Journal of Mathematical Research with Applications Mar., 2015, Vol. 35, No. 2, pp. 215–222 DOI:10.3770/j.issn:2095-2651.2015.02.012 Http://jmre.dlut.edu.cn

A Class of Projectively Flat Spherically Symmetric Finsler Metrics

Weidong SONG*, Yali CHEN

School of Mathematics and Computer Science, Anhui Normal University, Anhui 241000, P. R. China

Abstract In this paper, we study spherically symmetric Finsler metrics. Analyzing the solution of the projectively flat equation, we construct a new class of projectively flat Finsler metrics.

Keywords projectively flat; Finsler metric; spherically symmetric

MR(2010) Subject Classification 53B40; 53C60; 58B20

1. Introduction

It is an important problem in Finsler geometry to study and characterize projectively flat Finsler metrics on an open domain in \mathbb{R}^m . Hilbert's 4th Problem is to characterize the distance functions on an open subset in \mathbb{R}^m such that straight lines are geodesics [5]. Regular distance functions with straight geodesics are projectively flat Finsler metrics. A Finsler metric F = F(x, y) on an open subset $U \subset \mathbb{R}^m$ is projectively flat if and only if it satisfies the following equation:

$$F_{x^{i}y^{j}}y^{i} = F_{x^{i}}. (1.1)$$

Shen discussed the classification problem on projective Finsler metrics of constant flag curvature [14], the first author provided the projective factor of a class of projectively flat general (α, β) -metrics [12] and studied a necessary and sufficient condition for a class of Finsler metric to be projectively flat [13]. Li proved that locally projectively flat Finsler metrics with constant flag curvature **K** are totally determined by their behaviors at the origin by solving some nonlinear PDEs. The classifications when $\mathbf{K} = 0$, $\mathbf{K} = -1$, $\mathbf{K} = 1$ are given in an algebraic way [15].

On the other hand, the study of spherically symmetric Finsler metrics has attracted a lot of attentions. Many known Finsler metrics are spherically symmetric [1,4,7,14,15]. A Finsler metric F is said to be spherically symmetric (orthogonally invariant in an alternative terminology in [6]) if F satisfies

$$F(Ax, Ay) = F(x, y) \tag{1.2}$$

for all $A \in O(m)$, equivalently, if the orthogonal group O(m) acts as isometrics of F. Such metrics were first introduced by Rutz [16].

Received March 28, 2014; Accepted September 4, 2014

Supported by the National Natural Science Foundation of China (Grant No. 11071005).

^{*} Corresponding author

E-mail address: swd56@sina.com (Weidong SONG); chenylwuhu@qq.com (Yali CHEN)

It was pointed out in [6] that a Finsler metric F on $\mathbb{B}^m(\mu)$ is a spherically symmetric if and only if there is a function $\phi : [0, \mu) \times \mathbb{R} \to \mathbb{R}$ such that

$$F(x,y) = |y| \phi(|x|, \frac{\langle x, y \rangle}{|y|})$$
(1.3)

where $(x, y) \in T\mathbb{R}^m(\mu) \setminus \{0\}$. Additionally, the spherically symmetric Finsler metric of the form (1.3) can be rewritten as the following form [8]

$$F = \mid y \mid \phi(\frac{\mid x \mid^2}{2}, \frac{\langle x, y \rangle}{\mid y \mid}).$$

Spherically symmetric Finsler metrics are the simplest and most important general (α, β) metrics [4]. Mo, Zhou and Zhu classified the projective spherically symmetric Finsler metrics with constant flag curvature in [2, 9, 10]. A lot of spherically symmetric Finsler metrics with nice curvature properties had been investigated by Mo, Huang and et al [3, 6–11].

