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Abstract Recently, Furtula et al. proposed a valuable predictive index in the study of the

heat of formation in octanes and heptanes, the augmented Zagreb index (AZI index) of a

graph G, which is defined as

AZI(G) =
∑

uv∈E(G)

( dudv
du + dv − 2

)3
,

where E(G) is the edge set of G, du and dv are the degrees of the terminal vertices u and

v of edge uv, respectively. In this paper, we obtain the first five largest (resp., the first two

smallest) AZI indices of connected graphs with n vertices. Moreover, we determine the trees

of order n with the first three smallest AZI indices, the unicyclic graphs of order n with

the minimum, the second minimum AZI indices, and the bicyclic graphs of order n with the

minimum AZI index, respectively.

Keywords augmented Zagreb index; connected graphs; trees; unicyclic graphs; bicyclic

graphs
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1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). Let n = |V (G)| and
m = |E(G)|. Let N(u) be the set of all neighbors of u ∈ V (G) in G, and let du = |N(u)| be the

degree of vertex u. A vertex u is called a pendent vertex if du = 1. A connected graph G is called

a tree (resp., unicyclic graph and bicyclic graph) if m = n− 1 (resp., m = n and m = n+ 1).

Molecular descriptors have found a wide application in QSPR/QSAR studies [1]. Among

them, topological indices have a prominent place. Inspired by recent work on the atom-bond

connectivity index [2,3], Furtula et al. [4] proposed a valuable predictive index whose prediction

power is better than atom-bond connectivity index in the study of the heat of formation in

octanes and heptanes, the augmented Zagreb index (AZI index for short) of a graph G, which is

defined as

AZI(G) =
∑

uv∈E(G)

( dudv
du + dv − 2

)3
.
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Basic properties of AZI index have been studied in [5]. Besides, by using different graph param-

eters, some attained upper and lower bounds and the corresponding extremal graphs on the AZI

indices for various classes of connected graphs have been given in [4,5].

In this paper, we obtain the first five largest (resp., the first two smallest) AZI indices of

connected graphs with n vertices. Moreover, we determine the trees of order n with the first three

smallest AZI indices, the unicyclic graphs of order n with the minimum, the second minimum

AZI indices, and the bicyclic graphs of order n with the minimum AZI index, respectively.

2. The first five largest AZI indices of connected graphs

Denote by Pn, Cn, Kn and Sn the path, cycle, complete graph and star of order n, respec-

tively. Let G1 ∨ G2 denote the graph obtained from two graphs G1 and G2 by connecting the

vertices of G1 with the vertices of G2. Let G be the complement of a graph G. Let G+ e denote

the graph obtained from a graph G by inserting an edge e /∈ E(G). Let G− e denote the graph

obtained from a graph G by deleting the edge e ∈ E(G). Let S+
n = Sn + e.

Let Gn be the set of connected graphs of order n, and let Gn,m be the set of connected

graphs with n vertices and m edges, where n− 1 ≤ m ≤
(
n
2

)
. Obviously, G1 = {K1}, G2 = {K2}

and Gn = ∪n−1≤m≤(n2)
Gn,m. Now we shall investigate the AZI index of G ∈ Gn for n ≥ 3. To

begin with, a key lemma to obtain our main results is given as follows.

Lemma 2.1 ([5]) Let G ∈ Gn and G � Kn, where n ≥ 3. Then for e /∈ E(G), AZI(G) <

AZI(G+ e).

It follows from Lemma 2.1 that

Corollary 2.2 Let n,m1,m2 be integers with n ≥ 3 and n− 1 ≤ m1 < m2 ≤
(
n
2

)
.

(1) Let G1 ∈ Gn,m1 . Then there exists a graph G2 ∈ Gn,m2 such that AZI(G2) > AZI(G1).

(2) Let G2 ∈ Gn,m2 . Then there exists a graph G1 ∈ Gn,m1 such that AZI(G1) < AZI(G2).

Observe that G3 = {K3, P3} and G4 = {K4,K4 − e, C4, S
+
4 , P4, S4}. By Corollary 2.2 and

simply calculating, we immediately get AZI(K3) > AZI(P3) and

AZI(K4) > AZI(K4 − e) > AZI(C4) > AZI(S+
4 ) > AZI(P4) > AZI(S4).

For n ≥ 5, observe that Gn,(n2)
= {Kn}, Gn,(n2)−1 = {Kn− e}, Gn,(n2)−2 = {S3 ∨Kn−3, C4 ∨

Kn−4} andGn,(n2)−3 = {S4∨Kn−4,K3∨Kn−3, P4∨Kn−4, S3∨(Kn−3−e), C4∨(Kn−4−e)(n ≥ 6)}.

