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Abstract Let H be a separable Hilbert space, BH(I), B(H) and K(H) the sets of all

Bessel sequences {fi}i∈I in H, bounded linear operators on H and compact operators on

H, respectively. Two kinds of multiplications and involutions are introduced in light of two

isometric linear isomorphisms αH : BH(I) → B(ℓ2), β : BH(I) → B(H), respectively, so that

BH(I) becomes a unital C∗-algebra under each kind of multiplication and involution. It is

proved that the two C∗-algebras (BH(I), ◦, ♯) and (BH(I), ·, ∗) are ∗-isomorphic. It is also

proved that the set FH(I) of all frames for H is a unital multiplicative semi-group and the

set RH(I) of all Riesz bases for H is a self-adjoint multiplicative group, as well as the set

KH(I) := β−1(K(H)) is the unique proper closed self-adjoint ideal of the C∗-algebra BH(I).
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1. Introduction

Frames in Hilbert spaces were firstly introduced by Duffin and Schaeffer [1] in the study of

nonharmonic Fourier series in 1952. Recently, frame theory plays an important role in mathe-

matics, science, and engineering [2–4], and various generalizations of frames have been obtained.

For example, Sun in [5,6] introduced and discussed the concept of a G-frame for a Hilbert space,

which generalizes the concepts of frames [7], pseudoframes [8], oblique frames [9,10], outer frames

[11], bounded quasi-projectors [12,13], frames of subspaces [14,15], operator frames for B(H) (see

[16]). In [17], (p, Y )-operator frames for a Banach space X were introduced, which makes a G-

frame {Tj}j∈Λ for a Hilbert space H with respect to a sequence {Kj}j∈Λ of closed subspaces of a

Hilbert space K be a (2,K)-operator frame for H. Hence, the concept of a (p, Y )-operator frame

for a Banach space generalizes all of the concepts of frames. In Banach space setting, Xd frames,

Xd Bessel sequences, tight Xd frames, independent Xd frames, and Xd Riesz basis for a Banach
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space were introduced and discussed, a necessary and sufficient condition for a Banach space X

to have an Xd frame or to have an Xd Riesz basis as well as a necessary and sufficient condition

for an Xd frame to have a dual frame were obtained in paper [18], some relations among basis,

Xd frame and Xd Riesz basis in a Banach space were also established there. In paper [19], the

properties of frames and atomic decompositions for a Banach space were explored in terms of the

theory of frames for a Hilbert space, a sufficient condition for a complete Bessel sequence in a

Banach space X to be a Banach frame was given and a sufficient condition for a complete Bessel

sequence {yn} to have a sequence {xn} such that ({yn}, {xn}) becomes an atomic decomposition

for X was also established and a relation between Banach frames and atomic decompositions

was discussed there.

Multivariate Riesz multiwavelet bases with short support in (L2(Rs))r×1 have applications

in many areas, such as image processing, computer graphics and numerical algorithms. Pan in

[20] characterized an algorithm to derive Riesz bases from refinable function vectors and several

other important results about Riesz wavelet bases in (L2(Rs))r×1 were also given there.

Traditionally, Gabor and wavelet analysis were studied by using classical Fourier analysis

methods. But in recent years, more and more abstract tools have been introduced such as

operator theory, operator algebra, abstract harmonic analysis and group-representations, etc.

Especially, the author in [7] proved that the set BH(I) of all Bessel sequences {fi}i∈I in a

Hilbert space H is a Banach space and established an isometric isomorphism α from BH(I)

onto the operator space B(H, ℓ2) defined by α({fi}i∈I)(x) = {⟨x, fi⟩}i∈I , which suggests a

relationship between wavelet analysis and operator theory. The aim of this paper is to introduce

multiplication and involution on the Banach space BH(I) so that it becomes a unital C∗-algebra.

This enables us to establish a corresponding connection between wavelet analysis and operator

algebra.

Now, let us recall some definitions. Throughout this paper, H denotes a complex Hilbert

space, I is an index set so that dim(H) = |I| (the cardinality of I), and B(H) is the C∗-algebra

of all bounded linear operators on H, F denotes either R or C, ℓ2 ≡ ℓ2(I) is the Hilbert space of

all square-summable complex sequences with the inner product defined by

⟨{cn}n∈I , {dn}n∈I⟩ =
∑
n∈I

cndn,

which has the canonical orthonormal basis e = {en}n∈I , where en = {δn,k}k∈I . Moreover,

SH(I) =
{
{fn}n∈I : fn ∈ H(∀n ∈ I)

}
,

and denote by OH(I) the set of all orthonormal bases for H.

