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Abstract In this paper, we construct a function φ in L2(Cn,dVα) which is unbounded on

any neighborhood of each point in Cn such that Tφ is a trace class operator on the Segal-

Bargmann space H2(Cn, dVα). In addition, we also characterize the Schatten p-class Toeplitz

operators with positive measure symbols on H2(Cn, dVα).
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1. Introduction

Let Cn be the n-dimensional complex Euclidean space and Bn be the open unit ball of Cn.
For any two points z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn) in Cn, we write

⟨z, w⟩ = z1w1 + z2w2 + · · ·+ znwn

and

|z|2 = ⟨z, z⟩ = |z1|2 + |z2|2 + · · ·+ |zn|2.

For k = (k1, k2, . . . , kn) an n-tuple non-negative integers, we write

k! = k1!k2! · · · kn!, ∥k∥ = k1 + k2 + · · ·+ kn, z
k = zk11 zk22 · · · zknn .

For each coordinate zj , we write zj = xj + iyj where xj , yj are real numbers. Then,

z = (z1, z2, . . . , zn) can also be denoted as z = (x1, y1, x2, y2, . . . , xn, yn).

Throughout the paper, we fix a positive parameter α and consider the Gaussian measure

dVα(z) = (
α

π
)ne−α|z|

2

dV (z)

where dV is the usual Euclidean Volume measure on Cn = R2n.

For any p > 0, write

Lp(Cn, dVα) =
{
f is an entire function on Cn|

∫
Cn

|f(z)|pdVα(z) < +∞
}
,
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and

∥f∥p =
[
(
α

π
)n

∫
Cn

|f(z)|pe−α|z|
2

dV (z)
] 1

p

.

The space defined as follows

Hp(Cn, dVα) = {f is an entire function on Cn|f ∈ Lp(Cn, dVα)},

is called Segal-Bargmann space. In particular, H2(Cn,dVα) is a Hilbert space with the following

inner product inherited from L2(Cn, dVα):

⟨f, g⟩ =
∫
Cn

f(z)g(z)dVα(z),

and we denote by ∥ · ∥2 the norm in H2(Cn, dVα).
For any f ∈ L2(Cn, dVα), we define the integral operator P : L2(Cn, dVα) → H2(Cn, dVα)

as

P (f)(z) =

∫
Cn

f(w)Kz(w)dVα(w),

where Kz(w) = eαzw is the reproducing kernel of H2(Cn, dVα). Then, P is the orthogonal

projection from L2(Cn, dVα) to H2(Cn, dVα). For more details, we refer to [1–4].

Given φ ∈ L∞(Cn), we define a linear operator Tφ : H2(Cn, dVα) → H2(Cn, dVα) by

Tφ(f)(z) = P (φf)(z) =

∫
Cn

φ(w)f(w)Kz(w)dVα(w), f ∈ H2(Cn, dVα).

We call Tφ as the Toeplitz operator on H2(Cn, dVα) with symbol φ. It is obvious that Tφ is

bounded with ∥Tφ∥ ≤ ∥φ∥∞. Furthermore, for any complex numbers a and b and any bounded

functions φ and ψ, we can easily find that Tφ = T ∗
φ, Taφ+bψ = aTφ + bTψ and Tφ ≥ 0 whenever

φ ≥ 0.

For any z ∈ Cn and r > 0, we use B(z, r) = {w ∈ Cn : |w− z| < r} to denote the Euclidean

ball centered at z with radius r. Then,

V (B(z, r)) =

∫
B(z,r)

dV (w) =
(πr2)n

n!
.

We refer to [5] for the specifical proof.

The Toeplitz operators on Segal-Bargmann spaces have been researched by both mathe-

matician and physician for many years, since the Segal-Bargmann space is closely related to

quantum mechanics. Specifically, the Fock boson annihilation and creation operators in quan-

tum mechanics can be represented as the operators d
dz and Mz in Segal-Bargmann Space, and

the normalized reproducing kernel of Segal-Bargmann Space also corresponds to the coherent

states in quantum mechanics, moreover, the C∗-algebra generated by Weyl operators of boson

quantum mechanics consists of the uniform limits of almost-periodic Toeplitz operators on Segal-

Bargmann space [1,6,7]. To investigate more applications in physics, it is significative to make

certain some unknown properties of Toeplitz operators on Segal-Bargmann spaces.

Naturally, just as considering the Toeplitz operators on classical Hardy space and Bergman

space, we want to make clear the boundedness and compactness of Toeplitz operators on Segal-

Bargmann space at first. Clearly, Tφ is bounded if φ is essentially bounded, in which case
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∥Tφ∥ ≤ ∥φ∥∞. But it is easy to check that the converse is false by the counter-example given

by [1] (for n = 1, we just need to set φ(z) = 1√
|z|

). In fact, Isralowitz and Zhu [3] equivalently

characterize the boundedness and compactness of Toeplitz operators with some special symbols

on Fock space in dimension one. Alexander and Dror [8] also studied the boundedness and

compactness of the Toeplitz operators defined on generalized Bargmann-Fock spaces by Carleson

measures and vanishing Carleson measures. But we are eager to find the direct relationship

between the boundedness or compactness of Toeplitz operators and their symbols, and we wonder

whether there exists any bounded or compact Toeplitz operator with unbounded symbol on

Segal-Bargmann space like on Bergman space.