Lemma 2.3 Let G ∈ Gn,(n2)−3 and G � S4 ∨Kn−4. Then for n ≥ 5,

AZI(S3 ∨Kn−3) > AZI(C4 ∨Kn−4) > AZI(S4 ∨Kn−4) > AZI(G).

Proof By direct computation, for n ≥ 5, we have

AZI(S3 ∨Kn−3) =
(n− 3)(n− 4)(n− 1)6

2(2n− 4)3
+

2(n− 3)(n− 1)3(n− 2)3

(2n− 5)3
+

(n− 2)6 + (n− 3)4(n− 1)3

(2n− 6)3
,
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AZI(C4 ∨Kn−4) =
(n− 4)(n− 5)(n− 1)6

2(2n− 4)3
+

4(n− 4)(n− 1)3(n− 2)3

(2n− 5)3
+

4(n− 2)6

(2n− 6)3
,

AZI(S4 ∨Kn−4) =
(n− 4)(n− 5)(n− 1)6

2(2n− 4)3
+

3(n− 4)(n− 1)3(n− 2)3

(2n− 5)3
+

3(n− 2)6

(2n− 6)3
+

(n− 1)3(n− 4)4

(2n− 7)3
,

AZI(K3 ∨Kn−3) =
(n− 3)(n− 4)(n− 1)6

2(2n− 4)3
+

3(n− 1)3(n− 3)4

(2n− 6)3
,

AZI(P4 ∨Kn−4) =
(n− 4)(n− 5)(n− 1)6

2(2n− 4)3
+

2(n− 4)(n− 1)3(n− 2)3

(2n− 5)3
+

2(n− 4)(n− 1)3(n− 3)3 + (n− 2)6

(2n− 6)3
+

2(n− 2)3(n− 3)3

(2n− 7)3
,

AZI(S3 ∨ (Kn−3 − e)) =
(n− 5)(n− 6)(n− 1)6

2(2n− 4)3
+

4(n− 5)(n− 1)3(n− 2)3

(2n− 5)3
+

(n− 5)(n− 1)3(n− 3)3 + 5(n− 2)6

(2n− 6)3
+

2(n− 2)3(n− 3)3

(2n− 7)3
,

AZI(C4 ∨ (Kn−4 − e))(n ≥ 6) =
(n− 6)(n− 7)(n− 1)6

2(2n− 4)3
+

12(n− 2)6

(2n− 6)3
+

6(n− 6)(n− 1)3(n− 2)3

(2n− 5)3
.

It can be checked by calculator that for n ≥ 5, AZI(S3∨Kn−3)−AZI(C4∨Kn−4) > 0, AZI(C4∨
Kn−4)−AZI(S4 ∨Kn−4) > 0 and AZI(S4 ∨Kn−4)−AZI(G) > 0, where G ∈ {K3 ∨Kn−3, P4 ∨
Kn−4, S3 ∨ (Kn−3 − e), C4 ∨ (Kn−4 − e) (n ≥ 6)}. �

The following theorem gives the first five largest AZI indices of connected graphs with n

vertices, where n ≥ 5.

Theorem 2.4 Let G ∈ Gn and G /∈ {Kn,Kn−e, S3∨Kn−3, C4∨Kn−4, S4∨Kn−4}, where n ≥ 5.

ThenAZI(Kn) > AZI(Kn−e) > AZI(S3∨Kn−3) > AZI(C4∨Kn−4) > AZI(S4∨Kn−4) > AZI(G).

Proof Since G ∈ Gn (n ≥ 5) and G /∈ {Kn,Kn − e, S3 ∨ Kn−3, C4 ∨ Kn−4, S4 ∨ Kn−4}, we
have G ∈ ∪n−1≤m≤(n2)−3Gn,m. If G ∈ ∪n−1≤m≤(n2)−4Gn,m, then by Corollary 2.2, there exists a

graph G∗ ∈ Gn,(n2)−3 such that AZI(G) < AZI(G∗). It follows from Lemma 2.3 that

AZI(G) < AZI(G∗) ≤ AZI(S4 ∨Kn−4). (2.1)

If G ∈ Gn,(n2)−3, since G � S4 ∨Kn−4, then we also have

AZI(G) < AZI(S4 ∨Kn−4) (2.2)

by Lemma 2.3. Moreover, Kn
∼= (Kn − e) + e and Kn − e ∼= (S3 ∨Kn−3) + e, then by Lemma