An important example of non-Riemmannian projectively flat Finsler metrics is the Funk metric

$$\Theta = \frac{\sqrt{(1-|x|^2)|y|^2 + \langle x, y \rangle^2}}{1-|x|^2} + \frac{\langle x, y \rangle}{1-|x|^2}$$
(1.4)

on the unit ball $\mathbb{B}^m(1)$ where $y \in T_x \mathbb{B}^m \subset \mathbb{R}^m$. Here $|\cdot|$ and $\langle \cdot, \cdot \rangle$ denote the standard Euclidean norm and inner product respectively. By simple calculation, the Funk metric Θ could also be expressed in the form $\Theta = \Theta_1 + \Theta_2$, where

$$\Theta_1 = \mid y \mid h(t)s, \ \Theta_2 = \mid y \mid \sqrt{g(t) + g'(t)s^2}$$

where

$$g(t) = h(t) = \frac{1}{1 - 2t}, \quad t = \frac{|x|^2}{2}, \quad s = \frac{\langle x, y \rangle}{|y|}.$$

We can verify that Θ_1 and Θ_2 satisfy (1.1) by direct calculations. It is easy to see that if Θ_1 and Θ_2 satisfy (1.1), then $a\Theta_1 + b\Theta_2$ is also a solution of (1.1) where a, b are non-negative constants.

Inspired by the above statements, we try to find the solutions of the projectively flat Eq. (1.1) in the following forms:

$$F = \mid y \mid \phi(\frac{\mid x \mid^2}{2}, \frac{\langle x, y \rangle}{\mid y \mid}),$$

$$\phi(\frac{\mid x \mid^2}{2}, \frac{\langle x, y \rangle}{\mid y \mid}) = \sum_{i=0}^n \phi_i(\frac{\mid x \mid^2}{2}) \frac{\langle x, y \rangle^i}{\mid y \mid^i} + \sum_{r \neq 0, 1} [\sum_{j=0}^l \phi_j(\frac{\mid x \mid^2}{2}) \frac{\langle x, y \rangle^j}{\mid y \mid^j}]^{\frac{1}{r}}.$$

Through calculations, we have the following conclusion:

Theorem 1.1 Let $\phi(t, s)$ be a function defined by

$$\phi(t,s) = \phi_0(t) + \phi_1(t)s + \frac{1}{2}\phi'_0(t)s^2 + \sum_{j=2}^n (-1)^{j-1} \frac{(2j-3)!!}{(2j)!} \phi_0^{(j)}(t)s^{2j} + b\sum_{r \neq 0,1} (h_0(t) + \frac{1}{2}h'_0(t)s^2)^{\frac{1}{r}}, \quad n \in \{1, 2, \ldots\}, \ r \in \mathbb{Z}$$

A class of projectively flat spherically symmetric Finsler metrics

where b, C_1, C_2 are constants and h_0 is a differentiable function which satisfies

$$h_0(t) = \left(\frac{r}{-3C_1tr + 4C_1t - 3C_2r + 4C_2}\right)^{\frac{r}{3r-4}}$$

and ϕ_1 is any continuous function, ϕ_0 is a polynomial function of degree N where $N \leq n$ which satisfies

$$\phi_{0}(t) + \phi_{0}'(t)(t - \frac{3}{2}s^{2}) + \sum_{j=2}^{n} (-1)^{j-1} \frac{(2j-3)!!}{(2j-2)!} \phi_{0}^{(j)}(t)s^{2j-2}(t - s^{2}\frac{1+2j}{2j}) + b \sum_{r\neq0,1} (h_{0}(t) + \frac{1}{2}h_{0}'(t)s^{2})^{\frac{1}{r}-2}(h_{0}^{2}(t) + \frac{h_{0}(t)h_{0}'(t)}{r}t) + b \sum_{r\neq0,1} (h_{0}(t) + \frac{1}{2}h_{0}'(t)s^{2})^{\frac{1}{r}-2}(\frac{1}{2} - \frac{1}{r})s^{2} \cdot [2h_{0}(t)h_{0}'(t) + (h_{0}'(t))^{2}s^{2}(\frac{1}{2} + \frac{1}{r}) - \frac{(h_{0}'(t))^{2}}{r}t] > 0$$
(1.5)