Motivated by [9–11], in the second section, we construct a class of function in L2(Cn, dVα)
which are unbounded on any neighborhood of each point in Cn, such that the Toeplitz operators

with these symbols are not only bounded but also compact on H2(Cn, dVα). By the process

of constructing, we also find there exists a function φ in L2(Cn,dVα) which is unbounded on

any neighborhood of each point in Cn such that Tφ is a trace class operator on H2(Cn, dVα).
Furthermore, we obtain the equivalent characterizations of Schatten p-class Toeplitz operators

with positive symbols on H2(Cn, dVα) in the latter two sections. We also find the characteriza-

tions of Schatten class Toeplitz operators in terms of the Berezin transform on Segal-Bargmann

space is different from Bergman space setting. Just as the theory in dimension one, the cut-off

phenomenon that is often seen in Bergman space theory disappears in Segal-Bargmann space

[12,13], the results given in [3] about the Schatten p-class Toeplitz operators on the Fock space

are generalized.

2. Trace class Toeplitz operators with unbounded symbols

At the beginning of this section, we give the following sufficient condition of the compact

Toeplitz operator on H2(Cn,dVα).

Proposition 2.1 Suppose φ in L∞(Cn) vanishes at infinity. Then Tφ is compact onH2(Cn, dVα).

Proof Since φ is essentially bounded and vanishes at infinity, it is obvious that for arbitrary

ϵ > 0, there exist positive constants M and λ such that |φ(z)| ≤ M a.e. and |φ(z)| < ϵ for all

|z| > λ. Set

χ1(w) =

{
1, if |w| > λ;

0, if |w| ≤ λ

and

χ2(w) =

{
0, if |w| > λ;

1, if |w| ≤ λ.

Assume {fj} ⊂ H2(Cn, dVα) with ∥fj∥ ≤ 1 is a sequence which weakly converges to zero as

j → ∞. Then

Tφfj(z) = P (φfj)(z) =

∫
Cn

φ(w)fj(w)Kz(w)dVα(w),
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from which it follows

∥Tφfj∥2 =

∫
Cn

∣∣∣ ∫
Cn

φ(w)fj(w)Kz(w)dVα(w)
∣∣∣2dVα(z)

=

∫
Cn

∣∣∣ ∫
{w:|w|>λ}

φ(w)fj(w)Kz(w)dVα(w)+∫
{w:|w|≤λ}

φ(w)fj(w)Kz(w)dVα(w)
∣∣∣2dVα(z)

≤2

∫
Cn

{
|
∫
{w:|w|>λ}

φ(w)fj(w)Kz(w)dVα(w)|2+

|
∫
{w:|w|≤λ}

φ(w)fj(w)Kz(w)dVα(w)|2
}
dVα(z)

=2

∫
Cn

{
|
∫
Cn

φ(w)χ1(w)fj(w)Kz(w)dVα(w)|2+

|
∫
Cn

φ(w)χ2(w)fj(w)Kz(w)dVα(w)|2
}
dVα(z)

=2

∫
Cn

|P (φχ1fj)(z)|2dVα(z) + 2

∫
Cn

|P (φχ2fj)(z)|2dVα(z)

≤2(∥φχ1fj∥2 + ∥φχ2fj∥2).

Note

∥φχ1fj∥2 =

∫
Cn

|φ(w)χ1(w)fj(w)|2dVα(w) =
∫
{w:|w|>λ}

|φ(w)fj(w)|2dVα(w)

≤ ϵ2
∫
Cn

|fj(w)|2dVα(w) = ϵ2∥fj∥2 ≤ ϵ2

and

∥φχ2fj∥2 =

∫
Cn

|φ(w)χ2(w)fj(w)|2dVα(w) =
∫
{w:|w|≤λ}

|φ(w)fj(w)|2dVα(w) ≤ ϵ2M2.

Therefore, ∥Tφfj∥ → 0 as j → ∞, and this implies that Tφ is compact on H2(Cn, dVα).
Now, we turn to introduce a new circular-like cone to construct a function φ in L2(Cn, dVα)

which is unbounded on any neighborhood of each point in Cn. For δ > 0, ξ ∈ Cn, denote

Ω(ξ, δ) = {z ∈ B(0, |ξ|) : [1− (1− |z
ξ
|)δ] 12 · |z − ξ|

|ξ|
< Re⟨ ξ

|ξ|
,
ξ − z

|ξ|
⟩,Re⟨z, ξ⟩ > 0}.

Then, Ω(ξ, δ) is an open set of B(0, |ξ|) which is a circular-like cone with vertex ξ.

For any r > 0, write B(0, r) in Cn as B(r) and ∂B(r) its boundary in this section, and

denote by dσr the area measure on the sphere ∂B(r). Obviously, σr(∂B(r)) = O(r2n−1). Assume

b1, b2 are arbitrary positive numbers. It is clear that we can choose some δ = δ(b1, b2) > 0 such

that

σr[Ω(ξ, δ(b1, b2)) ∩ ∂B(r)] < d · (|ξ|2 − r2)b1e−b2r
2

for any 0 < r < |ξ| and ξ ∈ Cn, where d is a constant which is independent of ξ and r. For

simplicity, we write Ω(ξ, δ(b1, b2)) as Ω(ξ, b1, b2).