2.1, we obtain that

AZI(Kn) > AZI(Kn − e) > AZI(S3 ∨Kn−3). (2.3)
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Combining inequalities (2.1)–(2.3) with the inequality

AZI(S3 ∨Kn−3) > AZI(C4 ∨Kn−4) > AZI(S4 ∨Kn−4)

in Lemma 2.3, we obtain the desired results. �

3. Ordering trees by the AZI indices

Let xij be the number of edges of a graph G connecting vertices of degrees i and j, and let

Aij = ( ij
i+j−2 )

3, where i, j are positive integers. Obviously, xij = xji and Aij = Aji. Then the

augmented Zagreb index of a graph G can be rewritten as AZI(G) =
∑

i≤j xijAij .

Lemma 3.1 (1) A1j is decreasing for j ≥ 2.

(2) A2j = 8 for j ≥ 1.

(3) If i (≥ 3) is fixed, then Aij is increasing for j ≥ 2.

Proof Clearly, A2j = ( 2j
2+j−2 )

3 = 8 for j ≥ 1. Note that

∂(Aij)

∂j
=

3i3j2(i− 2)

(i+ j − 2)4
.

Hence A1j is decreasing and Aij is increasing for j ≥ 2, where i (≥ 3) is fixed. �
Let Tn be the set of trees of order n ≥ 3, and let Tn,p be the set of trees with n vertices and

p pendent vertices, where 2 ≤ p ≤ n− 1. Then Tn = ∪2≤p≤n−1Tn,p. Let DSn(p1, p2) be the tree

of order n formed from the path of order n− p1 − p2 by attaching p1 and p2 pendent vertices to

its end vertices respectively, where p2 ≥ p1 ≥ 1 and p1 + p2 ≤ n − 2. Clearly, Tn,n−1 = {Sn},
Tn,n−2 = {DSn(p1, n− 2− p1)|1 ≤ p1 ≤ ⌊n−2

2 ⌋} and Tn,2 = {DSn(1, 1)} = {Pn}.

Theorem 3.2 Let T ∈ Tn,p, where 2 ≤ p ≤ n− 3. Then

AZI(T ) ≥
(⌊p

2⌋+ 1)3

⌊p
2⌋2

+
(⌈p

2⌉+ 1)3

⌈p
2⌉2

+ 8(n− 1− p)

with equality if and only if T ∼= DSn(⌊p
2⌋, ⌈

p
2⌉).

Proof The case of p = 2 is trivial since Tn,2 = {DSn(1, 1)} = {Pn}. Notice that there are

t vertices, denoted by v1, v2, . . . , vt, such that ∪t
i=1N(vi) contains all pendent vertices of T .

Suppose that there are pi pendent vertices in N(vi), where i = 1, 2, . . . , t and
∑t

i=1 pi = p.

Without loss of generality, we may assume that pi ≥ 1 for 1 ≤ i ≤ t. Since p ̸= n− 1 (namely, T

is not a star), then t ≥ 2. Hence

AZI(T ) =
t∑

i=1

piA1,dvi
+

∑
2≤i≤j≤n−1

xijAij . (3.1)

Note that the terminal vertices of a diameter-achieving path P of T are two pendent vertices.

Without loss of generality, suppose that the neighbors of the terminal vertices are v1 and v2,

respectively. By the choice of the diameter-achieving path P , we have dv1 = p1 + 1 and dv2 =
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p2 + 1. Note that dvi ≥ 2 for 1 ≤ i ≤ t and

t∑
i=1

dvi ≤ 2(n− 1)− p− 2(n− p− t) = p+ 2t− 2.

We claim that dvi ≤ p + 2 − dv1 for 2 ≤ i ≤ t. Otherwise, if dvi > p + 2 − dv1 for some i ̸= 1,

then

p+ 2t− 2 ≥
t∑

i=1

dvi > dv1 + (p+ 2− dv1) + 2(t− 2) = p+ 2t− 2,

which is a contradiction. Therefore, by Lemma 3.1, we have

t∑
i=1

piA1,dvi
= p1A1,dv1

+
t∑

i=2

piA1,dvi
≥ p1A1,dv1

+
t∑

i=2

piA1,p+2−dv1

= p1A1,p1+1 + (p− p1)A1,p−p1+1.