Definition 1.1 ([7]) Let f = {fn}n∈I ∈ SH(I). If there exists a positive constant B such that∑
n∈I

|⟨x, fn⟩|2 ≤ B∥x∥2, ∀x ∈ H, (1.1)

then we call f is a Bessel sequence in H. Denote by BH(I) the set of all Bessel sequences in H.
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For every f, g ∈ BH(I), define

αf + βg = {αfn + βgn}n∈I , ∀α, β ∈ F;

∥f∥2 = sup
∥x∥≤1

(∑
n∈I

|⟨x, fn⟩|2
)
.

Then (BH(I), ∥ · ∥) becomes a normed linear space over F and

∥f∥ = inf{B : B satisfies (1.1)}, ∀f ∈ BH(I).

For every f ∈ BH(I), put

Tf : H → ℓ2, Tfx = {⟨x, fn⟩}n∈I , ∀x ∈ H.

It is evident that Tf ∈ B(H, ℓ2) and ∥Tf∥ = ∥f∥ for all f in BH(I). Thus, the map f 7→ Tf

induces an isometric homomorphism α from BH(I) into B(H, ℓ2).

In the sequel, we shall need the following.

Theorem 1.2 (1) T ∗
f {cn}n∈I =

∑
n∈I cnfn, ∀f ∈ BH(I), {cn}n∈I ∈ ℓ2(I);

(2) α : f 7→ Tf is an isometrically linear isomorphism;

(3) (BH(I), ∥ · ∥) is a Banach space;

(4) If A ∈ B(H) and f = {fn}n∈I ∈ BH(I), then Af := {Afn}n∈I ∈ BH(I) and TAf =

TfA
∗.

Proof Similar to the proof of Corollary 2 in [7]. �

Definition 1.3 ([7]) A Bessel sequence f = {fn}n∈I in H is called a frame if there exists a

positive constant A such that for every x ∈ H,

A∥x∥2 ≤
∑
n∈I

|⟨x, fn⟩|2. (1.2)

Denote by FH(I) the set of all frames for H. If conditions (1.1) and (1.2) hold for every

x ∈ H and the bounds A,B coincide, then the frame is called tight, f is called a Parseval frame

if A = B = 1.

Definition 1.4 ([7]) Let f = {fn}n∈I ∈ SH(I). If there exist two positive constants C,D such

that

C∥{cn}∥2 ≤
∑
n∈I

∥cnfn∥2 ≤ D∥{cn}∥2, ∀{cn}n∈I ∈ ℓ2, (1.3)

and span{fn|n ∈ I} = H, then f is said to be a Riesz basis for H.

Denote by RH(I) the set of all Riesz bases for H. It is well-known that a frame has the

unique dual if and only if it is a Riesz basis.

Theorem 1.5 Let f = {fn}n∈I ∈ SH(I). Then

(1) f ∈ BH(I) ⇔ Tf ∈ B(H, ℓ2);

(2) f ∈ FH(I) ⇔ Tf is below-bounded ⇔ T ∗
f Tf is invertible;

(3) f ∈ RH(I) ⇔ Tf is invertible;
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(4) f ∈ OH(I) ⇔ Tf is unitary.

Proof Similar to the proof of Theorem 2 in [7]. �

Definition 1.6 If f = {fn}n∈I , g = {gn}n∈I are two frames for H and

x =
∑
n∈I

⟨x, fn⟩gn =
∑
n∈I

⟨x, gn⟩fn, ∀x ∈ H,

then we say that g is a dual frame of f . In this case, f is also a dual frame of g, so {f, g} is

called a dual pair of frames.

For every frame f = {fi}i∈I for H, Theorem 1.2(2) implies that the operator T ∗
f Tf is

invertible. Thus, f̃ := {(T ∗
f Tf )

−1fi}i∈I is a dual frame of f , called the canonical dual of f .

2. Main results

In this section, we will define two kinds of multiplications and involutions of Bessel sequences

in a Hilbert space H by using two maps

αH : BH(I) → B(ℓ2) and β : BH(I) → B(H),

respectively, and then obtain C∗-algebra structures on the Banach space BH(I).

