Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 172–180 DOI:10.3770/j.issn:2095-2651.2015.02.007 Http://jmre.dlut.edu.cn

On the Complex Oscillation of Second Order Linear Differential Equations with Entire Coefficients of [p,q]-Order

Jin TU*, Jingsi WEI, Chunfang CHEN

College of Mathematics and Information Science, Jiangxi Normal University, Jiangxi 330022, P. R. China

Abstract In this paper, the authors investigate the zeros and growth of solutions of second order linear differential equations with entire coefficients of [p, q]-order and obtain some results which improve and generalize some previous results.

Keywords linear differential equations; [p, q]-order; [p, q] exponent of convergence of zero-sequence

MR(2010) Subject Classification 30D35, 34M10

1. Introduction and notations

We assume that readers are familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory of meromorphic functions [8,12,16]. In addition, we use $\sigma(f)$ and $\lambda(f)$ to denote the order and the exponent of convergence of zero sequence of meromorphic function f(z), respectively. For sufficiently large $r \in [1, \infty)$, we define $\log_{i+1} r = \log_i(\log r)$ $(i \in \mathbb{N})$ and $\exp_{i+1} r = \exp(\exp_i r)$ $(i \in \mathbb{N})$ and $\exp_0 r = r = \log_0 r$, $\exp_{-1} r = \log r$.

Firstly, we will recall some notations about the finite iterated order of entire functions.

Definition 1.1 ([5,11]) The iterated *p*-order of an entire function f(z) is defined by

$$\sigma_p(f) = \overline{\lim_{r \to \infty}} \frac{\log_p T(r, f)}{\log r} = \overline{\lim_{r \to \infty}} \frac{\log_{p+1} M(r, f)}{\log r}$$

Definition 1.2 ([11]) The finiteness degree (growth index) of the iterated order of an entire function f(z) is defined by

$$i(f) = \begin{cases} 0, & \text{for } f \text{ polynomial,} \\ \min\{j \in \mathbb{N} : \sigma_j(f) < \infty\}, & \text{for } f \text{ transcendental for which some} \\ & j \in \mathbb{N} \text{ with } \sigma_j(f) < \infty \text{ exists,} \\ \infty, & \text{for } f \text{ with } \sigma_j(f) = \infty \text{ for all } j \in \mathbb{N}. \end{cases}$$

Received April 16, 2014; Accepted December 12, 2014

Supported by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20132BAB211002; 20122BAB2110 05) and the Youth Foundation of Education Bureau of Jiangxi Province (Grant Nos. GJJ14271; GJJ14272). * Corresponding author

E-mail address: tujin2008@sina.com (Jin TU)

Remark 1.3 By Definition 1.2, we can similarly give the definition of the growth index of the iterated exponent of convergence of zero-sequence of a meromorphic function f(z) by $i_{\lambda}(f, 0)$.

Definition 1.4 ([11]) The iterated exponent of convergence of the zero sequence and the iterated exponent of convergence of distinct zero sequence of an entire function f(z) are defined by

$$\lambda_p(f) = \overline{\lim_{r \to \infty} \frac{\log_p n(r, \frac{1}{f})}{\log r}} = \overline{\lim_{r \to \infty} \frac{\log_p N(r, \frac{1}{f})}{\log r}}$$

and

$$\overline{\lambda}_p(f) = \overline{\lim_{r \to \infty}} \frac{\log_p \overline{n}(r, \frac{1}{f})}{\log r} = \overline{\lim_{r \to \infty}} \frac{\log_p \overline{N}(r, \frac{1}{f})}{\log r}.$$

For second order linear differential equation

$$f'' + A(z)f = 0 (1.1)$$

where A(z) is an entire function or meromorphic function of finite order, many authors have investigated the growth and zeros of non-trivial solutions of (1.1), and obtain many classical results [1-4,6].

In 1998, Kinnunen investigated equation (1.1) and obtained the following theorems, where A(z) is an entire function of finite iterated order.