when m = 2. Moreover, the additional inequality holds

$$\phi_{0}(t) - \frac{1}{2}\phi_{0}'(t) + \sum_{j=2}^{n} (-1)^{j-1} \frac{(2j-3)!!}{(2j-1)!} \phi_{0}^{(j)}(t) s^{2j} (\frac{1}{2j} - 1) + b \sum_{r \neq 0,1} (h_{0}(t) + \frac{1}{2}h_{0}'(t)s^{2})^{\frac{1}{r} - 1} [h_{0}(t) + (\frac{1}{2} - \frac{1}{r})h_{0}'(t)s^{2}] > 0$$
(1.6)

when $m \geq 3$. $\phi_0^{(j)}$ denotes the *j*-order derivative for $\phi_0(t)$ and then the following spherically symmetric Finsler metric on $\mathbb{B}^m(\mu)$, $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ is projectively flat.

Remark 1.2 Let us take a look at a special case, namely when b = 1, n = m = 2. After setting $\phi_0(t) = 0, \phi_1(t) = h_0(t) = \frac{1}{1-2t}$, we obtain the Funk metric.

2. Solutions of the PDE

In this section, we are going to construct a lot of projectively flat Finsler metrics which contain the Funk metric. From [8], we have the following lemma.

Lemma 2.1 Let $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ be a spherically symmetric Finsler metric on $\mathbb{B}^m(\mu)$. F is projectively flat if and only if ϕ satisfies

$$s\phi_{ts} + \phi_{ss} - \phi_t = 0 \tag{2.1}$$

where $t = \frac{|x|^2}{2}$ and $s = \frac{\langle x, y \rangle}{|y|}$.

Consider the spherically symmetric Finsler metric $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ on $\mathbb{B}^m(\mu)$ where $\phi = \phi(t, s)$ is given by $\phi(t, s) = \sum_{j=0}^l \phi_j(t) s^j$. By a direct calculation we get

$$\phi_t(t,s) = \sum_{j=0}^l \phi'_j(t) s^j,$$
(2.2)

Weidong SONG and Yali CHEN

$$\phi_{ts}(t,s) = \sum_{j=0}^{l} j\phi'_j(t)s^{j-1},$$
(2.3)

$$\phi_{ss}(t,s) = \sum_{j=0}^{l} j(j-1)\phi_j(t)s^{j-2}.$$
(2.4)

Substituting (2.2), (2.3) and (2.4) into (2.1) yields the following equation

$$\sum_{j=0}^{l} (j-1)\phi'_{j}(t)s^{j} + \sum_{j=0}^{l-2} (j+2)(j+1)\phi_{j+2}s^{j} = 0,$$
(2.5)

which is equivalent to

$$\sum_{j=0}^{l-2} [(j-1)\phi'_j(t) + (j+2)(j+1)\phi_{j+2}(t)]s^j + \sum_{j=l-1}^l (j-1)\phi'_j(t)s^j = 0.$$
(2.6)

By (2.6), $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ is projectively flat if and only if

$$\begin{cases} (j-1)\phi'_j(t) + (j+2)(j+1)\phi_{j+2}(t) = 0, & j = 0, 1, 2..., l-2, \\ (j-1)\phi'_j(t) = 0, & j = l-1, l. \end{cases}$$
(2.7)

When j = 0, from the first equation of (2.7) we get

$$\phi_0'(t) = 2\phi_2(t). \tag{2.8}$$

Similarly, taking j = 1 and j = 2 gives

$$\phi_3(t) = 0, \quad \phi_2'(t) + 12\phi_4(t) = 0.$$
 (2.9)

If k = j + 2, the first equation of (2.7) is equivalent to

$$k(k-1)\phi_k(t) + (k-3)\phi'_{k-2}(t) = 0.$$
(2.10)

It is easy to see the recurrence fomula on $\phi_k(t)$ and $\phi_k'(t)$ satisfies

$$\phi_k(t) = -\frac{k-3}{k(k-1)}\phi'_{k-2}(t).$$
(2.11)

If $k = \text{odd}, k \ge 3$, then by (2.11) we have

$$\phi_k(t) = (-1)^{\frac{k-3}{2}} \frac{(k-3)(k-5)\cdots 2}{k(k-1)\cdots 4} \phi_3^{(\frac{k-3}{2})}(t) = 0.$$
(2.12)

If $k = even, k \ge 4$, then we have

$$\phi_k(t) = (-1)^{\frac{k-4}{2}} \frac{24(k-3)!!}{k!} \phi_4^{(\frac{k-4}{2})}(t) = (-1)^{\frac{k-2}{2}} \frac{(k-3)!!}{k!} \phi_0^{(\frac{k}{2})}(t).$$
(2.13)

Then we discuss (2.13) in two different cases.