To define a multiplication on the Banach space BH(I), we first assume that H = ℓ2(I).

Let e = {en}n∈I be the canonical orthonormal basis for ℓ2(I). Then every element c of ℓ2(I)

can be written as c = {⟨c, en⟩}n∈I .

Definition 2.1 For every f = {fn}n∈I , g = {gn}n∈I ∈ Bℓ2(I), we define

f ◦ g = {(f ◦ g)n}n∈I = T ∗
g f = {T ∗

g fn}n∈I , (2.1)

f ♯ = {(f ♯)n}n∈I = Tfe = {Tfen}n∈I . (2.2)

Clearly, f ◦ g and f ♯ are both elements of Bℓ2(I). By Theorem 1.2(4), we get that Tf◦g =

TT∗
g f = TfTg and Tf♯ = TTfe = TeT

∗
f = T ∗

f .

Theorem 2.2 Bℓ2(I) is a unital C∗-algebra with identity e = {en}n∈I and the mapping αℓ2 :

Bℓ2(I) → B(ℓ2) is an isometrically ∗-algebraic isomorphism.

Proof (i) For all f, g, h ∈ Bℓ2(I), we compute that

f ◦ (g ◦ h) = T ∗
g◦hf = (TgTh)

∗f = T ∗
hT

∗
g f = (f ◦ g) ◦ h,

(λf) ◦ g = T ∗
g (λf) = T ∗

λgf = f ◦ (λg)

for all λ ∈ F and

e ◦ f = Tf∗e = T ∗
f e = f = Te∗f = f ◦ e;

f ◦ (g + h) = T ∗
g+hf = (Tg + Th)

∗f = (T ∗
g + T ∗

h )f = f ◦ g + f ◦ h.

Similarly, (f + g) ◦ h = f ◦ h+ g ◦ h. For all f, g ∈ Bℓ2(I), we have

∥f ◦ g∥ = ∥Tf◦g∥ = ∥TfTg∥ ≤ ∥Tf∥∥Tg∥ = ∥f∥∥g∥.
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So, Bℓ2(I) is a Banach algebra.

(ii) For all f, g ∈ Bℓ2(I) and a, b ∈ F, we have

(af + bg)♯ = {Taf+bgen}n∈I = {aTfen}n∈I + {bTgen}n∈I = af ♯ + bg♯,

(f ◦ g)♯ = {Tf◦gen}n∈I = {TfTgen}n∈I = Tfg
♯ = g♯ ◦ f ♯,

(f ♯)♯ = {Tf♯en}n∈I = {T ♯
fen}n∈I = f.

(iii) ∀f ∈ BH(I), ∥f ♯ ◦f∥ = ∥Tf♯Tf∥ = ∥Tf∥2 = ∥f∥2. Hence, Bℓ2(I) is a unital C∗-algebra

with identity e = {en}n∈I . Since

αℓ2(f
♯) = Tf♯ = T ∗

f = (αℓ2(f))
∗,

αℓ2(f ◦ g) = Tf◦g = TfTg = αℓ2(f)αℓ2(g),

and αℓ2 : Bℓ2(I) → B(ℓ2) is an isometrically linear isomorphism, αℓ2 : Bℓ2(I) → B(ℓ2) is an

isometrically ∗-algebraic isomorphism. �
It is well-known that every separable infinite-dimensional Hilbert space H with a basis

{εi}i∈I is isomorphic to ℓ2(I) in light of the unitary U : H → ℓ2 defined by U(
∑

i∈I ciεi) =

{ci}i∈I . Thus, ∀f = {fn}n∈I , g = {gn}n∈I ∈ BH(I), we have

Uf := {Ufn}n∈I ∈ Bℓ2(I), Ug := {Ugn}n∈I ∈ Bℓ2(I).

By Definition 2.1, we know that Uf ◦ Ug ∈ Bℓ2(I). Put πU (f) = Uf = {Ufn}n∈I for every

f ∈ Bℓ2(I). Then

∥πU (f)∥ = ∥TπU (f)∥ = ∥TfU∗∥ = ∥TfU∗UT ∗
f ∥

1
2 = ∥TfT ∗

f ∥
1
2 = ∥Tf∥ = ∥f∥,

and so we obtain an isometrically linear isomorphism πU : BH(I) → Bℓ2(I) since U is a unitary.