If
∑t

i=1 piA1,dvi
= p1A1,p1+1 + (p− p1)A1,p−p1+1 and t ≥ 3, then we get

p+ 2t− 2 ≥
t∑

i=1

dvi ≥ dv1 + 2(p+ 2− dv1) + 2(t− 3) = (p+ 2t− 2) + (p− dv1),

equivalently, dv1
= p1 + 1 ≥ p, which is a contradiction. Consequently, we conclude that

t∑
i=1

piA1,dvi
≥ p1A1,p1+1 + (p− p1)A1,p−p1+1 =

(p1 + 1)3

p21
+

(p− p1 + 1)3

(p− p1)2

with equality if and only if t = 2 and dv2 = p + 2 − dv1
= p − p1 + 1, namely, p1 + p2 = p.

Moreover, the function f(x) = (x+1)3

x2 is convex increasing for x ≥ 2, since

f ′(x) =
(x+ 1)2(x− 2)

x3
≥ 0 and f ′′(x) =

6(x+ 1)

x4
> 0.

Besides, f(1) = 8 > f(2) = 27
4 , and then

f(1) + f(p− 1) > f(2) + f(p− 2) ≥ · · · ≥ f(⌊p
2
⌋) + f(⌈p

2
⌉).

It leads to

t∑
i=1

piA1,dvi
≥ (p1 + 1)3

p21
+

(p− p1 + 1)3

(p− p1)2
≥

(⌊p
2⌋+ 1)3

⌊p
2⌋2

+
(⌈p

2⌉+ 1)3

⌈p
2⌉2

.

The equality holds if and only if t = 2, p1 = ⌊p
2⌋ and p2 = ⌈p

2⌉.
On the other hand, it follows from Lemma 3.1 that∑

2≤i≤j≤n−1

xijAij ≥
∑

2≤i≤j≤n−1

xijA2j = 8(n− 1− p)

with equality holding if and only if all edges of T are pendent edges or the edges with one end

vertex of degree 2.

All in all, it follows from Equation (3.1) that

AZI(T ) ≥
(⌊p

2⌋+ 1)3

⌊p
2⌋2

+
(⌈p

2⌉+ 1)3

⌈p
2⌉2

+ 8(n− 1− p)
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with equality if and only if T ∼= DSn(⌊p
2⌋, ⌈

p
2⌉). This completes the proof. �

Corollary 3.3 Let T ∈ ∪2≤p≤n−3Tn,p. Then

AZI(T ) ≥
(⌊n−3

2 ⌋+ 1)3

⌊n−3
2 ⌋2

+
(⌈n−3

2 ⌉+ 1)3

⌈n−3
2 ⌉2

+ 16

with equality if and only if T ∼= DSn(⌊n−3
2 ⌋, ⌈n−3

2 ⌉).

Proof By Theorem 3.2, it will suffice to show that AZI(DSn(⌊p−1
2 ⌋, ⌈p−1

2 ⌉)) > AZI(DSn(⌊p
2⌋, ⌈

p
2⌉)),

where 3 ≤ p ≤ n− 3. By Lemma 3.1, we have

AZI(DSn(⌊
p

2
⌋, ⌈p

2
⌉)) = ⌊p

2
⌋A1,⌊ p

2 ⌋+1 + ⌈p
2
⌉A1,⌈ p

2 ⌉+1 + 8(n− 1− p)

= ⌈p− 1

2
⌉A1,⌈ p−1

2 ⌉+1 + ⌊p− 1

2
⌋A1,⌈ p

2 ⌉+1 +A1,⌈ p
2 ⌉+1 + 8(n− 1− p)

< ⌈p− 1

2
⌉A1,⌈ p−1

2 ⌉+1 + ⌊p− 1

2
⌋A1,⌊ p−1

2 ⌋+1 + 8 + 8(n− 1− p)

= AZI(DSn(⌊
p− 1

2
⌋, ⌈p− 1

2
⌉)). �

An order of trees in Tn,n−2 (n ≥ 4) by their AZI indices is given as follows.

Lemma 3.4 Observe that Tn,n−2 = {DSn(p1, n− 2− p1)|1 ≤ p1 ≤ ⌊n−2
2 ⌋}. Then

AZI(DSn(⌊
n− 2

2
⌋, ⌈n− 2

2
⌉)) > · · · > AZI(DSn(2, n− 4)) > AZI(DSn(1, n− 3)).

Proof For 1 ≤ p1 ≤ ⌊n−2
2 ⌋, note that

AZI(DSn(p1, n− 2− p1)) =
(p1 + 1)3

p21
+

(n− 1− p1)
3

(n− 2− p1)2
+

(p1 + 1)3(n− 1− p1)
3

(n− 2)3
:= f(p1).