Case 1 If $k = \text{odd} \ge 5$, setting l = 2n + 1, by the second equation of (2.7) we have

$$\phi_{2n+1}(t) = 0, \quad \phi_{2n}(t) = \text{constant.}$$
 (2.14)

From (2.1), (2.12), (2.13), (2.14) we have

$$\phi(t,s) = \phi_0(t) + \phi_1(t)s + \phi_2(t)s^2 + \dots + \phi_{2n-1}(t)s^{2n-1} + \phi_{2n}(t)s^{2n} + \phi_{2n+1}(t)s^{2n+1}$$

A class of projectively flat spherically symmetric Finsler metrics

$$=\phi_0(t)+\phi_1(t)s+\frac{1}{2}\phi_0'(t)s^2+\sum_{j=2}^n(-1)^{j-1}\frac{(2j-3)!!}{(2j)!}\phi_0^{(j)}(t)s^{2j}.$$
(2.15)

Case 2 If $k = \text{even} \ge 4$, setting l = 2n + 2, by the second equation of (2.7) we have

$$\phi_{2n+2}(t) = \text{constant}, \quad \phi_{2n+1}(t) = 0.$$
 (2.16)

From (2.1), (2.12), (2.13), (2.16) we have

$$\phi(t,s) = \phi_0(t) + \phi_1(t)s + \frac{1}{2}\phi_0'(t)s^2 + \sum_{j=1}^n (-1)^j \frac{(2j-1)!!}{(2j+2)!}\phi_0^{(j+1)}(t)s^{2j+2}.$$
 (2.17)

The case $l \in \{1, 2, 3\}$ is similar. Through the above analysis, we obtain the following proposition.

Proposition 2.2 Let $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ be a spherically symmetric Finsler metric on $\mathbb{B}^m(\mu)$. $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ in the form $F = |y| \sum_{j=0}^{l} \phi_j(t) s^j$ is a solution of the projectively flat Eq.(2.1) if and only if $\phi(t, s)$ satisfies

$$\phi(t,s) = \phi_0(t) + \phi_1(t)s + \phi_2(t)s^2 + \dots + \phi_l(t)s^l$$

= $\phi_0(t) + \phi_1(t)s + \frac{1}{2}\phi_0'(t)s^2 + \sum_{j=2}^n (-1)^{j-1} \frac{(2j-3)!!}{(2j)!} \phi_0^{(j)}(t)s^{2j}$

and $\phi_0^{(n)} = \text{constant}.$

If the solution of (2.1) has the following form

$$\phi(t,s) = \left(\sum_{j=0}^{l} h_j(t)s^j\right)^{\frac{1}{r}}, \quad h_l \neq 0, \ r \in \mathbb{Z} - \{0,1\},$$
(2.18)

we have

$$r\phi^{r-1}\phi_t = \sum_{j=0}^l h'_j(t)s^j,$$
(2.19)

$$r\phi^{r-1}\phi_s = \sum_{j=0}^l jh_j(t)s^{j-1},$$
(2.20)

$$r(r-1)\phi^{r-2}\phi_s\phi_t + r\phi^{r-1}\phi_{ts} = \sum_{j=0}^l jh'_j(t)s^{j-1}.$$
(2.21)