Theorem 2.2 Assume b1 > 0, b2 > 0. For arbitrary ξ ∈ Cn, let Uξ(z) = (|ξ|2−|z|2)−
b1
2 , z ∈ Cn
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and χΩ(ξ,b1,b2)(z) is the characteristic function of the set Ω(ξ, b1, b2), φ(z) = χΩ(ξ,b1,b2)(z) ·Uξ(z).
Then Tφ is a compact operator on H2(Cn, dVα).

Proof Suppose {fj} ⊂ H2(Cn, dVα) with ∥fj∥ ≤ 1 is a sequence which weakly converges to zero

as j → ∞. Then, fj(w) → 0 uniformly on Ω(ξ, b1, b2). That is, for any ϵ > 0, there is a K0 > 0

such that |fj(w)| < ϵ for arbitrary w ∈ Ω(ξ, b1, b2) when j > K0. Thus,

∥Tφfj∥2 =

∫
Cn

|P (φfj)(z)|2dVα(z) =
∫
Cn

∣∣∣ ∫
Cn

φ(w)fj(w)Kz(w)dVα(w)
∣∣∣2dVα(z)

=

∫
Cn

∣∣∣ ∫
Ω(ξ,b1,b2)

(|ξ|2 − |w|2)−
b1
2 eαzwfj(w)dVα(w)

∣∣∣2dVα(z)
≤ ϵ2

∫
Cn

∫
Ω(ξ,b1,b2)

(|ξ|2 − |w|2)−b1 |eαzw|2dVα(w)dVα(z)

= ϵ2
∫
Ω(ξ,b1,b2)

(|ξ|2 − |w|2)−b1
[ ∫

Cn

|Kw(z)|2dVα(z)
]
dVα(w)

= ϵ2
∫
Ω(ξ,b1,b2)

(|ξ|2 − |w|2)−b1eα|w|2dVα(w)

= (
α

π
)nϵ2

∫
Ω(ξ,b1,b2)

(|ξ|2 − |w|2)−b1dV (w)

= C0(
α

π
)nϵ2

∫ |ξ|

0

∫
Ω(ξ,b1,b2)∩∂B(r)

(|ξ|2 − r2)−b1dσrdr

= C0(
α

π
)nϵ2

∫ |ξ|

0

σr[Ω(ξ, b1, b2) ∩ ∂B(r)](|ξ|2 − r2)−b1dr

≤ C0d(
α

π
)nϵ2

∫ |ξ|

0

e−b2r
2

dr =

√
b2π

2b2
(
α

π
)nC0dϵ

2,

where C0 is a positive constant. Hence, ∥Tφfj∥ → 0 as j → ∞. The proof of this theorem has

been completed. �

As we know, the set consisting of the points in Cn with rational coordinate components is

a countable dense subset of Cn, we denote this set as {ξj}∞j=1. Consequently, from Theorem 2.2,

we can construct a class of functions {φj} in L2(Cn, dVα) by the characteristic functions on the

corresponding circular-like cones {Ω(ξj , b1, b2)}, such that Tφj is compact on H2(Cn, dVα) for

each j ∈ Z+. Further, we also construct a function φ in L2(Cn, dVα) which is unbounded on any

neighborhood of each point in Cn, such that Tφ is a trace class operator on H2(Cn, dVα).

Theorem 2.3 There is a function φ in L2(Cn, dVα) which is unbounded on any neighborhood

of each point in Cn, such that Tφ is a compact operator on H2(Cn, dVα).

Proof For arbitrary ξ ∈ Cn and r > 0, it is enough to construct a function φ in L2(Cn, dVα)
which satisfies esssupz∈B(ξ,r)|φ(z)| = ∞ induces a compact Toeplitz operator on H2(Cn, dVα).
Assume b1 > 0, b2 > 0 and Uξj (z) is the function in Theorem 2.2. For each ξj , set φj(z) =

χΩ(ξj ,b1,b2)(z) ·Uξj (z), then Tφj is a compact operator on H2(Cn, dVα) by Theorem 2.2. For any
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f ∈ H2(Cn, dVα), we have

∥Tφjf∥2 =

∫
Cn

∣∣∣ ∫
Cn

φj(w)f(w)Kz(w)dVα(w)
∣∣∣2dVα(z)

=

∫
Cn

∣∣∣ ∫
Ω(ξj ,b1,b2)

(|ξj |2 − |w|2)−
b1
2 eαzwf(w)dVα(w)

∣∣∣2dVα(z)
≤ ∥f∥2

∫
Cn

∫
Ω(ξj ,b1,b2)

(|ξj |2 − |w|2)−b1 |eαzw|2dVα(w)dVα(z)

≤
√
b2π

2b2
(
α

π
)nC0d∥f∥2 = C2

1∥f∥2,

where the last inequality comes from the computation in Theorem 2.2 and C1 = [
√
b2π
2b2

(απ )
nC0d]

1
2

is a positive constant relative to the dimension n. Consequently, ∥Tφj∥ ≤ C1. For any positive

integersM and N , without loss of generality, assumeM < N and take TM =
∑M
j=1

1
2j Tφj . Then,∥∥∥ N∑

j=M

1

2j
Tφjf

∥∥∥ ≤
N∑

j=M

1

2j
∥Tφjf∥ ≤ C1∥f∥

N∑
j=M

1

2j

for any f ∈ H2(Cn,dVα), which implies that

∥TN − TM∥ =
∥∥∥ N∑
j=M

1

2j
Tφj

∥∥∥ ≤ C1

N∑
j=M

1

2j
.