The result follows since the function f(p1) is increasing for 1 ≤ p1 ≤ ⌊n−2
2 ⌋. �

Let T ∗
6 , T

∗
7 , T

∗∗
7 , T ∗∗∗

7 be the trees as shown in Figure 1.s s s s ss
T ∗
6

s s s s sss
T ∗
7

s s s s sss
T ∗∗
7

s s s s ss s
T ∗∗∗
7

Figure 1 T ∗
6 , T

∗
7 , T

∗∗
7 , T ∗∗∗

7

Now we obtain an order of Tn for 3 ≤ n ≤ 7 by their AZI indices. Observe that T3 = {S3},
T4 = {P4, S4}, T5 = {P5, DS5(1, 2), S5},

AZI(P4) > AZI(S4) and AZI(P5) > AZI(DS5(1, 2)) > AZI(S5). (3.2)

Note that T6 = {P6, T
∗
6 , DS6(1, 2), DS6(2, 2), DS6(1, 3), S6},

AZI(P6) >AZI(T ∗
6 ) > AZI(DS6(1, 2))

>AZI(DS6(2, 2)) > AZI(DS6(1, 3)) > AZI(S6), (3.3)

and T7 = {P7, T
∗
7 , DS7(1, 2), T

∗∗
7 , T ∗∗∗

7 , DS7(1, 3), DS7(2, 2), DS7(2, 3), DS7(1, 4), S7},

AZI(P7) >AZI(T ∗
7 ) > AZI(DS7(1, 2)) > AZI(T ∗∗

7 )
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>AZI(T ∗∗∗
7 ) > AZI(DS7(1, 3)) > AZI(DS7(2, 2))

>AZI(DS7(2, 3)) > AZI(DS7(1, 4)) > AZI(S7). (3.4)

Moreover, the trees of order n ≥ 8 with the first three smallest AZI indices are determined.

Theorem 3.5 Let T ∈ Tn and T � Sn, DSn(1, n− 3), DSn(⌊n−3
2 ⌋, ⌈n−3

2 ⌉), where n ≥ 8. Then

AZI(Sn) < AZI(DSn(1, n− 3)) < AZI(DSn(⌊n−3
2 ⌋, ⌈n−3

2 ⌉)) < AZI(T ).

Proof It is obvious that

AZI(Sn) = (n− 3)A1,n−1 + 2A1,n−1 < (n− 3)A1,n−2 + 16 = AZI(DSn(1, n− 3))

< ⌈n− 3

2
⌉A1,⌈n−3

2 ⌉+1 + ⌊n− 3

2
⌋A1,⌊n−3

2 ⌋+1 + 16

= AZI(DSn(⌊
n− 3

2
⌋, ⌈n− 3

2
⌉)).

Since T ∈ Tn (n ≥ 8) and T � Sn, DSn(1, n − 3), DSn(⌊n−3
2 ⌋, ⌈n−3

2 ⌉), we consider the

following two cases.

Case 1 T ∈ Tn,n−2 = {DSn(p1, n− 2− p1)|1 ≤ p1 ≤ ⌊n−2
2 ⌋}. By Lemma 3.4, we need to prove

that AZI(DSn(2, n− 4)) > AZI(DSn(⌊n−3
2 ⌋, ⌈n−3

2 ⌉)) for n ≥ 8. By Theorem 3.2,

AZI(DSn(⌊
n− 3

2
⌋, ⌈n− 3

2
⌉)) < AZI(DSn(2, n− 5))

= 2A1,3 + 16 + (n− 5)A1,n−4

< 2A1,3 +A3,n−3 + (n− 4)A1,n−3

= AZI(DSn(2, n− 4)).

Case 2 T ∈ ∪2≤p≤n−3Tn,p. By Corollary 3.3, we immediately get

AZI(DSn(⌊
n− 3

2
⌋, ⌈n− 3

2
⌉)) < AZI(T ). �

By using Theorem 3.5, we obtain the first two smallest AZI indices of connected graphs

with n ≥ 5 vertices as follows.

Theorem 3.6 Let G ∈ Gn and G � Sn, DSn(1, n− 3), where n ≥ 5. Then

AZI(Sn) < AZI(DSn(1, n− 3)) < AZI(G).

Proof From inequalities (3.2)–(3.4) and Theorem 3.5, the inequality AZI(Sn) < AZI(DSn(1, n−
3)) holds for n ≥ 5. Note that G ∈ ∪n−1≤m≤(n2)

Gn,m. We have the following two cases.

