p} v_1$ by attaching p_i pendent vertices to vertex v_i , where $p_i \ge 0$, $i = 1, 2, \ldots, n-p$ and $\sum_{i=1}^{n-p} p_i = p$. Clearly, $C_{n,0} \cong C_n$, $C_{n,n-3} \cong S_n^+$ and $C_{n,p}^{p,0,\ldots,0} \cong C_{n,p}$.

Let U_5^* be the unicyclic graph obtained by identifying one vertex of C_3 and one end vertex of P_3 . Let \mathbb{U}_n be the set of unicyclic graphs of order $n \geq 3$. Obviously, $\mathbb{U}_3 = \{K_3\}$, $\mathbb{U}_4 = \{C_4, S_4^+\}$ and $\mathbb{U}_5 = \{C_5, S_5^+, C_{5,1}, C_{5,2}^{1,1,0}, U_5^*\}$. By simply calculating, we get that $\operatorname{AZI}(S_4^+) < \operatorname{AZI}(C_4)$ and $\operatorname{AZI}(S_5^+) < \operatorname{AZI}(C_{5,2}^{1,1,0}) < \operatorname{AZI}(C_5, 1) < \operatorname{AZI}(C_5) = \operatorname{AZI}(U_5^*)$.

Let $\mathbb{U}_{n,p}$ be the set of unicyclic graphs with *n* vertices and *p* pendent vertices, where $0 \le p \le n-3$. Then $\mathbb{U}_n = \bigcup_{0 \le p \le n-3} \mathbb{U}_{n,p}$.

Lemma 4.1 ([5]) Let $U \in \mathbb{U}_{n,p}$, where $0 \le p \le n-3$. Then

$$AZI(U) \ge \frac{p(p+2)^3}{(p+1)^3} + 8(n-p)$$

with equality if and only if $U \cong C_{n,p}$.

Lemma 4.2 Let $C_{n,p}$ be the unicyclic graph of order n defined above, where $0 \le p \le n-3$. Then $\operatorname{AZI}(C_{n,0}) > \operatorname{AZI}(C_{n,1}) > \cdots > \operatorname{AZI}(C_{n,n-4}) > \operatorname{AZI}(C_{n,n-3})$.

Proof Note that $AZI(C_{n,p}) = \frac{p(p+2)^3}{(p+1)^3} + 8(n-p)$. Let $f(x) = \frac{x(x+2)^3}{(x+1)^3} + 8(n-x)$. Then

$$f'(x) = -\frac{x(7x^3 + 28x^2 + 42x + 24)}{(x+1)^4} \le 0.$$

Thus f(x) is decreasing for $x \ge 0$. This completes the proof. \Box

By Lemmas 4.1 and 4.2, it is easy to obtain the following corollary.

Corollary 4.3 Let $U \in \bigcup_{0 \le p \le n-4} \mathbb{U}_{n,p}$. Then

$$AZI(U) \ge \frac{(n-4)(n-2)^3}{(n-3)^3} + 32$$

with equality if and only if $U \cong C_{n,n-4}$.

Lemma 4.4 Let $U \in \mathbb{U}_{n,n-3}$ and $U \ncong S_n^+$, where $n \ge 6$. Then $\operatorname{AZI}(U) > \operatorname{AZI}(C_{n,n-4}) > \operatorname{AZI}(S_n^+)$.

Proof Since $U \in U_{n,n-3}$, we may assume that $G \cong C_{n,n-3}^{p_1,p_2,p_3}$, where $p_1 \ge p_2 \ge p_3 \ge 0$ and $\sum_{i=1}^{3} p_i = n-3$. Notice that $U \ncong S_n^+$, then $p_2 \ge 1$. Let $r = (p_1 - 1)(A_{1,p_1+2} - A_{1,n-2}) + 1$

$$p_2(A_{1,p_2+2} - A_{1,n-2}) + p_3(A_{1,p_3+2} - A_{1,n-2})$$

Case 1 $p_3 = 0$. Since $n \ge 6$, then $p_1 \ge 2$. By Lemma 3.1, we have r > 0 and

$$AZI(U) - AZI(C_{n,n-4}) = r + A_{1,p_1+2} + A_{p_1+2,p_2+2} - 16.$$
(4.1)