Theorem 1.5 ([11]) Let A(z) be an entire function with i(A) = p ($p \in \mathbb{N}$). Let f_1, f_2 be two linearly independent solutions of (1.1) and denote $E = f_1 f_2$. Then $i_{\lambda}(E) \le p + 1$ and

$$\max\{\lambda_{p+1}(f_1), \lambda_{p+1}(f_2)\} = \lambda_{p+1}(E) = \sigma_{p+1}(E) \le \sigma_p(A).$$

If $i_{\lambda}(E) \leq p+1$, then $i_{\lambda}(f_1) = p+1$ holds for all solutions of type $f = c_1 f_1 + c_2 f_2$, where c_1, c_2 are complex numbers and $c_1 c_2 \neq 0$.

Theorem 1.6 ([11]) Let A(z) be an entire function satisfying i(A) = p ($p \in \mathbb{N}$), and $\overline{\lambda}_p(A) < \sigma_p(A)$. Then $\lambda_{p+1}(f) \leq \sigma_p(A) \leq \lambda_p(f)$ holds for any non-trivial solution of (1.1).

Theorem 1.7 ([11]) Let A(z) be an entire function with i(A) = p and $\sigma_p(A) = \sigma$ $(p \in \mathbb{N})$. Let f_1, f_2 be two linearly independent solutions of (1.1), such that $\max\{\lambda_p(f_1), \lambda_p(f_2)\} < \sigma$. Let $\Pi(z) \neq 0$ be any entire function satisfying either $i(\Pi) < p$ or $i(\Pi) = p$ and $\sigma_p(\Pi) < \sigma$. Then any two linearly independent solutions g_1 and g_2 of the differential equation

$$f'' + (A(z) + \Pi(z))f = 0 \tag{1.2}$$

satisfy $\max\{\lambda_p(g_1), \lambda_p(g_2)\} \ge \sigma$.

In recent years, some authors investigated the higher order linear differential equation with entire coefficients of [p, q]-order in the complex plane [13,14]. In this paper, our aim is to investigate the zeros and growth of solutions of (1.1) with entire coefficients of [p, q]-order and improve Theorems 1.5–1.7.

First, we introduce the definitions of [p,q]-order of meromorphic functions, where p,q are positive integers satisfying $p \ge q \ge 1$.

Definition 1.8 ([9,10,13–15]) If f(z) is a meromorphic function, the [p,q]-order of f(z) is defined by

$$\sigma_{[p,q]}(f) = \overline{\lim_{r \to \infty} \frac{\log_p T(r, f)}{\log_q r}}$$

Especially if f(z) is an entire function, the [p,q]-order of f(z) is defined by

$$\sigma_{[p,q]}(f) = \overline{\lim_{r \to \infty}} \frac{\log_p T(r,f)}{\log_q r} = \overline{\lim_{r \to \infty}} \frac{\log_{p+1} M(r,f)}{\log_q r}$$

If f(z) is a rational function, then $\sigma_{[p,q]}(f) = 0$ for any $p \ge q \ge 1$. By Definition 1.8, we have that $\sigma_{[1,1]} = \sigma(f)$, $\sigma_{[2,1]} = \sigma_2(f)$ and $\sigma_{[p+1,1]} = \sigma_{p+1}(f)$.

Remark 1.9 ([9,10]) If a meromorphic function f(z) satisfies $0 < \sigma_{[p,q]}(f) < \infty$, then we have (i) $\sigma_{[p-n,q](f)} = \infty$ $(n < p), \ \sigma_{[p,q-n](f)} = 0$ $(n < q), \ \sigma_{[p+n,q+n](f)} = 1$ (n < p) for n = 1, 2, ...

(ii) If [p',q'] is any pair of integers satisfying q' = p' + q - p and p' < p, then $\sigma_{[p',q']}(f) = 0$ if $0 < \sigma_{[p,q]}(f) < 1$ and $\sigma_{[p',q']}(f) = \infty$ if $1 < \sigma_{[p,q]}(f) < \infty$.

(iii) $\sigma_{[p',q']}(f) = \infty$ for q' - p' > q - p and $\sigma_{[p',q']}(f) = 0$ for q' - p' < q - p.

Definition 1.10 ([9,10]) A meromorphic function f(z) is said to have index-pair [p,q], if $0 < \sigma_{[p,q]}(f) < \infty$ and $\sigma_{[p-1,q-1]}(f)$ is not a nonzero finite number.