Case 1 G ∈ Gn,n−1 = Tn (n ≥ 5). By inequalities (3.2)–(3.4) and Theorem 3.5,

AZI(DSn(1, n− 3)) < AZI(G).

Case 2 G ∈ ∪n≤m≤(n2)
Gn,m. By Corollary 2.2, there exists a graph G∗ ∈ Gn,n−1 such that

AZI(G∗) < AZI(G). If G∗ � Sn, then we immediately get AZI(DSn(1, n − 3)) ≤ AZI(G∗) <

AZI(G). If G∗ ∼= Sn, then by Lemma 2.1, we conclude that G is obtained from Sn by inserting
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some edges. It follows that

AZI(G) ≥ AZI(S+
n ) = 24 + (n− 3)A1,n−1

> 16 + (n− 3)A1,n−2 = AZI(DSn(1, n− 3)). �

4. Unicyclic graphs with the first two smallest AZI indices

Denote by Cn,p the unicyclic graph of order n formed by attaching p pendent vertices to

a vertex of the cycle Cn−p, where 0 ≤ p ≤ n − 3. Let C
p1,p2,...,pn−p
n,p denote the unicyclic graph

of order n obtained from the cycle Cn−p = v1v2 · · · vn−pv1 by attaching pi pendent vertices to

vertex vi, where pi ≥ 0, i = 1, 2, . . . , n − p and
∑n−p

i=1 pi = p. Clearly, Cn,0
∼= Cn, Cn,n−3

∼= S+
n

and Cp,0,...,0
n,p

∼= Cn,p.

Let U∗
5 be the unicyclic graph obtained by identifying one vertex of C3 and one end vertex of

P3. Let Un be the set of unicyclic graphs of order n ≥ 3. Obviously, U3 = {K3}, U4 = {C4, S
+
4 }

and U5 = {C5, S
+
5 , C5,1, C

1,1,0
5,2 , U∗

5 }. By simply calculating, we get that AZI(S+
4 ) < AZI(C4) and

AZI(S+
5 ) < AZI(C1,1,0

5,2 ) < AZI(C5,1) < AZI(C5) = AZI(U∗
5 ).

Let Un,p be the set of unicyclic graphs with n vertices and p pendent vertices, where 0 ≤
p ≤ n− 3. Then Un = ∪0≤p≤n−3Un,p.

Lemma 4.1 ([5]) Let U ∈ Un,p, where 0 ≤ p ≤ n− 3. Then

AZI(U) ≥ p(p+ 2)3

(p+ 1)3
+ 8(n− p)

with equality if and only if U ∼= Cn,p.

Lemma 4.2 Let Cn,p be the unicyclic graph of order n defined above, where 0 ≤ p ≤ n − 3.

Then AZI(Cn,0) > AZI(Cn,1) > · · · > AZI(Cn,n−4) > AZI(Cn,n−3).

Proof Note that AZI(Cn,p) =
p(p+2)3

(p+1)3 + 8(n− p). Let f(x) = x(x+2)3

(x+1)3 + 8(n− x). Then

f ′(x) = −x(7x3 + 28x2 + 42x+ 24)

(x+ 1)4
≤ 0.

Thus f(x) is decreasing for x ≥ 0. This completes the proof. �
By Lemmas 4.1 and 4.2, it is easy to obtain the following corollary.

Corollary 4.3 Let U ∈ ∪0≤p≤n−4Un,p. Then

AZI(U) ≥ (n− 4)(n− 2)3

(n− 3)3
+ 32

with equality if and only if U ∼= Cn,n−4.

Lemma 4.4 Let U ∈ Un,n−3 and U � S+
n , where n ≥ 6. Then AZI(U) > AZI(Cn,n−4) >

AZI(S+
n ).

Proof Since U ∈ Un,n−3, we may assume that G ∼= Cp1,p2,p3

n,n−3 , where p1 ≥ p2 ≥ p3 ≥ 0 and∑3
i=1 pi = n − 3. Notice that U � S+

n , then p2 ≥ 1. Let r = (p1 − 1)(A1,p1+2 − A1,n−2) +
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p2(A1,p2+2 −A1,n−2) + p3(A1,p3+2 −A1,n−2).

Case 1 p3 = 0. Since n ≥ 6, then p1 ≥ 2. By Lemma 3.1, we have r > 0 and

AZI(U)−AZI(Cn,n−4) = r +A1,p1+2 +Ap1+2,p2+2 − 16. (4.1)

Subcase 1.1 p1 = 2. It follows from (4.1) and Lemma 3.1 that

AZI(U)−AZI(Cn,n−4) > 0 +A1,4 +A4,3 − 16 =
43

33
+

123

53
− 16 > 0.