Subcase 1.1 $p_1 = 2$. It follows from (4.1) and Lemma 3.1 that

$$AZI(U) - AZI(C_{n,n-4}) > 0 + A_{1,4} + A_{4,3} - 16 = \frac{4^3}{3^3} + \frac{12^3}{5^3} - 16 > 0.$$

Subcase 1.2 $p_1 \geq 3$. Then by Lemma 3.1 and (4.1), we have

$$AZI(U) - AZI(C_{n,n-4}) > 0 + 1 + A_{5,3} - 16 = 1 + \frac{15^3}{6^3} - 16 > 0.$$

Case 2 $p_3 \ge 1$. By Lemma 3.1, we obtain that r > 0 and

$$\begin{aligned} \operatorname{AZI}(U) - \operatorname{AZI}(C_{n,n-4}) &= r + A_{1,p_1+2} + A_{p_1+2,p_2+2} + A_{p_1+2,p_3+2} + A_{p_2+2,p_3+2} - 32 \\ &> 0 + 1 + 3A_{3,3} - 32 = 1 + 3 \cdot \frac{9^3}{4^3} - 32 > 0. \end{aligned}$$

Combining the above cases, we get that $AZI(U) > AZI(C_{n,n-4})$. Moreover, it is easy to obtain that $AZI(C_{n,n-4}) = (n-4)A_{1,n-2} + 32 > AZI(S_n^+) = (n-3)A_{1,n-1} + 24$. \Box

It follows from Corollary 4.3 and Lemma 4.4 that the unicyclic graphs of order $n \ge 6$ with the minimum and the second minimum AZI indices are determined.

Theorem 4.5 Let $U \in \mathbb{U}_n$ and $G \ncong S_n^+, C_{n,n-4}$, where $n \ge 6$. Then $\operatorname{AZI}(S_n^+) < \operatorname{AZI}(C_{n,n-4}) < \operatorname{AZI}(U)$.

5. Bicyclic graphs with the minimum AZI index

Let \mathbb{B}_n be the set of bicyclic graphs of order $n \geq 4$. Clearly, $\mathbb{B}_4 = \{K_4 - e\}$. Let $\mathbb{B}_{n,p}$ be the set of bicyclic graphs with n vertices and p pendent vertices, where $0 \leq p \leq n - 4$. Then $\mathbb{B}_n = \bigcup_{0 \leq p \leq n-4} \mathbb{B}_{n,p}$.

Denote by $D_{n,r,s,p}$ the bicyclic graph of order n by identifying one vertex of two cycles C_r and C_s , and attaching p pendent vertices to the common vertex, where $r \ge s \ge 3$ and $0 \le p = n + 1 - r - s \le n - 5$.

Lemma 5.1 ([5]) Let $B \in \mathbb{B}_{n,p}$, where $0 \le p \le n-5$. Then

$$AZI(B) \ge \frac{p(p+4)^3}{(p+3)^3} + 8(n+1-p)$$

with equality if and only if $B \cong D_{n,r,s,p}$, where $r \ge s \ge 3$ and r + s = n + 1 - p.

Lemma 5.2 Let $D_{n,r,s,p}$ be the bicyclic graph of order n defined above, where $r \ge s \ge 3$ and $0 \le p = n + 1 - r - s \le n - 5$. Then $\operatorname{AZI}(D_{n,r,s,0}) > \operatorname{AZI}(D_{n,r,s,1}) > \cdots > \operatorname{AZI}(D_{n,r,s,n-5})$.

Proof Observe that

AZI
$$(D_{n,r,s,p}) = \frac{p(p+4)^3}{(p+3)^3} + 8(n+1-p) := g(p).$$

Then

$$g'(p) = -\frac{7p^4 + 84p^3 + 372p^2 + 704p + 456}{(p+3)^4} < 0.$$

Hence g(p) is decreasing for $p \ge 0$. The proof is completed. \Box

It can be seen from Lemmas 5.1 and 5.2 that

Corollary 5.3 Let $B \in \bigcup_{0 \le p \le n-5} \mathbb{B}_{n,p}$. Then $\operatorname{AZI}(B) \ge \frac{(n-5)(n-1)^3}{(n-2)^3} + 48$ with equality if and only if $B \cong D_{n,3,3,n-5}$.