Remark 1.11 ([9,10]) If $\sigma_{[p,p]}(f)$ is never greater than 1 and $\sigma_{[p',p']}(f) = 1$ for some integer $p' \geq 1$, then the index-pair of f(z) is defined as [m,m] where $m = \inf\{p' : \sigma_{[p',p']}(f) = 1\}$. If $\sigma_{[p,q]}(f)$ is never nonzero finite and $\sigma_{[p'',1]}(f) = 0$ for some integer $p'' \geq 1$, then the index-pair of f(z) is defined as [n,1] where $n = \inf\{p'' : \sigma_{[p'',1]}(f) = 0\}$. If $\sigma_{[p,q]}(f)$ is always infinite, then the index-pair of f(z) is defined to be $[\infty, \infty]$.

Remark 1.12 ([9,10]) If a meromorphic function f(z) has the index-pair [p,q], then $\sigma = \sigma_{[p,q]}(f)$ is called its [p,q]-order. For example, set $f_1(z) = e^z$, $f_2(z) = e^{e^z}$, by Remark 1.11, we have that the index-pair of $f_1(z)$ is [1,1] and the index-pair of $f_2(z)$ is [2,1].

Definition 1.13 ([13,14]) The [p,q] exponent of convergence of the zero-sequence and the [p,q] exponent of convergence of the distinct zero-sequence of a meromorphic function f(z) are defined respectively by

$$\lambda_{[p,q]}(f) = \overline{\lim_{r \to \infty}} \frac{\log_p n(r, \frac{1}{f})}{\log_q r} = \overline{\lim_{r \to \infty}} \frac{\log_p N(r, \frac{1}{f})}{\log_q r}$$

and

$$\overline{\lambda}_{[p,q]}(f) = \overline{\lim_{r \to \infty}} \frac{\log_p \overline{n}(r, \frac{1}{f})}{\log_q r} = \overline{\lim_{r \to \infty}} \frac{\log_p \overline{N}(r, \frac{1}{f})}{\log_q r}.$$

Remark 1.14 It is easy to know $\overline{\lambda}_{[p,q]}(f) \leq \lambda_{[p,q]}(f) \leq \sigma_{[p,q]}(f)$.

2. Main results

In this section, we give our results of this paper.

Theorem 2.1 Let A(z) be a transcendental entire function with $\sigma_{[p,q]}(A) \ge 0$. Let f_1, f_2 be two linearly independent solutions of (1.1) and denote $E = f_1 f_2$. Then

$$\max\{\lambda_{[p+1,q]}(f_1), \lambda_{[p+1,q]}(f_2)\} = \lambda_{[p+1,q]}(E) = \sigma_{[p+1,q]}(E) \le \sigma_{[p,q]}(A).$$

If $\sigma_{[p+1,q]}(E) < \sigma_{[p,q]}(A)$, then $\lambda_{[p+1,q]}(f) = \sigma_{[p,q]}(A)$ holds for all solutions of type $f = c_1 f_1 + c_2 f_2$, where c_1, c_2 are complex numbers and $c_1 c_2 \neq 0$.

Theorem 2.2 Let A(z) be an entire function with $\overline{\lambda}_{[p,q]}(A) < \sigma_{[p,q]}(A)$. Then any non-trivial solution of (1.1) satisfies $\lambda_{[p+1,q]}(f) \leq \sigma_{[p,q]}(A) \leq \lambda_{[p,q]}(f)$.

Theorem 2.3 Let A(z) be a transcendental entire function with $\sigma_{[p,q]}(A) = \sigma > 0$. Let f_1 and f_2 be two linearly independent solutions of (1.1) such that $\max\{\lambda_{[p,q]}(f_1), \lambda_{[p,q]}(f_2)\} < \sigma$. Let $\Pi(z) \neq 0$ be an entire function with $\sigma_{[p,q]}(\Pi) < \sigma$. Then any two linearly independent solutions g_1 and g_2 of (1.2) satisfy $\max\{\lambda_{[p,q]}(g_1), \lambda_{[p,q]}(g_2)\} \geq \sigma$.