Putting together (2.19), (2.20), (2.21), we have

$$r\phi^{2r-1}\phi_{ts} = \phi^{r} \sum_{j=0}^{l} jh'_{j}(t)s^{j-1} - (1-\frac{1}{r})(\sum_{j=0}^{l} h'_{j}(t)s^{j})(\sum_{i=0}^{l} ih_{i}(t)s^{i-1})$$

$$= (\sum_{i=0}^{l} h_{i}(t)s^{i})(\sum_{j=0}^{l} jh'_{j}(t)s^{j-1}) - (1-\frac{1}{r})(\sum_{j=0}^{l} h'_{j}(t)s^{j})(\sum_{i=0}^{l} ih_{i}(t)s^{i-1})$$

$$= \sum_{k=1}^{2l} \sum_{i+j=k} [j - (1-\frac{1}{r})i]h_{i}(t)h'_{j}(t)s^{k-1}, \qquad (2.22)$$

here we used the following lemma.

Lemma 2.3 ([8]) We have the following equations

$$\sum_{i=1}^{m} a_i \sum_{j=1}^{m} b_j = \sum_{k=1}^{2m} \sum_{i+j=k}^{m} a_i b_j, \quad \sum_{i=1}^{m} a_i \sum_{j=1}^{m} b_j - \sum_{i=1}^{m} c_i \sum_{j=1}^{m} d_j = \sum_{k=1}^{2m} \sum_{i+j=k}^{m} a_i b_j.$$

Differentiating (2.20), we get

$$r(r-1)\phi^{r-2}(\phi_s)^2 + r\phi^{r-1}\phi_{ss} = \sum_{j=0}^l j(j-1)h_j(t)s^{j-2}.$$

Similarly, by using Lemma 2.3 we have

$$r\phi^{2r-1}\phi_{ss} = \phi^r \sum_{j=0}^{l} j(j-1)h_j(t)s^{j-2} - r(r-1)\phi^{2r-2}(\phi_s)^2$$

$$= (\sum_{i=0}^{l} h_i(t)s^i)(\sum_{j=0}^{l} j(j-1)h_j(t)s^{j-2}) - (1-\frac{1}{r})(\sum_{i=0}^{l} ih_i(t)s^{i-1})(\sum_{j=0}^{l} jh_j(t)s^{j-1})$$

$$= \sum_{k=2}^{2l} \sum_{i+j=k} j[j-1-(1-\frac{1}{r})i]h_i(t)h_j(t)s^{k-2}$$

$$= \sum_{k=0}^{2l-2} \sum_{i+j=k} (j+1)[j-(1-\frac{1}{r})(i+1)]h_{i+1}(t)h_{j+1}(t)s^k.$$
(2.23)

From (2.19) and Lemma 2.3 we have

$$r\phi^{2r-1}\phi_t = \phi^r \sum_{j=0}^l h'_j(t)s^j = (\sum_{i=0}^l h_i(t)s^i)(\sum_{j=0}^l h'_j(t)s^j)$$
$$= \sum_{k=0}^{2l} \sum_{i+j=k} h_i(t)h'_j(t)s^k.$$
(2.24)

Combining (2.22), (2.23), (2.24), we have the following

$$r\phi^{2r-1}(s\phi_{ts} + \phi_{ss} - \phi_t) = \sum_{k=0}^{2l-2} \sum_{i+j=k} [j - (1 - \frac{1}{r}) - 1]h_i(t)h'_j(t)s^k + \sum_{k=0}^{2l-2} \sum_{i+j=k} (j+1)[j - (1 - \frac{1}{r})(i+1)]h_{i+1}(t)h_{j+1}(t)s^k + \sum_{k=2l-1}^{2l} \sum_{i+j=k} [j - (1 - \frac{1}{r})i - 1]h_i(t)h'_j(t)s^k.$$
(2.25)

As $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ on $\mathbb{B}^m(\mu)$ is projectively flat, by using (2.1), we obtain the following equations

$$\begin{cases} [j - (1 - \frac{1}{r})i - 1]h_i(t)h'_j(t) + (j + 1)[j - (1 - \frac{1}{r})(i + 1)]h_{i+1}(t)h_{j+1}(t) = 0, \\ k = 0, 1, \dots, 2l - 2, \\ (j - i + \frac{i}{r} - 1)h_i(t)h'_j(t) = 0, \quad k = 2l - 1, 2l. \end{cases}$$