Now we consider the set $\mathbb{B}_{n,n-4}$, where $n \ge 5$. Let $E_n^{p_1,p_2,p_3,p_4}$ be the bicyclic graph obtained from $K_4 - e$ by attaching p_i pendent vertices to vertex $v_i \in V(K_4 - e)$ for $1 \le i \le 4$, where $d_{v_1} = d_{v_2} = 3$, $d_{v_3} = d_{v_4} = 2$, $p_1 \ge p_2 \ge 0$, $p_3 \ge p_4 \ge 0$ and $\sum_{i=1}^4 p_i = n-4$. Then $\mathbb{B}_{n,n-4} = \{E_n^{p_1,p_2,p_3,p_4} | p_1 \ge p_2 \ge 0, p_3 \ge p_4 \ge 0 \text{ and } \sum_{i=1}^4 p_i = n-4\}.$

Lemma 5.4 Let $B \in \mathbb{B}_{n,n-4}$, where $n \geq 5$. Then

$$AZI(B) \ge \frac{(n-4)(n-1)^3}{(n-2)^3} + \frac{27(n-1)^3}{n^3} + 32$$

with equality if and only if $B \cong E_n^{n-4,0,0,0}$.

Proof Let $B \cong E_n^{p_1, p_2, p_3, p_4}$, where $p_1 \ge p_2 \ge 0, p_3 \ge p_4 \ge 0$ and $\sum_{i=1}^4 p_i = n-4$. Note that

$$AZI(E_n^{p_1,p_2,p_3,p_4}) = p_1A_{1,p_1+3} + p_2A_{1,p_2+3} + p_3A_{1,p_3+2} + p_4A_{1,p_4+2} + A_{p_1+3,p_2+3} + A_{p_1+3,p_3+2} + A_{p_1+3,p_4+2} + A_{p_2+3,p_3+2} + A_{p_2+3,p_4+2}.$$

Let $r = p_1(A_{1,p_1+3} - A_{1,n-1}) + p_2(A_{1,p_2+3} - A_{1,n-1}) + p_3(A_{1,p_3+2} - A_{1,n-1}) + p_4(A_{1,p_4+2} - A_{1,n-1})$. Then by Lemma 3.1, we have $r \ge 0$ with equality holding if and only if $p_1 = n - 4$ and $p_2 = p_3 = p_4 = 0$. Now we discuss the following cases.

Case 1 $p_2 \ge 1$. Then $p_1 \ge p_2 \ge 1$.

Subcase 1.1 $p_3 \ge 1$. It follows from Lemma 3.1 that

$$\begin{split} \operatorname{AZI}(B) - \operatorname{AZI}(E_n^{n-4,0,0,0}) = & r + A_{p_1+3,p_2+3} + A_{p_1+3,p_3+2} + A_{p_1+3,p_4+2} + \\ & A_{p_2+3,p_3+2} + A_{p_2+3,p_4+2} - A_{3,n-1} - 32 \\ & > 0 + A_{4,4} + 2A_{4,3} + 2A_{4,2} - A_{3,n-1} - 32 \\ & > 0 + \frac{16^3}{6^3} + 2 \cdot \frac{12^3}{5^3} + 16 - 27 - 32 > 0. \end{split}$$

Subcase 1.2 $p_3 = 0$. Then $p_4 = 0$. Hence by Lemma 3.1, we have

$$AZI(B) - AZI(E_n^{n-4,0,0,0}) = r + A_{p_1+3,p_2+3} - A_{3,n-1}$$

> $0 + \frac{[p_1p_2 + 3(n-1)]^3 - [3(n-1)]^3}{n^3} > 0.$

Case 2 $p_2 = 0$. Let $q(x) = A_{3,x}$. Then q(x) is concave increasing for $x \ge 2$ since

$$q'(x) = \frac{81x^2}{(x+1)^4} > 0$$
 and $q''(x) = -\frac{162x(x-1)}{(x+1)^5} < 0.$