Thus,
∑∞
j=1

1
2j Tφj converges to T in norm. Obviously, T is a compact operator. Moreover, it is

not difficult to check that φj ∈ L2(Cn, dVα) and ∥φj∥ ≤ C1. In fact,

∥φj∥22 =

∫
Cn

|φj(z)|2dVα(z) = (
α

π
)n

∫
Ω(ξj ,b1,b2)

(|ξj |2 − |z|2)−b1e−α|z|
2

dV (z)

= C0(
α

π
)n

∫ |ξj |

0

∫
Ω(ξj ,b1,b2)∩∂B(r)

(|ξj |2 − r2)−b1e−αr
2

dσrdr

≤ C0d(
α

π
)n

∫ |ξj |

0

e(−α−b2)r
2

dr ≤ C0d(
α

π
)n

∫ +∞

0

e−b2r
2

dr

≤
√
b2π

2b2
(
α

π
)nC0d = C2

1 ,

thus
∑∞
j=1

1
2j φj converges to a L2-function φ, and

∥Tφf∥ = ∥T∑∞
j=1

1

2j
φj
f∥ =

∥∥∥ ∞∑
j=1

1

2j
Tφjf

∥∥∥ ≤
∞∑
j=1

1

2j
∥Tφjf∥

≤ C1∥f∥
∞∑
j=1

1

2j
= C1∥f∥

for any f ∈ H2(Cn, dVα). This indicates that ∥Tφ∥ ≤ C1. Moreover, assume p is an arbitrary

polynomial, then

∥(Tφ − TM )p∥ = ∥T∑∞
j=M+1

1

2j
φj
p∥ =

∥∥∥ ∞∑
j=M+1

1

2j
Tφj

p
∥∥∥
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≤
∞∑

j=M+1

1

2j
∥Tφjp∥ ≤ C1∥p∥

∞∑
j=M+1

1

2j
→ 0, M → ∞.

Therefore, T = Tφ. In other words, T is a Toeplitz operator with symbol φ =
∑∞
j=1

1
2j φj . Since

{ξj} is dense in Cn, it is clear that for arbitrary ξ ∈ Cn and r > 0, esssupz∈B(ξ,r)|φ(z)| = ∞.

This completes the proof. �
What’s more, we can construct a trace class operator with unbounded symbol onH2(Cn, dVα).

Theorem 2.4 Assume 0 < α < n. Then there is a function φ in L2(Cn,dVα) which is un-

bounded on any neighborhood of each point in Cn, such that Tφ is a trace class operator on

H2(Cn, dVα).

Proof Assume b1 > 0, b2 > n, and let ek =
√

α∥k∥

k! z
k. Then {ek}kj≥0 is an orthono-

mal basis of H2(Cn, dVα) (see [1,2]). For any j ∈ Z+, suppose λj ∈ [
√
|ξj |2 − 1, |ξj |), set

φj(z) = χΩλj
(ξj ,b1,b2)(z) ·Uξj (z), where Ωλj (ξj , b1, b2) = {z ∈ Ω(ξj , b1, b2) : |z| > |λj |} and Uξj (z)

is the function in Theorem 2.3. Then

|⟨Tφjek, ek⟩| = ⟨Tφjek, ek⟩ =
∫
Cn

P (φjek)(z)ek(z)dVα(z)

=

∫
Cn

∫
Cn

φj(w)ek(w)Kz(w)dVα(w)ek(z)dVα(z)

=
α∥k∥

k!

∫
Cn

φj(w)w
k[

∫
Cn

zkKw(z)dVα(z) ]dVα(w)

=
α∥k∥

k!

∫
Cn

φj(w)w
kwkdVα(w)

= (
α

π
)n
α∥k∥

k!

∫
Ωλj

(ξj ,b1,b2)

(|ξj |2 − |w|2)−
b1
2 e−α|w|2wkwkdV (w)

≤ C0(
α

π
)n
α∥k∥

k!

∫ |ξj |

λj

∫
Ωλj

(ξj ,b1,b2)∩∂B(r)

(|ξj |2 − |w|2)−
b1
2 e−αr

2

r2∥k∥dσrdr

≤ C0d(
α

π
)n
α∥k∥

k!

∫ +∞

λj

(|ξj |2 − r2)
b1
2 e(−b2−α)r

2

r2∥k∥dr

≤ C0d(
α

π
)n
α∥k∥

k!

∫ +∞

λj

e(−b2−α)r
2

r2∥k∥dr

≤ C0d(
α

π
)n
α∥k∥

k!

∫ +∞

0

e−nr
2

r2∥k∥dr,

where C0 is a positive constant independent of α. By changing variable t = r2 and using the

integration by parts, we have∫ +∞

0

e−nr
2

r2∥k∥dr ≤
(∥k∥ − 1

2 ) · (∥k∥ −
3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1

∫ +∞

0

e−ntt
1
2 dt

=
(∥k∥ − 1

2 ) · (∥k∥ −
3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1

(∫ 1

0

e−ntt
1
2 dt+

∫ +∞

1

e−ntt
1
2 dt

)
≤

(∥k∥ − 1
2 ) · (∥k∥ −

3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1

(∫ 1

0

e−ntdt+

∫ +∞

1

e−nttdt
)
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=
(∥k∥ − 1

2 ) · (∥k∥ −
3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1
(
1− e−n

n
+

1

n2
)

≤ 2
(∥k∥ − 1

2 ) · (∥k∥ −
3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1
.