A class of projectively flat spherically symmetric Finsler metrics

Here we focus on a special case l = 2 and $h_1(t) = 0$, then

$$\begin{cases} h_0(t)h'_0(t) - 2h_0(t)h_2(t) = 0, \\ h_0(t)h'_2(t) + (-2 + \frac{4}{r})h_2^2(t) + (-3 + \frac{2}{r})h_2(t)h'_0(t) = 0. \end{cases}$$
(2.26)

From the first equation of (2.26), we know $h_0(t) = 0$ or $h'_0(t) = 2h_2(t)$. If $h_0(t) = 0$, then $\phi(t,s) = 0$, thus we consider $h'_0(t) = 2h_2(t)$. In this situation we have

$$\phi(t,s) = (h_0(t) + \frac{1}{2}h'_0(t)s^2)^{\frac{1}{r}}$$
(2.27)

and from the second equation of (2.26), we know that $h_0(t)$ satisfies

$$\frac{1}{2}h_0(t)h_0''(t) + (-2 + \frac{2}{r})(h_0'(t))^2 = 0.$$
(2.28)

The general solution $h_0(t)$ of (2.28) is given by

$$h_0(t) = \left(\frac{r}{-3C_1tr + 4C_1t - 3C_2r + 4C_2}\right)^{\frac{r}{3r-4}}$$
(2.29)

where C_1 , C_2 are constants. Combining Proposition 2.2, (2.27) and (2.29), we have the following proposition by applying the fundamental property of projectively flat equation.

Proposition 2.4 Let $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ be a spherically symmetric Finsler metric on $\mathbb{B}^m(\mu)$. $\phi(t,s) = \sum_{i=0}^n \phi_i(t)s^i + \sum_{r \neq 0,1} (\sum_{j=0}^l h_j(t)s^j)^{\frac{1}{r}}$ is a solution of the projectively flat Eq. (2.1) if and only if

$$\phi(t,s) = \phi_0(t) + \phi_1(t)s + \frac{1}{2}\phi_0'(t)s^2 + \sum_{j=2}^n (-1)^{j-1} \frac{(2j-3)!!}{(2j)!} \phi_0^{(j)}(t)s^{2j} + b \sum_{r \neq 0,1} (h_0(t) + \frac{1}{2}h_0'(t)s^2)^{\frac{1}{r}}$$

and

$$h_0(t) = \left(\frac{r}{-3C_1tr + 4C_1t - 3C_2r + 4C_2}\right)^{\frac{r}{3r-4}}$$

where b, C_1, C_2 are constants.

3. Proof of the Theorem

In Proposition 2.4, $\phi(t,s)$ cannot ensure that $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$ is a Finsler metric. In order to obtain projectively flat Finsler metric, $\phi(t,s)$ in Proposition 2.2 needs to satisfy the necessary and sufficient condition for $F = \alpha \phi(||\beta_x||_{\alpha}, \frac{\beta}{\alpha})$ to be a Finsler metric for any α and β with $||\beta_x||_{\alpha} < b_0$ given by Yu and Zhu [4]. In particular, considering $F = |y| \phi(\frac{|x|^2}{2}, \frac{\langle x, y \rangle}{|y|})$, then F is a Finsler metric if and only if the positive function ϕ satisfies

$$\phi - s\phi_s > 0, \quad \phi - s\phi_s + (t - s^2)\phi_{ss} > 0$$

when $m \ge 3$ or $\phi - s\phi_2 + (t - s^2)\phi_{ss} > 0$, when m = 2. By a direct calculation we have

$$\phi - s\phi_s = \phi_0(t) - \frac{1}{2}\phi_0'(t) + \sum_{j=2}^n (-1)^{j-1} \frac{(2j-3)!!}{(2j-1)!} \phi_0^{(j)}(t) s^{2j} (\frac{1}{2j} - 1) + b\sum_{r\neq 0,1} (h_0(t) + \frac{1}{2}h_0'(t)s^2)^{\frac{1}{r} - 1} [h_0(t) + (\frac{1}{2} - \frac{1}{r})h_0'(t)s^2],$$
(2.30)