3. Preliminary lemmas

Lemma 3.1 ([14]) Let $A_j(z)$ (j = 0, 1, ..., k - 1) be entire functions satisfying

$$\max\{\sigma_{[p,q]}(A_j) | j \neq 0\} < \sigma_{[p,q]}(A_0) < \infty.$$

Then every non-trivial solution f(z) of the differential equation

$$f^{(k)} + A_{k-1}(z)f^{(k-1)} + \dots + A_0(z)f = 0$$
(3.1)

satisfies $\sigma_{[p+1,q]}(f) = \sigma_{[p,q]}(A_0).$

Lemma 3.2 Let $f_1(z), f_2(z)$ be two entire function of [p, q]-order, and denote $E = f_1 f_2$. Then

$$\lambda_{[p,q]}(E) = \max\{\lambda_{[p,q]}(f_1), \lambda_{[p,q]}(f_2)\}.$$

Proof Let n(r, E) denote the number of the zeros of E(z) in disk = $\{z : |z| \le r\}$, and so on for f_1 and f_2 . Since for any given r > 0 we have $n(r, E) \ge n(r, f_1)$ and $n(r, E) \ge n(r, f_2)$, by Definition 1.13 we have

$$\lambda_{[p,q]}(E) \ge \max\{\lambda_{[p,q]}(f_1), \lambda_{[p,q]}(f_2)\}$$

On the other hand, since the zero of E(z) must be the zero of f_1 or f_2 , for any given r > 0, we have

$$n(r, E) = n(r, f_1) + n(r, f_2) \le 2 \max\{n(r, f_1), n(r, f_2)\}.$$
(3.2)

Therefore, by Definition 1.13, we have

$$\lambda_{[p,q]}(E) \le \max\{\lambda_{[p,q]}(f_1), \lambda_{[p,q]}(f_2)\}.$$

Thus we complete the proof of Lemma 3.2. \Box

Lemma 3.3 Let f(z) be a meromorphic function with [p,q]-order and $\sigma_{[p,q]}(f) = \sigma$, and let $k \ge 1$ be an integer. Then for any $\varepsilon > 0$,

$$m(r, \frac{f^{(k)}}{f}) = O\{\exp_{p-1}\{(\sigma + \varepsilon)\log_q r\}\}$$
(3.3)

holds outside of an exceptional set E_1 of finite linear measure.

Proof Let $k \ge 1$. Since $\sigma = \sigma_{[p,q]}(f) < \infty$, we have for all sufficiently large r,

$$T(r, f) < \exp_p\{(\sigma + \varepsilon) \log_q r\}.$$
(3.4)

By the lemma of the logarithmic derivative, we have

$$m(r, \frac{f^{(\kappa)}}{f}) = O\{\log T(r, f) + \log r\}, \quad r \notin E_1$$

where $E_1 \subset (1, \infty)$ is a set of finite linear measure, not necessarily the same at each occurrence. Hence we have

$$m(r, \frac{f'}{f}) = O\{\exp_{p-1}\{(\sigma + \varepsilon)\log_q r\}\}, \quad r \notin E_1.$$
(3.5)

Next, assume that we have

$$m(r, \frac{f^{(k)}}{f}) = O\{\exp_{p-1}\{(\sigma + \varepsilon)\log_q r\}\}, \quad r \notin E_1$$
(3.6)

for some $k \in \mathbb{N}$. Since $N(r, f^{(k)}) \leq (k+1)N(r, f)$, there holds

$$T(r, f^{(k)}) \le m(r, f^{(k)}) + N(r, f^{(k)}) \le m(r, \frac{f^{(k)}}{f}) + m(r, f) + (k+1)N(r, f)$$

$$\le (k+1)T(r, f) + O\{\exp_{p-1}\{(\sigma + \varepsilon)\log_q r\}\}, \quad r \notin E_1.$$
(3.7)