It follows that

|⟨Tφjek, ek⟩| ≤M0
α∥k∥

k!

(∥k∥ − 1
2 ) · (∥k∥ −

3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1
,

where M0 = 2C0d(
α
π )
n is a constant only dependent on n. Set T =

∑∞
j=1

1
2j Tφj and φ =∑∞

j=1
1
2j φj , then T = Tφ is compact by Theorem 2.3. Note T is positive, we get∑

k∈Nn

|⟨Tek, ek⟩| =
∑
k∈Nn

⟨Tek, ek⟩ =
∑
k∈Nn

∞∑
j=1

1

2j
⟨Tφjek, ek⟩

≤M0

∑
k∈Nn

∞∑
j=1

1

2j
α∥k∥

k!

(∥k∥ − 1
2 ) · (∥k∥ −

3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1

=M0

∑
k∈Nn

α∥k∥

k!

(∥k∥ − 1
2 ) · (∥k∥ −

3
2 ) · · · · ·

3
2 · 1

2

n∥k∥−1

= nM0

∞∑
m=0

(
α

n
)m

∑
∥k∥=m

(m− 1
2 ) · (m− 3

2 ) · · · · ·
3
2 · 1

2

k!

≤ nM0

∞∑
m=0

(
α

n
)m

∑
∥k∥=m

(m+ 1)!

k!
.

By using the inductive method similar to [11], we easily see that∑
∥k∥=m

(m+ 1)!

k!
= O(m+ 1).

Consequently, there is a positive constant M1 which is dependent on n such that∑
k∈Nn

|⟨Tek, ek⟩| ≤ nM0

∞∑
m=0

(
α

n
)m

∑
∥k∥=m

(m+ 1)!

k!
≤M1

∞∑
m=0

(
α

n
)m(m+ 1) <∞

for each 0 < α < n. This shows that T is a trace class operator on H2(Cn, dVα). The theorem

has been proved. �

3. Toeplitz operators in Sp with p ≥ 1

In fact, we can also define Toeplitz operators on H2(Cn, dVα) with more general symbols.

More specifically, if µ is a complex Borel measure on Cn, we define the Toeplitz operator Tµ as

Tµ(f)(z) =

∫
Cn

f(w)Kz(w)e
−α|w|2dµ(w), z ∈ Cn.

Here, we notice that there is an extra weight factor e−α|w|2 in our definition of Tµ compared to

the traditional definition of Toeplitz operators on weighted Bergman spaces which was begun in

[14]. Since the kernel function Kz(w) is unbounded for any fixed w ̸= 0, it is not clear when the

integrals above will converge from the loose definition of Tµ, even if the measure µ is finite.
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Suppose that µ is a Borel measure that satisfies the condition∫
Cn

|Kz(w)|e−α|w|2d|µ|(w) <∞ (1)

for all z ∈ Cn. Then because of the exponential form of the kernel function, it is clear that

condition (1) is equivalent to ∫
Cn

|Kz(w)|2e−α|w|2d|µ|(w) <∞ (2)

for all z ∈ Cn.
If µ satisfies condition (1) or (2), then we can easily get that the Toeplitz operator Tµ is

well-defined on a dense subset of H2(Cn, dVα). Therefore, all measures used in the following

sections will be assumed to satisfy condition (1), so that Toeplitz operators are well-defined. We

also define a function µ̃ on Cn as follows:

µ̃(z) =

∫
Cn

|kz(w)|2e−α|w|2dµ(w), z ∈ Cn, (3)

where kz(w) = Kz(w)/
√
Kz(z) = eαzw−α

2 |z|2 , called normalized reproducing kernel inH2(Cn, dVα).
Thus, we can write

µ̃(z) =

∫
Cn

|Kz(w)|2

Kz(z)Kw(w)
dµ(w) =

∫
Cn

e−α|z−w|2dµ(w),

called the Berezin transform of µ. Again, we have included the extra weight factor e−α|w|2 in (3)

compared to the traditional definition of the Berezin transform in the Bergman space setting.

If the Toeplitz operator Tµ happens to be a bounded operator on H2(Cn,dVα), then for any

z ∈ Cn, we have µ̃(z) = ⟨Tµkz, kz⟩.
If dµ(z) = (απ )

nφ(z)dV (z), we get Tµ = Tφ and we will write φ̃ for µ̃. In this case, we call

φ̃ the Berezin transform of φ and

φ̃(z) = (
α

π
)n

∫
Cn

φ(w)e−α|z−w|2dV (w),

which implies that all our results can be formulated in terms of the density function φ if the

measure µ is absolutely continuous as above. If µ is a locally finite Borel measure, the func-

tion z → µ(B(z, r)) is the constant (πr2)n

n! times the average of µ over B(z, r). Thus we will

call µ(B(z, r)) an averaging function of µ. The following pointwise estimate for functions in

Hp(Cn, dVα) will be used to prove the main result in this section.

Lemma 3.1 For any r > 0 and p > 0, there exists a positive constant C such that

|f(z)|pe−α|z|
2

≤ C

∫
B(z,r)

|f(w)|pdVα(w)

for any entire function f on Cn and z ∈ Cn.