Subcase 1.2 p1 ≥ 3. Then by Lemma 3.1 and (4.1), we have

AZI(U)−AZI(Cn,n−4) > 0 + 1 +A5,3 − 16 = 1 +
153

63
− 16 > 0.

Case 2 p3 ≥ 1. By Lemma 3.1, we obtain that r > 0 and

AZI(U)−AZI(Cn,n−4) = r +A1,p1+2 +Ap1+2,p2+2 +Ap1+2,p3+2 +Ap2+2,p3+2 − 32

> 0 + 1 + 3A3,3 − 32 = 1 + 3 · 9
3

43
− 32 > 0.

Combining the above cases, we get that AZI(U) > AZI(Cn,n−4). Moreover, it is easy to

obtain that AZI(Cn,n−4) = (n− 4)A1,n−2 + 32 > AZI(S+
n ) = (n− 3)A1,n−1 + 24. �

It follows from Corollary 4.3 and Lemma 4.4 that the unicyclic graphs of order n ≥ 6 with

the minimum and the second minimum AZI indices are determined.

Theorem 4.5 Let U ∈ Un and G � S+
n , Cn,n−4, where n ≥ 6. Then

AZI(S+
n ) < AZI(Cn,n−4) < AZI(U).

5. Bicyclic graphs with the minimum AZI index

Let Bn be the set of bicyclic graphs of order n ≥ 4. Clearly, B4 = {K4 − e}. Let Bn,p be

the set of bicyclic graphs with n vertices and p pendent vertices, where 0 ≤ p ≤ n − 4. Then

Bn = ∪0≤p≤n−4Bn,p.

Denote by Dn,r,s,p the bicyclic graph of order n by identifying one vertex of two cycles

Cr and Cs, and attaching p pendent vertices to the common vertex, where r ≥ s ≥ 3 and

0 ≤ p = n+ 1− r − s ≤ n− 5.

Lemma 5.1 ([5]) Let B ∈ Bn,p, where 0 ≤ p ≤ n− 5. Then

AZI(B) ≥ p(p+ 4)3

(p+ 3)3
+ 8(n+ 1− p)

with equality if and only if B ∼= Dn,r,s,p, where r ≥ s ≥ 3 and r + s = n+ 1− p.

Lemma 5.2 Let Dn,r,s,p be the bicyclic graph of order n defined above, where r ≥ s ≥ 3 and

0 ≤ p = n+ 1− r − s ≤ n− 5. Then AZI(Dn,r,s,0) > AZI(Dn,r,s,1) > · · · > AZI(Dn,r,s,n−5).

Proof Observe that

AZI(Dn,r,s,p) =
p(p+ 4)3

(p+ 3)3
+ 8(n+ 1− p) := g(p).
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Then

g′(p) = −7p4 + 84p3 + 372p2 + 704p+ 456

(p+ 3)4
< 0.

Hence g(p) is decreasing for p ≥ 0. The proof is completed. �
It can be seen from Lemmas 5.1 and 5.2 that

Corollary 5.3 Let B ∈ ∪0≤p≤n−5Bn,p. Then AZI(B) ≥ (n−5)(n−1)3

(n−2)3 + 48 with equality if and

only if B ∼= Dn,3,3,n−5.

Now we consider the set Bn,n−4, where n ≥ 5. Let Ep1,p2,p3,p4
n be the bicyclic graph obtained

from K4 − e by attaching pi pendent vertices to vertex vi ∈ V (K4 − e) for 1 ≤ i ≤ 4, where

dv1 = dv2 = 3, dv3 = dv4 = 2, p1 ≥ p2 ≥ 0, p3 ≥ p4 ≥ 0 and
∑4

i=1 pi = n − 4. Then

Bn,n−4 = {Ep1,p2,p3,p4
n |p1 ≥ p2 ≥ 0, p3 ≥ p4 ≥ 0 and

∑4
i=1 pi = n− 4}.

Lemma 5.4 Let B ∈ Bn,n−4, where n ≥ 5. Then

AZI(B) ≥ (n− 4)(n− 1)3

(n− 2)3
+

27(n− 1)3

n3
+ 32

with equality if and only if B ∼= En−4,0,0,0
n .