Definition 2.3 For all f, g ∈ BH(I), we define

f ◦ g = π−1
U ((Uf) ◦ (Ug)), f ♯ = π−1

U ((Uf)♯). (2.3)

It is clear that f ◦ g ∈ BH(I) and f ♯ ∈ BH(I).

Theorem 2.4 BH(I) is a unital C∗-algebra with identity eH = π−1
U (e) and the mapping

αH , αℓ2πU : BH(I) → B(ℓ2) is an isometrically ∗-algebraic isomorphism.

Proof Clearly, the Banach space BH(I) becomes a Banach algebra with the multiplication

defined by (2.3). For all f, g ∈ BH(I) and a, b ∈ F, we compute that

(i) (af + bg)♯ = π−1
U ((U(af + bg))♯) = π−1

U (a(Uf)♯ + b(Ug)♯) = af ♯ + bg♯;

(ii) (f ◦ g)♯ = π−1
U ((U(f ◦ g))♯) = π−1

U ((Ug)♯ ◦ (Uf)♯)) = g♯ ◦ f ♯;
(iii) (f ♯)♯ = π−1

U ((Uf ♯)♯) = π−1
U ({TUf♯en}) = π−1

U ({Tf♯U∗en}) = f .

Thus, BH(I) becomes a Banach ∗-algebra with identity eH . Moreover, ∀f ∈ BH(I), we

have ∥f ♯ ◦ f∥ = ∥Tf♯Tf∥ = ∥Tf∥2 = ∥f∥2. This shows that BH(I) is a unital C∗-algebra with

identity eH . Since

πU (f ◦ g) = (Uf) ◦ (Ug) = πU (f) ◦ πU (g), πU (f ♯) = (Uf)♯ = (πU (f))
♯,
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we get that πU is an isometrically ∗-algebraic isomorphism. It follows from Theorem 2.2 that

αH is an isometrically ∗-algebraic isomorphism. �

Remark 2.5 For f, g ∈ BH(I), the equation f ◦g = g◦f does not necessarily hold, so C∗-algebra

BH(I) is not abelian in general.

For every f ∈ BH(I), define

Sf = αH(f). (2.4)

By the definition of αH , it is evident that Sf = TUf = TfU
∗ ∈ B(ℓ2) and ∥Sf∥ = ∥f∥. For

f, g ∈ BH(I), we have

Sf◦g = TU(f◦g) = T(Uf)◦(Ug) = TUfTUg = TfU
∗TgU

∗ = SfSg;

Sf♯ = TUf♯ = T(Uf)♯ = T ∗
Uf = (TfU

∗)∗ = S∗
f .

From Theorem 1.5, we can get following results:

Corollary 2.6 Let f ∈ BH(I). Then

(1) f ∈ FH(I) if and only if Sf is below-bounded;

(2) f ∈ RH(I) if and only if Sf is invertible;

(3) f ∈ OH(I) if and only if Sf is unitary.

Corollary 2.7 Let f, g ∈ BH(I). Then A(f ◦ g) = f ◦ (Ag) whenever A ∈ B(H).

Proof Use the fact that A(f ◦ g) = AT ∗
g f = (TgA

∗)∗f = T ∗
Agf = f ◦ (Ag). �

The map αH defined in (2.4) depends on the isomorphism U from H onto ℓ2 and builds

an isomorphism between BH(I) and B(ℓ2). There is another way to obtain a new kind of

multiplication of two Bessel sequences and a new involution of a Bessel sequence in light of a

fixed orthonormal basis for H. Take an orthonormal basis δ = {δn}n∈I for H, then for arbitrary

f ∈ BH(I) and x ∈ H, put

Rfx =
∑
n∈I

⟨x, fn⟩δn. (2.5)

Clearly,
∑

n∈I⟨x, fn⟩δn = T ∗
δ Tfx ∈ H and so Rf = T ∗

δ Tf ∈ B(H) and ∥Rf∥ = ∥Tf∥ = ∥f∥.
Now, we define a map

β : BH(I) → B(H), f 7→ Rf .

It is clear that β is injective. For every A ∈ B(H), take f = α−1(TδA), then β(f) = Rf =

T ∗
δ Tf = A, so β is surjective. Thus, β is an isometrically linear bijection.