By (3.5), we again obtain

$$m(r, \frac{f^{(k+1)}}{f^{(k)}}) = O\{\exp_{p-1}\{(\sigma + \varepsilon)\log_q r\}\}, \ r \notin E_1,$$
(3.8)

and hence,

$$m(r, \frac{f^{(k+1)}}{f}) \le m(r, \frac{f^{(k+1)}}{f^{(k)}}) + m(r, \frac{f^{(k)}}{f}) = O\{\exp_{p-1}\{(\sigma + \varepsilon)\log_q r\}\}, \quad r \notin E_1. \quad \Box$$
(3.9)

Lemma 3.4 ([12]) Let $g: [0, \infty) \longrightarrow R$ and $h: [0, \infty) \longrightarrow R$ be monotone increasing functions such that $g(r) \leq h(r)$ outside of an exceptional set E of finite linear measure. Then for any $\alpha > 1$, there exists $r_0 > 0$, such that $g(r) \leq h(\alpha r)$ for all $r > r_0$.

Lemma 3.5 ([7]) Let f(z) be a transcendental meromorphic function not of the form $e^{\alpha z+\beta}$. Then

$$T(r,\frac{f}{f'}) \le 3\overline{N}(r,f) + 7\overline{N}(r,\frac{1}{f}) + 4\overline{N}(r,\frac{1}{f''}) + S(r,\frac{f}{f'}).$$

$$(3.10)$$

Similarly to the Hadamard theorem for entire functions and Lemma 1.8 in [11, p.390], we have the following results.

Lemma 3.6 An entire function f(z) with [p,q] index can be represented by the form $f(z) = U(z)e^{V(z)}$, where U(z) and V(z) are entire functions such that

$$\lambda_{[p,q]}(f) = \lambda_{[p,q]}(U) = \sigma_{[p,q]}(U), \quad \sigma_{[p,q]}(f) = \max\{\sigma_{[p,q]}(U), \sigma_{[p,q]}(e^V)\}.$$
(3.11)

4. Proofs of Theorems

Complex oscillation of second order LDE with entire coefficients of [p,q]-order

Proof of Theorem 2.1 We denote $\sigma_{[p,q]}(A) = \sigma$. By Lemma 3.1 we have

$$\sigma_{[p+1,q]}(f_1) = \sigma_{[p+1,q]}(f_2) = \sigma.$$

Therefore,

$$\sigma_{[p+1,q]}(E) \le \max\{\sigma_{[p+1,q]}(f_1), \sigma_{[p+1,q]}(f_2)\} = \sigma_{p+1,q}$$

By Lemma 3.2, we know

$$\max\{\lambda_{[p+1,q]}(f_1), \lambda_{[p+1,q]}(f_2)\} = \lambda_{[p+1,q]}(E) \le \sigma_{[p+1,q]}(E).$$
(4.1)

It remains to show that $\lambda_{[p+1,q]}(E) = \sigma_{[p+1,q]}(E)$. Assume that $\lambda_{[p+1,q]}(E) < \sigma_{[p+1,q]}(E)$. We obtain that all zeros of E are simple and that [12, pp.76-77]

$$E^{2} = C^{2} \left(\left(\frac{E'}{E}\right)^{2} - 2\frac{E''}{E} - 4A \right)^{-1}.$$
(4.2)

Hence,

$$2T(r, E) = T\left(r, \left(\frac{E'}{E}\right)^2 - 2\frac{E''}{E} - 4A\right) + O(1)$$

$$\leq O\left(\overline{N}(r, \frac{1}{E}) + m(r, \frac{E'}{E}) + m(r, \frac{E''}{E}) + m(r, A)\right).$$
(4.3)

By Lemma 3.3, we have

$$m(r, \frac{E'}{E}) = O\{\exp_p\{(\sigma + \varepsilon)\log_q r\}\}, \quad m(r, \frac{E''}{E}) = O\{\exp_p\{(\sigma + \varepsilon)\log_q r\}\}, \quad r \notin E.$$

Since $\overline{N}(r, \frac{1}{E}) = N(r, \frac{1}{E}) = O\{\exp_{p+1}\{\beta \log_q r\}\}$ holds for some $\beta < \sigma_{[p+1,q]}(E)$, we obtain

$$T(r, E) = O\left(\overline{N}(r, \frac{1}{E}) + \exp_p\{(\sigma + \varepsilon)\log_q r\}\right), \quad r \notin E_1.$$
(4.4)

By (4.4), we have $T(r, E) = O\{\exp_{p+1}\{\beta \log_q r\}\}$ $(r \notin E)$ and by Lemma 3.4, we obtain $\sigma_{[p+1,q]}(E) \leq \beta < \sigma_{[p+1,q]}(E)$, this is a contradiction. Hence, $\lambda_{[p+1,q]}(E) = \sigma_{[p+1,q]}(E)$.