Proof By a change of variables to the integral on the right of the lemma, we obtain

I(z) =

∫
B(z,r)

|f(w)|pdVα(w) = (
α

π
)n

∫
B(z,r)

|f(w)|pe−α|w|2dV (w)



246 Li HE and Guangfu CAO

= (
α

π
)n

∫
|u|<r

|f(z + u)|pe−α|z+u|
2

dV (u)

= (
α

π
)ne−α|z|

2

∫
B(0,r)

|f(z + u)|p|e−αzu|2e−α|u|
2

dV (u)

= e−α|z|
2

∫
B(0,r)

|f(z + u)e−
2αzu

p |pdVα(u).

Let h(u) = f(z + u)e−
2αzu

p . We can easily get

|h(0)|p ≤ 1

Vα(B(0, r))

∫
B(0,r)

|h(u)|pdVα(u)

by the subharmonicity of |h(u)|p. Then,

I(z) ≥ Vα(B(0, r))|h(0)|pe−α|z|
2

= Vα(B(0, r))|f(z)|pe−α|z|
2

.

Thus, the result holds with C = Vα(B(0, r))−1.

The following elementary estimate will also be needed on several occasions later.

Lemma 3.2 For any r > 0, there exists a positive constant C = C(r) such that µ(B(z, r)) ≤
Cµ̃(z) for all z ∈ Cn.

Proof For given z ∈ Cn, we have

µ(B(z, r)) =

∫
B(z,r)

dµ(w) = eαr
2

∫
B(z,r)

e−αr
2

dµ(w) ≤ eαr
2

∫
B(z,r)

e−α|z−w|2dµ(w)

≤ eαr
2

∫
Cn

e−α|z−w|2dµ(w) = eαr
2

µ̃(z).

This gives the desired result.

Suppose z(1), z(2), . . . , z(n) are different points in Cn that are linearly independent, the set

of points m1z
(1) +m2z

(2) + · · · +mnz
(n) is called the lattice generated by {z(1), z(2), . . . , z(n)},

where mi (1 ≤ i ≤ n) are arbitrary integers. For example, for any integer i (1 ≤ i ≤ 2n) and

r > 0, we set

ξri =

2n︷ ︸︸ ︷
(0, 0, . . . , 0, r, 0, . . . , 0),

whose ith coordinate component is r and other coordinate components are zeros, as we know

{ξ1i }2ni=1 is a standard orthonormal basis of R2n, then the set {m1ξ
r
1 +m2ξ

r
2 + · · ·+m2nξ

r
2n|mi ∈

Z, 1 ≤ i ≤ 2n} is the lattice generated by {ξri }2ni=1. For convenience, we will write every such

lattice as a sequence.

In this section, we are going to determine when a Toeplitz operator Tµ on H2(Cn, dVα)
belongs to Schatten class Sp concerns the case p ≥ 1, while the next section concerns the case

0 < p ≤ 1. Background information about the Schatten class Sp can be found in [12] for example.

For any bounded linear operator T on H2(Cn, dVα), we can define the Berezin transform T̃

by

T̃ (z) = ⟨Tkz, kz⟩, z ∈ Cn,
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where kz are the normalized reproducing kernels in H2(Cn, dVα). Let {ek =
√

α∥k∥

k! z
k}kj≥0 be

an orthonomal basis of H2(Cn, dVα). If T is positive on H2(Cn, dVα), then

tr(T ) =
∑
k∈Nn

⟨Tek, ek⟩ =
∑
k∈Nn

∫
Cn

Tek(z)ek(z)dVα(z)

=
∑
k∈Nn

∫
Cn

⟨Tek,Kz⟩ek(z)dVα(z) =
∫
Cn

⟨
T

∞∑
k=1

ekek(z),Kz

⟩
dVα(z)

=

∫
Cn

⟨TKz,Kz⟩dVα(z) =
∫
Cn

⟨Tkz, kz⟩Kz(z)dVα(z)

= (
α

π
)n

∫
Cn

T̃ (z)dV (z).

In particular, T is the trace class S1 if and only if the integral above converges. Consequently,

we obtain the following trace formula for Toeplitz operators on Segal-Bargmann spaces.

Lemma 3.3 Assume µ ≥ 0. Then Tµ is the trace class S1 if and only if µ is finite on Cn.
Moreover, tr(Tµ) = µ(Cn).

Proof Since all integrands below are nonnegative, we use Fubini’s theorem to obtain

tr(Tµ) = (
α

π
)n

∫
Cn

µ̃(z)dV (z) = (
α

π
)n

∫
Cn

∫
Cn

|kz(w)|2e−α|w|2dµ(w)dV (z)

=

∫
Cn

∫
Cn

|e−αzw|2e−α(|w|2+|z|2)dµ(w)eα|z|
2

dVα(z)

=

∫
Cn

∫
Cn

|e−αzw|2dVα(z)e−α|w|2dµ(w)

=

∫
Cn

Kw(w)e
−α|w|2dµ(w) = µ(Cn).

This also shows that tr(Tµ) <∞ if and only if µ(Cn) <∞.

Lemma 3.4 If p ≥ 1 and φ ∈ Lp(Cn, dV ), then Tφ ∈ Sp.