Definition 2.8 ∀f, g ∈ BH(I), define f · g = β−1(RfRg), f
∗ = β−1(R∗

f ). Clearly, f · g, f∗ ∈
BH(I) and

β(f · g) = RfRg = β(f)β(g), β(f∗) = R∗
f = β(f)∗.

Theorem 2.9 BH(I) is a unital C∗-algebra with identity δ and the mapping β : BH(I) → B(H)

is an isometrically ∗-algebraic isomorphism.

Proof Similar to the proof of Theorem 2.4. �
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From Rf = T ∗
δ Tf and Theorem 1.5, we can get following result:

Corollary 2.10 Let f ∈ BH(I). Then

(1) f ∈ FH(I) if and only if Rf is below-bounded;

(2) f ∈ RH(I) if and only if Rf is invertible;

(3) f ∈ OH(I) if and only if Rf is unitary.

Even though the maps from BH(I) into B(ℓ2) and B(H), respectively, are different, we

obtain the same conclusion, which says that (BH(I), ◦, ♯) and (BH(I), ·, ∗) are unital C∗-algebras

with two different kinds of multiplications and involutions. The following theorem shows that

these two C∗-algebras are isomorphic.

Theorem 2.11 Set ψU (A) = UAU∗, then the mapping ϕ = β−1ψ−1
U αH is an isometric ∗-

isomorphism from (BH(I), ◦, ♯) onto (BH(I), ·, ∗), and C∗-algebras (BH(I), ◦, ♯) and (BH(I), ·, ∗)
are isomorphic. Moreover, ϕ(FH(I)) = FH(I), ϕ(RH(I)) = RH(I).

Proof Clearly, the mapping ψU : B(H) → B(ℓ2) is an isometric ∗-isomorphism and then

ϕ = β−1ψ−1
U αH is an isometric ∗-isomorphism from (BH(I), ◦, ♯) onto (BH(I), ·, ∗). By the fact

that

ϕ(f) = β−1ψ−1
U αH(f) = β−1(U∗SfU) = β−1(U∗TfU

∗U) = β−1(U∗TδRf ),

and Corollary 2.10(1), we get that

ϕ(f) ∈ FH(I) ⇔ β(ϕ(f)) is below bounded ⇔ f ∈ FH(I).

So, ϕ(FH(I)) = FH(I). Similarly, ϕ(RH(I)) = RH(I). �

3. Some applications

In this section, we will study some properties of some subsets of BH(I).

Theorem 3.1 (1) FH(I) is a semi-group with identity δ with respect to multiplication ·;
(2) RH(I) is a self-adjoint multiplicative group.

Proof (1) Clearly δ ∈ FH(I). If f, g ∈ FH(I), then RfRg is still a bounded-below operator, by

Corollary 2.10, f · g ∈ FH(I). This implies FH(I) is a multiplicative semi-group with identity δ.

(2) It is clear that RH(I) is a semi-group with identity δ. The following discussion will

prove that every f ∈ RH(I) has a unique inverse in RH(I). Let f ∈ RH(I). Then Rf is

invertible. Thus, there is a unique g ∈ BH(I) such that β(g) = R−1
f , that is, Rg = R−1

f . Since

Rf ·g = RfRg = I = Rδ and Rg·f = RgRf = Rδ, f · g = g · f = δ. Hence, g is the inverse of f .

Clearly, g ∈ RH(I). �
For arbitrary frame f for H, define f̂ = {g|g is a dual frame of f}. Clearly, f̃ ∈ f̂ for every

frame f for H.

Theorem 3.2 (1) If f ∈ FH(I), then g∗ · f = δ for all g ∈ f̂ .

(2) Let f ∈ FH(I), g ∈ BH(I). If g · f = δ, then g∗ ∈ FH(I) and g∗ ∈ f̂ .
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(3) If f ∈ FH(I), then f∗ ∈ FH(I) if and only if f ∈ RH(I);

(4) If f ∈ FH(I), then f is idempotent if and only if f is the identity δ of BH(I).

Proof (1) If f ∈ FH(I) and g ∈ f̂ , then

x =
∑
n∈I

⟨x, fn⟩gn =
∑
n∈I

⟨x, gn⟩fn, ∀x ∈ H,

by the definitions of Tf and Tg, we have x = T ∗
g Tfx = T ∗

f Tgx. So, T ∗
g Tf = T ∗

f Tg = I and thus

we have T ∗
g Tf = Tg∗·f = I, so g∗ · f = δ.