If $\sigma_{[p+1,q]}(E) < \sigma_{[p,q]}(A)$, let us assume $\lambda_{[p+1,q]}(f) < \sigma_{[p,q]}(A)$ for any solution of type $f = c_1 f_1 + c_2 f_2 \ (c_1 c_2 \neq 0)$. We denote $E = f_1 f_2$ and $F = f f_1$, then

$$\lambda_{[p+1,q]}(E) < \sigma_{[p,q]}(A), \quad \lambda_{[p+1,q]}(F) < \sigma_{[p,q]}(A).$$

Since $F = (c_1 f_1 + c_2 f_2) f_1 = c_1 f_1^2 + c_2 E$, by (4.4), we have

$$T(r, f_1) = O(T(r, F) + T(r, E)) = O\left(\overline{N}(r, \frac{1}{F}) + \overline{N}(r, \frac{1}{E}) + \exp_p\{(\sigma + \epsilon)\log_q r\}\right).$$

Since $\lambda_{[p+1,q]}(E) < \sigma_{[p,q]}(A), \lambda_{[p+1,q]}(F) < \sigma_{[p,q]}(A)$, we have

$$\overline{N}(r,\frac{1}{F}) < \exp_{p+1}\{\beta \log_q r\}, \quad \overline{N}(r,\frac{1}{E}) < \exp_{p+1}\{\beta \log_q r\}, \quad r \to \infty,$$

for some $\beta < \sigma_{[p,q]}(A)$. Thus we obtain $\sigma_{[p+1,q]}(f_1) \leq \beta < \sigma_{[p,q]}(A)$, this is a contradiction by Lemma 3.1. Hence we have that $\lambda_{[p+1,q]}(f) = \sigma_{[p,q]}(A)$ holds for all solutions of type $f = c_1 f_1 + c_2 f_2$, where $c_1 c_2 \neq 0$. \Box

Proof of Theorem 2.2 By Lemma 3.1 we have $\lambda_{[p+1,q]}(f) \leq \sigma_{[p+1,q]}(f) = \sigma_{[p,q]}(A)$. It remains to show that $\sigma_{[p,q]}(A) \leq \lambda_{[p,q]}(f)$. We assume that $\sigma_{[p,q]}(A) > \lambda_{[p,q]}(f)$. Since A(z) is

transcendental, the non-trivial solution of (1.1) is transcendental entire function of infinite order. Hence, by Lemma 3.5, we have for sufficiently large r

$$T(r, \frac{f}{f'}) = O\left(\overline{N}(r, \frac{1}{f}) + \overline{N}(r, \frac{1}{f''})\right), \quad r \notin E_1.$$

$$(4.5)$$

By $\overline{\lambda}_{[p,q]}(A) < \sigma_{[p,q]}(A)$ and the assumption $\lambda_{[p,q]}(f) < \sigma_{[p,q]}(A)$, form (4.5), we have for sufficiently large r

$$T(r, \frac{f}{f'}) = O\{\exp_p\{\beta \log_q r\}\}, \quad r \notin E_1$$
(4.6)

for some $\beta < \sigma_{[p,q]}(A)$. Hence,

$$\sigma_{[p,q]}(\frac{f}{f'}) = \sigma_{[p,q]}(\frac{f'}{f}) \le \beta < \sigma_{[p,q]}(A).$$

$$-A(z) = (\frac{f'}{f})' + (\frac{f'}{f})^2, \qquad (4.7)$$

Since

we obtain
$$\sigma_{[p,q]}(A) \leq \sigma_{[p,q]}(\frac{f'}{f}) < \sigma_{[p,q]}(A)$$
, this is a contradiction. Thus $\sigma_{[p,q]}(A) \leq \lambda_{[p,q]}(f)$.
Proof of Theorem 2.3 Similarly to the proof of Theorem 3.1 in [4], we denote $E = f_1 f_2$ and $F = g_1 g_2$. Let us assume

$$\lambda_{[p,q]}(F) = \max\{\lambda_{[p,q]}(g_1), \lambda_{[p,q]}(g_2)\} < \sigma.$$