$$\begin{split} \phi - s\phi_s + (t - s^2)\phi_{ss} \\ &= \phi_0(t) + \phi_0'(t)(t - \frac{3}{2}s^2) + \sum_{j=2}^n (-1)^{j-1} \frac{(2j-3)!!}{(2j-2)!} \phi_0^{(j)}(t)s^{2j-2}(t - s^2 \frac{1+2j}{2j}) + \\ &b \sum_{r \neq 0,1} (h_0(t) + \frac{1}{2}h_0'(t)s^2)^{\frac{1}{r}-2}(h_0^2(t) + \frac{h_0(t)h_0'(t)}{r}t) + \\ &b \sum_{r \neq 0,1} (h_0(t) + \frac{1}{2}h_0'(t)s^2)^{\frac{1}{r}-2}(\frac{1}{2} - \frac{1}{r})s^2[2h_0(t)h_0'(t) + (h_0'(t))^2 \times \\ &s^2(\frac{1}{2} + \frac{1}{r}) - \frac{(h_0'(t))^2}{r}t]. \end{split}$$
(2.31)

The proof of the Theorem is completed by combining proposition 2.4, (2.30), (2.31) and the fundamental property of the projectively flat equation (1.1). \Box

Acknowledgements We would like to take this opportunity to thank Professor Xiaohuan MO for the discussions on this topic.

References

- S. S. CHERN, Zhongmin SHEN. Riemann-Finsler Geometry. Nankai Tracts in Mathematics, 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
- [2] Xiaohuan MO, Linfeng ZHOU. The curvatures of spherically symmetric Finsler metrics in \mathbb{R}^n . arXiv: 1202.4543, 2012.
- [3] Libing HUANG, Xiaohuan MO. On spherically symmetric Finsler metrics of scalar curvature. J. Geom. Phys., 2012, 62(11): 2279–2287.
- [4] Changtao YU, Hongmei ZHU. On a new class of Finsler metrics. Differential Geom. Appl., 2011, 29(2): 244–254.
- [5] D. HILBERT. Mathematical problems. Bull. Amer. Math. Soc., 2001, 37: 407-436.
- [6] Libing HUANG, Xiaohuan MO. Projectively flat Finsler metrics with orthogonal invariance. Ann. Polon. Math., 2013, 107(3): 259–270.
- [7] Changtao YU. On dually flat Randers metrics. Nonlinear Anal., 2014, 95: 146-155.
- [8] Libing HUANG, Xiaohuan MO. On some explicit constructions of dually flat Finsler metrics. J. Math. Anal. Appl., 2013, 405(2): 565–573.
- [9] Linfeng ZHOU. Projective spherically symmetric Finsler metrics with constant flag curvature in ℝⁿ. Geom. Dedicata, 2012, 158(1): 353–364.
- [10] Xiaohuan MO, Hongmei ZHU. On a class of projectively flat Finsler metrics of negative constant flag curvature. Internat. J. Math., 2012, 23(8): 1–14.
- [11] Enli GUO, Huaifu LIU, Xiaohuan MO. On spherically symmetric Finsler metrics with isotropic Berwald curvature. Int. J. Geom. Methods Mod. Phys., 2013, 10(10): 1–13.
- [12] Weidong SONG, Xingshang WANG. A new class of Finsler metrics with scalar flag curvature. J. Math. Res. Appl., 2012, 32(4): 485–492.
- [13] Weidong SONG, Jingyong ZHU. A class of projectively flat Finsler metrics. J. Math. Res. Appl., 2013, 33(6): 737-744.
- [14] Zhongmin SHEN. Projectively flat Finsler metrics of constant flag curvature. Trans. Amer. Math. Soc., 2003, 355(4): 1713–1728.
- [15] Benling LI. On the classification of projectively flat Finsler metrics with constant flag curvature. Adv. Math., 2014, 257: 266–284.
- [16] S. F. RUTZ. Symmetry in Finsler Spaces. Amer. Math. Soc., Providence, RI, 1996.