Proof By interpolation, we only need to prove the result in the case p = 1 (the case p = +∞
is trivial). Suppose φ ∈ L1(Cn,dV ) and let {ek =

√
α∥k∥

k! z
k}kj≥0 be an orthonormal basis of

H2(Cn, dVα). Note

⟨Tφek, ek⟩ =
∫
Cn

|ek(z)|2φ(z)dVα(z)

for any k ∈ Nn, it follows that

∥Tφ∥S1 =
∑
k∈Nn

|⟨Tφek, ek⟩| =
∑
k∈Nn

∣∣∣ ∫
Cn

|ek(z)|2φ(z)dVα(z)
∣∣∣

≤
∑
k∈Nn

∫
Cn

|ek(z)|2|φ(z)|dVα(z) =
∫
Cn

Kz(z)|φ(z)|dVα(z)

= (
α

π
)n

∫
Cn

|φ(z)|dV (z) = (
α

π
)n∥φ∥L1 .

The proof has been completed. Moreover, we should claim here that the condition p ≥ 1 is sharp,
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since we can give an example to show that this lemma is false when 0 < p < 1. Consider the set

K ⊆ R2n = Cn given by

K =

∞∪
k=1

2n︷ ︸︸ ︷
[2k, 2k + k−

1
2np ]× [2k, 2k + k−

1
2np ]× · · · × [2k, 2k + k−

1
2np ]

and take φ = χK the characteristic function of K. It is easy to check that φ is in Lp(Cn, dV ) for

0 < p < 1. However,
∑∞
k=1 φ̂r(ak)

p = +∞. Thus, Tφ is not in Sp by the equivalent descriptions

in Theorem 4.5 which will be proved in the next section.

To find the necessary and sufficient condition of Schatten p-class Toeplitz operators, we still

need the following lemma.

Lemma 3.5 Suppose r > 0, µ ≥ 0, and

µ̂r(z) = µ(B(z, r))/[
(πr2)n

n!
], z ∈ Cn.

If µ̂r ∈ Lp(Cn,dV ), then Tµ̂r
and Tµ are bounded on H2(Cn,dVα). Moreover, there exists a

positive constant C which is independent of µ such that Tµ ≤ CTµ̂r
.

Proof Since µ̂r is in Lp(Cn, dV ) , a simple application of Theorems 5.1 and 6.2 in [8] tells us

that Tµ and Tµ̂r
are bounded. Moreover, given f ∈ H2(Cn, dVα), by using Fubini’s theorem, we

obtain

(πr2)n

n!
⟨Tµ̂r

f, f⟩ = (πr2)n

n!

∫
Cn

|f(z)|2|µ̂r(z)|dVα(z) =
∫
Cn

|f(z)|2µ(B(z, r))dVα(z)

=

∫
Cn

|f(z)|2
∫
Cn

χB(z,r)(w)dµ(w)dVα(z)

=

∫
Cn

dµ(w)

∫
Cn

|f(z)|2χB(w,r)(z)dVα(z)

= (
α

π
)n

∫
Cn

[ ∫
B(w,r)

|f(z)|2e−α|z|
2

dV (z)
]
dµ(w).

Combining the above identity with Lemma 3.1, there exists a positive constant C1 such that

(πr2)n

n!
⟨Tµ̂r

f, f⟩ ≥ C1(
α

π
)n

∫
Cn

|f(w)|2e−α|w|2dµ(w) = C1(
α

π
)n⟨Tµf, f⟩,

which implies that ⟨Tµf, f⟩ ≤ C⟨Tµ̂r
f, f⟩ by setting C = (πr)2n

C1αnn! . This proves the desired result.

Now, we give the main result of this section.

Theorem 3.6 Suppose µ ≥ 0, p ≥ 1, r > 0, and {aj} is the lattice in Cn generated by

{ξri = (0, 0, . . . , 0, r, 0, . . . , 0)}2ni=1. Then the following conditions are equivalent:

(a) The Toeplitz operator Tµ belongs to the Schatten class Sp.

(b) The function µ̃(z) belongs to Lp(Cn, dV ).

(c) The function µ(B(z, r)) belongs to Lp(Cn,dV ).

(d) The sequence {µ(B(aj , r))} belongs to lp.

Proof (a)⇒(b). By the Lemma 1.4.5 of [12] and trace formula in Lemma 3.3, we know Tµ ∈ Sp
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if and only if T pµ ∈ S1 if and only if tr(T pµ) < ∞, so condition (a) holds implies that µ̃(z) ∈
Lp(Cn, dV ) from the fact that

tr(T pµ) = (
α

π
)n

∫
Cn

⟨T pµkz, kz⟩dV (z) ≥ (
α

π
)n

∫
Cn

⟨Tµkz, kz⟩pdV (z) = (
α

π
)n

∫
Cn

µ̃(z)pdV (z)

where the first inequality holds by Proposition 6.3.3(1) of [12].

(b)⇒(c). It is obvious from Lemma 3.2.

(c)⇒(a). If the averaging function µ̂r(z) is in L
p(Cn, dV ), then it follows from Lemma 3.4

that Tµ̂r(z) is in Sp. Combining this with Lemma 3.5, we conclude that Tµ is in Sp. This means

(c)⇒(a) holds. Hence conditions (a), (b) and (c) are equivalent.

To complete the proof, we will have to prove conditions (d) is equivalent to any other

conditions, we choose to prove (b)⇔(d) here.