By Lemma 3.1, we have $\sigma_{[p+1,q]}(E) \leq \max\{\sigma_{[p+1,q]}(f_1), \sigma_{[p+1,q]}(f_2)\} = \sigma$, and hence, by Lemma 3.3, for any integer $k \geq 1$ and for any $\varepsilon > 0$, we have

$$m(r, \frac{E^{(k)}}{E}) = O\{\exp_p\{(\sigma + \varepsilon)\log_q r\}\}, \quad r \notin E_1.$$

Furthermore, by the assumption $\lambda_{[p,q]}(E) < \sigma$, we have $\overline{N}(r, \frac{1}{E}) = O\{\exp_p\{\beta \log_q r\}\}$ for some $\beta < \sigma$, and the [p,q]-order of the function A(z) implies that

$$T(r, A) = O\{\exp_p\{(\sigma + \varepsilon)\log_q r\}\}, \ r \to \infty.$$

By (4.4), we obtain

$$T(r, E) = O\{\exp_p\{(\sigma + \varepsilon)\log_q r\}\}$$

and hence, $\sigma_{[p,q]}(E) \leq \sigma$. On the other hand, by

$$4A = \left(\frac{E'}{E}\right)^2 - 2\frac{E''}{E} - \frac{1}{E^2},\tag{4.8}$$

we have that $\sigma_{[p,q]}(A) = \sigma \leq \sigma_{[p,q]}(E)$, hence $\sigma_{[p,q]}(E) = \sigma$. By the same reasoning for the function F, we have

$$4(A + \Pi) = \left(\frac{F'}{F}\right)^2 - 2\frac{F''}{F} - \frac{1}{F^2}$$
(4.9)

and $\sigma_{[p,q]}(F) = \sigma$. Since $\lambda_{[p,q]}(E) < \sigma, \lambda_{[p,q]}(F) < \sigma$, by Lemma 3.6, we may write

$$E = Qe^P, \quad F = Re^S, \tag{4.10}$$

where P, Q, R, S are entire functions satisfying $\sigma_{[p,q]}(Q) = \lambda_{[p,q]}(E) < \sigma$, $\sigma_{[p,q]}(R) = \lambda_{[p,q]}(F) < \sigma$ and $\sigma_{[p,q]}(e^P) = \sigma_{[p,q]}(e^S) = \sigma$. Substituting (4.10) into (4.8) and (4.9), we have

$$4A = -\frac{1}{Q^2 e^{2P}} + G_1(z), \tag{4.11}$$

$$4(A + \Pi) = -\frac{1}{R^2 e^{2S}} + G_2(z), \qquad (4.12)$$

where $G_1(z)$ and $G_2(z)$ are meromophic functions satisfying $\sigma_{[p,q]}(G_j) < \sigma$ (j = 1, 2). Subtracting (4.12) from (4.11) gives

$$\frac{1}{R^2 e^{2S}} - \frac{1}{Q^2 e^{2P}} = G_3(z), \tag{4.13}$$

where $G_3(z)$ is a meromophic function satisfying $\sigma_{[p,q]}(G_3) < \sigma$. From (4.13), we have

$$e^{-2S} + H_1 e^{-2P} = H_2, (4.14)$$

where H_1, H_2 are meromorphic functions satisfying $\sigma_{[p,q]}(H_j) < \sigma$ (j = 1, 2), and $H_1 = -\frac{R^2}{Q^2}$. Derivating (4.14), we have

$$-2S'e^{-2S} + (H_1' - 2PH_1)e^{-2P} = H_3, (4.15)$$

where H_3 is a meromophic function with $\sigma_{[p,q]}(H_3) < \sigma$. Eliminating e^{-2S} by (4.14) and (4.15), we have

$$(H_1' - 2(P' - S')H_1)e^{-2P} = H_4, (4.16)$$

where H_4 is a meromorphic function satisfying $\sigma_{[p,q]}(H_4) < \sigma$. Since $\sigma_{[p,q]}(e^S) = \sigma$, by (4.16) we have $H'_1 - 2(P' - S')H_1 \equiv 0$, thus we have $H_1 = ce^{2(P-S)}$, $c \neq 0$. Hence,

$$\frac{E^2}{F^2} = \frac{Q^2}{R^2} e^{2(P-S)} = -\frac{1}{c}.$$
(4.17)