(2) If g · f = δ, then T ∗
f Tg∗ = R∗

fRg∗ = RgRf = β(g)β(f) = β(g · f) = I. So we can see

that Tg∗ is left-invertible. This implies that g∗ ∈ FH(I) and g∗ ∈ f̂ .

(3) Let f ∈ FH(I). Suppose that f∗ ∈ FH(I). By Corollary 2.10, we have Rf , R
∗
f are

both bounded-below. So Rf is invertible and thus f ∈ RH(I). Conversely, we suppose that

f ∈ RH(I). Then Rf is invertible, so R∗
f is also invertible, therefore f∗ ∈ RH(I) ⊂ FH(I).

(4) f is idempotent if and only if Rf is idempotent. Since f ∈ FH(I) implies that Rf :

ℓ2 → ℓ2 is below-bounded, now we only need prove that an idempotent injective operator Rf

is the identity I. Suppose that ran(Rf )
⊥ ̸= {0}, where ran(Rf ) denotes the range of Rf , then

there exists x ∈ ran(Rf )
⊥\{0} such that Rfx ̸= x. However, Rf (Rfx−x) = 0. This contradicts

the fact that Rf is injective. So, Rf = I. Hence, f is idempotent if and only if f is the identity

δ of BH(I). �

Remark 3.3 In FH(I), the dual frame of f is not unique, so its left-inverse element is also not

unique. But the convex combination of left-inverse elements of f is still a left-inverse element of

f .

In the following, we consider ideals of BH(I) as a C∗-algebra and obtain an important result.

Denote by K(H) the set of all compact operators on H,

c0(H) =
{
{fn}n∈I : ∥fn∥ → 0 (n→ ∞)

}
and denote KH(I) := β−1(K(H)).

Theorem 3.4 KH(I) is the unique proper self-adjoint closed ideal of BH(I) and KH(I) ⊂
c0(H) ∩BH(I).

Proof Since K(H) is the unique non-trivial closed ideal of C∗-algebra B(H) and β is an

isometrically ∗-isomorphism, KH(I) is the unique proper closed ideal of BH(I). Since T ∈ K(H)

if and only if T ∗ ∈ K(H), we see that KH(I) is self-adjoint. Also, ∀f ∈ KH(I), we have

Rf ∈ K(H). Take the identity δ of BH(I), then fn = R∗
fδn, so we compute that

∥fn∥ = ∥R∗
fδn∥ → 0(n→ ∞).

So, KH(I) ⊂ c0(H). Clearly, KH(I) ⊂ BH(I). This shows that KH(I) ⊂ c0(H) ∩BH(I). �

Remark 3.5 The “ ⊂ ” of Theorem 3.4 may be a proper inclusion in general. For instance, let
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{en}n∈I be an orthonormal basis for H and define the sequence {fn}n∈I by{
e1,

e2√
2
,
e2√
2
,
e3√
3
,
e3√
3
,
e3√
3
, . . .

}
.

It is easily seen that {fn}n∈I is a Parseval frame for H and {fn}n∈I ∈ c0(H). But Rf is a

co-isometry, i.e., RfR
∗
f = I. Hence, Rf is not a compact operator. Applying properties of an

ideal, we also derive following results.

Corollary 3.6 (1) KH(I) ∩ FH(I) = Ø;

(2) If f ∈ BH(I) and A ∈ K(H), then Af ∈ KH(I).

Proof (1) Suppose that KH(I) ∩ FH(I) ̸= Ø, that is, at least there exists f ∈ KH(I) ∩ FH(I),

then we have Rf ∈ K(H) and furthermore R∗
f ∈ K(H). On the other hand, for f ∈ FH(I), take

g ∈ f̂ , then by Definition 1.6 and Theorem 1.5, we have R∗
fRg = T ∗

f TδT
∗
δ Tg = I. Since K(H) is

the unique ideal of B(H), I ∈ K(H). This is a contradiction. Therefore, KH(I) ∩ FH(I) = Ø.

(2) Since RAf = T ∗
AfTδ = AT ∗

f Tδ ∈ K(H), Af ∈ KH(I). �
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