It follows that

$$A_{3,\lceil \frac{n}{2} \rceil} + A_{3,\lfloor \frac{n}{2} \rfloor} > \dots > A_{3,n-2} + A_{3,2},$$
(5.1)

$$A_{3,\lceil \frac{n+1}{2} \rceil} + A_{3,\lfloor \frac{n+1}{2} \rfloor} > \dots > A_{3,n-1} + A_{3,2}.$$
(5.2)

Subcase 2.1 $p_4 \ge 1$. Then $p_3 \ge p_4 \ge 1$. If $p_1 \ge 1$, then by Lemma 3.1,

$$\begin{split} \operatorname{AZI}(B) - \operatorname{AZI}(E_n^{n-4,0,0,0}) &\geq r + 3A_{4,3} + 2A_{3,3} - A_{3,n-1} - 32 \\ &> 0 + 3 \cdot \frac{12^3}{5^3} + 2 \cdot \frac{9^3}{4^3} - 27 - 32 > 0. \end{split}$$

If $p_1 = 0$, then by Lemma 3.1 and the inequality (5.1), for $n \ge 5$ we have

$$\begin{split} \operatorname{AZI}(B) &- \operatorname{AZI}(E_n^{n-4,0,0,0}) \\ &= r + A_{3,3} + 2(A_{3,p_3+2} + A_{3,p_4+2}) - A_{3,n-1} - 32 \\ &> 0 + A_{3,3} + 2(A_{3,n-2} + A_{3,2}) - A_{3,n-1} - 32 \\ &= \frac{(n-4)(1433n^5 - 3751n^4 - 337n^3 + 5859n^2 - 2484n + 432)}{64n^3(n-1)^3} > 0. \end{split}$$

Subcase 2.2 $p_4 = 0$. It follows from Lemma 3.1 and the inequality (5.2) that

$$\begin{aligned} \operatorname{AZI}(B) &- \operatorname{AZI}(E_n^{n-4,0,0,0}) \\ &= r + (A_{3,p_1+3} + A_{3,p_3+2}) + A_{p_1+3,p_3+2} - A_{3,n-1} - 16 \\ &\geq 0 + (A_{3,n-1} + A_{3,2}) + A_{p_1+3,p_3+2} - A_{3,n-1} - 16 \\ &= A_{p_1+3,p_3+2} - 8 \ge 0 \end{aligned}$$

with equality if and only if $p_1 = n - 4$ and $p_2 = p_3 = p_4 = 0$, that is, $B \cong E_n^{n-4,0,0,0}$. \Box

The bicyclic graph of order $n \ge 5$ with the minimum AZI index is characterized in the following theorem.

Theorem 5.5 Let $B \in \mathbb{B}_n$ and $B \ncong D_{n,3,3,n-5}$, where $n \ge 5$. Then $\operatorname{AZI}(D_{n,3,3,n-5}) < \operatorname{AZI}(B)$.

Proof Note that $\mathbb{B}_n = \bigcup_{0 \le p \le n-4} \mathbb{B}_{n,p}$. Then by Corollary 5.3 and Lemma 5.4, it will suffice to prove that for $n \ge 5$, $\operatorname{AZI}(D_{n,3,3,n-5}) < \operatorname{AZI}(E_n^{n-4,0,0,0})$. It is obvious that

$$AZI(E_n^{n-4,0,0,0}) - AZI(D_{n,3,3,n-5}) = \frac{27(n-1)^3}{n^3} + \frac{(n-1)^3}{(n-2)^3} - 16 > 0.$$

This completes the proof of Theorem 5.5. \Box

Acknowledgements We thank the referees for their time and comments.

References

- [1] R. TODESCHINI, V. CONSONNI. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, 2000.
- [2] K. C. DAS. Atom-bond connectivity index of graphs. Discrete Appl. Math., 2010, 158(11): 1181–1188.
- B. FURTULA, A. GRAOVAC, D. VUKIČEVIĆ. Atom-bond connectivity index of trees. Discrete Appl. Math., 2009, 157(13): 2828–2835.
- [4] B. FURTULA, A. GRAOVAC, D. VUKIČEVIĆ. Augmented Zagreb index. J. Math. Chem., 2010, 48(2): 370–380.
- Yufei HUANG, Bolian LIU, Lu GAN. Augmented Zagreb index of connected graphs. MATCH Commun. Math. Comput. Chem., 2012, 67(2): 483–494.