From (4.8), (4.9), (4.17), we have

$$4(A + \Pi + \frac{1}{c}A) = (\frac{F'}{F})^2 - 2\frac{F''}{F} + \frac{1}{c}(\frac{E'}{E})^2 - \frac{2}{c}\frac{E''}{E}.$$

By Lemma 3.3, we obtain

$$T(r, A(1+\frac{1}{c})+\Pi) = m(r, A(1+\frac{1}{c})+\Pi) = O\{\exp_{p-1}\{(\sigma+\varepsilon)\log_q r\}\}, \quad r \to \infty.$$

This implies $\sigma_{[p,q]}(A(1+\frac{1}{c})+\Pi)=0$. Hence c=-1. Since $E^2=F^2$, we have

$$\frac{E'}{E} = \frac{F'}{F}, \quad \frac{E''}{E} = \frac{F''}{F}.$$

From (4.8) and (4.9), we see that $\Pi(z) \equiv 0$, this is a contradiction. The proof of the theorem is completed. \Box

References

- [1] S. BANK, I. LAINE. On the oscillation theory of f'' + Af = 0 where A is entire. Trans. Amer. Math. Soc., 1982, **273**(1): 351–363.
- S. BANK, I. LAINE. On the zeros of meromorphic solutions and second-order linear differential equations. Comment. Math. Helv., 1983, 58(4): 656–677.

- S. BANK, I. LAINE, J. LANGLEY. On the frequency of zeros of solutions of second order linear differential equations. Results Math., 1986, 10(1-2): 8–24.
- S. BANK, I. LAINE, J. LANGLEY. Oscillation results for solutions of linear differential equations in the complex domain. Results Math., 1989, 16(1-2): 3–15.
- [5] L. G. BERNAL. On growth k-order of solutions of a complex homogeneous linear differential equation. Proc. Amer. Math. Soc., 1987, 101(2): 317–322.
- [6] G. GUNDERSEN. Finite order solutions of second order linear differential equations. Trans. Amer. Math. Soc., 1988, 305(1): 415–429.
- W. K. HAYMAN. Picard values of meromorphic functions and their derivatives. Ann. of Math. (2), 1959, 70: 9–42.
- [8] W. K. HAYMAN. Meromorphic Functions. Clarendon Press, Oxford, 1964.
- O. P. JUNEJA, G. P. KAPOOR, S. K. BAJPAI. On the (p,q)-order and lower (p,q)-order of an entire function. J. Reine Angew. Math., 1976, 282: 53–67.
- [10] O. P. JUNEJA, G. P. KAPOOR, S. K. BAJPAI. On the (p,q)-type and lower (p,q)-type of an entire function. J. Reine Angew. Math., 1977, 290: 180–190.
- [11] L. KINNUNEN. Linear differential equations with solutions of finite iterated order. Southeast Asian Bull. Math., 1998, 22(4): 385–405.
- [12] I. LAINE. Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin, 1993.
- [13] Leimin LI, Tingbin CAO. Solutions for linear differential equations with meromorphic coefficients of (p,q)order in the plane. Electron. J. Differential Equations, 2012, **195**: 1–15.
- [14] Jie LIU, Jin TU, Lingzhi SHI. Linear differential equations with entire coefficients of [p,q]-order in the complex plane. J. Math. Anal. Appl., 2010, **372**(1): 55–67.
- [15] A. SCHÖNHAGE. Über das wachstum zusammengesetzter funktionen. Math. Z., 1960, 73(1): 22–44.
- [16] Le YANG. Value Distribution Theory. Springer-Verlag, Berlin, 1993.