Proof Let B ∼= Ep1,p2,p3,p4
n , where p1 ≥ p2 ≥ 0, p3 ≥ p4 ≥ 0 and

∑4
i=1 pi = n− 4. Note that

AZI(Ep1,p2,p3,p4
n ) =p1A1,p1+3 + p2A1,p2+3 + p3A1,p3+2+

p4A1,p4+2 +Ap1+3,p2+3 +Ap1+3,p3+2+

Ap1+3,p4+2 +Ap2+3,p3+2 +Ap2+3,p4+2.

Let r = p1(A1,p1+3−A1,n−1)+p2(A1,p2+3−A1,n−1)+p3(A1,p3+2−A1,n−1)+p4(A1,p4+2−A1,n−1).

Then by Lemma 3.1, we have r ≥ 0 with equality holding if and only if p1 = n − 4 and

p2 = p3 = p4 = 0. Now we discuss the following cases.

Case 1 p2 ≥ 1. Then p1 ≥ p2 ≥ 1.

Subcase 1.1 p3 ≥ 1. It follows from Lemma 3.1 that

AZI(B)−AZI(En−4,0,0,0
n ) =r +Ap1+3,p2+3 +Ap1+3,p3+2 +Ap1+3,p4+2+

Ap2+3,p3+2 +Ap2+3,p4+2 −A3,n−1 − 32

>0 +A4,4 + 2A4,3 + 2A4,2 −A3,n−1 − 32

>0 +
163

63
+ 2 · 12

3

53
+ 16− 27− 32 > 0.

Subcase 1.2 p3 = 0. Then p4 = 0. Hence by Lemma 3.1, we have

AZI(B)−AZI(En−4,0,0,0
n ) = r +Ap1+3,p2+3 −A3,n−1

> 0 +
[p1p2 + 3(n− 1)]3 − [3(n− 1)]3

n3
> 0.

Case 2 p2 = 0. Let q(x) = A3,x. Then q(x) is concave increasing for x ≥ 2 since

q′(x) =
81x2

(x+ 1)4
> 0 and q′′(x) = −162x(x− 1)

(x+ 1)5
< 0.
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It follows that

A3,⌈n
2 ⌉ +A3,⌊n

2 ⌋ > · · · > A3,n−2 +A3,2, (5.1)

A3,⌈n+1
2 ⌉ +A3,⌊n+1

2 ⌋ > · · · > A3,n−1 +A3,2. (5.2)

Subcase 2.1 p4 ≥ 1. Then p3 ≥ p4 ≥ 1. If p1 ≥ 1, then by Lemma 3.1,

AZI(B)−AZI(En−4,0,0,0
n ) ≥ r + 3A4,3 + 2A3,3 −A3,n−1 − 32

> 0 + 3 · 12
3

53
+ 2 · 9

3

43
− 27− 32 > 0.

If p1 = 0, then by Lemma 3.1 and the inequality (5.1), for n ≥ 5 we have

AZI(B)−AZI(En−4,0,0,0
n )

= r +A3,3 + 2(A3,p3+2 +A3,p4+2)−A3,n−1 − 32

> 0 +A3,3 + 2(A3,n−2 +A3,2)−A3,n−1 − 32

=
(n− 4)(1433n5 − 3751n4 − 337n3 + 5859n2 − 2484n+ 432)

64n3(n− 1)3
> 0.

Subcase 2.2 p4 = 0. It follows from Lemma 3.1 and the inequality (5.2) that

AZI(B)−AZI(En−4,0,0,0
n )

= r + (A3,p1+3 +A3,p3+2) +Ap1+3,p3+2 −A3,n−1 − 16

≥ 0 + (A3,n−1 +A3,2) +Ap1+3,p3+2 −A3,n−1 − 16

= Ap1+3,p3+2 − 8 ≥ 0

with equality if and only if p1 = n− 4 and p2 = p3 = p4 = 0, that is, B ∼= En−4,0,0,0
n . �

The bicyclic graph of order n ≥ 5 with the minimum AZI index is characterized in the

following theorem.

Theorem 5.5 Let B ∈ Bn and B � Dn,3,3,n−5, where n ≥ 5. Then AZI(Dn,3,3,n−5) < AZI(B).

Proof Note that Bn = ∪0≤p≤n−4Bn,p. Then by Corollary 5.3 and Lemma 5.4, it will suffice to

prove that for n ≥ 5, AZI(Dn,3,3,n−5) < AZI(En−4,0,0,0
n ). It is obvious that

AZI(En−4,0,0,0
n )−AZI(Dn,3,3,n−5) =

27(n− 1)3

n3
+

(n− 1)3

(n− 2)3
− 16 > 0.

This completes the proof of Theorem 5.5. �
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