(b)⇒(d). Obviously, condition (b) holds that the function µ(B(z, 2r)) ∈ Lp(Cn, dV ).

Choose a positive integer m such that each point in the Cn belongs to at most m of the balls

B(aj , r). Then

m

∫
Cn

µ(B(z, 2r))pdV (z) ≥
∞∑
j=1

∫
B(aj ,r)

µ(B(z, 2r))pdV (z)

≥
∞∑
j=1

∫
B(aj ,r)

µ(B(aj , r))
pdV (z) =

(πr2)n

n!

∞∑
j=1

µ(B(aj , r))
p

for each z ∈ B(aj , r), where the second inequality is deduced from the triangle inequality which

makes B(aj , r) ⊆ B(z, 2r) for each z ∈ B(aj , r). This shows that conditions (b) implies (d).

(d)⇒(b). Suppose {zj} is the lattice generated by {ξ
r
2
i = (0, 0, . . . , 0, r2 , 0, . . . , 0)}

2n
i=1. In

fact, for each point zj that is not in the lattice {aj}, the ball B(zj , r) is covered by finite adjacent

balls B(aj , r). Hence, the condition
∑∞
j=1 µ(B(aj , r))

p <∞ implies that
∑∞
j=1 µ(B(zj , r))

p <∞.

Therefore,∫
Cn

µ(B(z,
r

2
))pdV (z) ≤

∞∑
j=1

∫
B(zj ,

r
2 )

µ(B(z,
r

2
))pdV (z) ≤

∞∑
j=1

∫
B(zj ,

r
2 )

µ(B(zj , r))
pdV (z)

=
(πr2)n

4nn!

∞∑
j=1

µ(B(zj , r))
p <∞.

This shows condition (d) implies (c), as the equivalence of (c) to (b) implies that if condition (c)

holds for one positive radius, then it will hold for any other positive radius. This completes the

proof of the theorem. �

4. Toeplitz operators in Sp with 0 < p ≤ 1

In this section, we will pay attention to the case 0 < p ≤ 1.

Lemma 4.1 Suppose µ ≥ 0, 0 < p ≤ 1, r > 0, and {aj} is the lattice in Cn generated by

{ξri }2ni=1. Then the following conditions are equivalent:

(a) The function µ̃(z) is in Lp(Cn,dV ).
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(b) The function µ(B(z, r)) is in Lp(Cn, dV ).

(c) The sequence {µ(B(aj , r))} is in lp.

Proof (c)⇒(a). Note

µ̃(z) =

∫
Cn

e−α|z−w|2dµ(w) ≤
∞∑
j=1

∫
B(aj ,r)

e−α|z−w|2dµ(w)

and

|z − w|2 ≥ (|z − aj | − |aj − w|)2 ≥ |z − aj |2 − 2r|z − aj |

for any w ∈ B(aj , r), we have

µ̃(z) ≤
∞∑
j=1

e−α|z−aj |
2+2αr|z−aj |µ(B(aj , r)).

For 0 < p ≤ 1, Hölder inequality gives

µ̃(z)p ≤
∞∑
j=1

e−pα|z−aj |
2+2pαr|z−aj |µ(B(aj , r))

p.

Thus, we can easily get∫
Cn

µ̃(z)pdV (z) ≤
∞∑
j=1

µ(B(aj , r))
p

∫
Cn

e−pα|z−aj |
2+2pαr|z−aj |dV (z)

by using Fubini’s theorem. By an obvious change of variables, the integral above equals∫
Cn

e−pα|u|
2+2pαr|u|dV (z),

which is easily seen to be convergent. (c)⇒(a) holds.

(a)⇒(c). Since there exists a positive integer m such that z belongs to at most m of the

balls B(aj , r) for any z ∈ Cn, we have

m

∫
Cn

µ̃(z)pdV (z) ≥
∞∑
j=1

∫
B(aj ,r)

µ̃(z)pdV (z).

Notice

µ̃(z) =

∫
Cn

e−α|z−w|2dµ(w) ≥
∫
B(aj ,r)

e−α|z−w|2dµ(w) ≥ e−4αr2µ(B(aj , r)),

then

m

∫
Cn

µ̃(z)pdV (z) ≥
∞∑
j=1

∫
B(aj ,r)

e−4pαr2µ(B(aj , r))
pdV (z) ≥ (πr2)n

n!
e−4pαr2

∞∑
j=1

µ(B(aj , r))
p.

Thus, µ̃(z) ∈ Lp(Cn, dV ) implies {µ(B(aj , r))} ∈ lp. (c)⇒(a) holds.

(a)⇒(b). It is obvious from Lemma 3.2.

(b)⇒(c). If condition (b) holds, we consider the lattice generated by {ξ
r
2
i }2ni=1 and arrange it

into a sequence {zj}. Since there exists a positive integer m such that every point in Cn belongs
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to at most m of the balls B(zj ,
r
2 ), we have

m

∫
Cn

µ(B(z, r))pdV (z) ≥
∞∑
j=1

∫
B(zj ,

r
2 )

µ(B(z, r))pdV (z).

The triangle inequality tells us that µ(B(z, r)) ≥ µ(B(zj ,
r
2 )) for each z ∈ B(zj ,

r
2 ). Therefore,

m

∫
Cn

µ(B(z, r))pdV (z) ≥ (πr2)n

4nn!

∞∑
j=1

µ(B(zj ,
r

2
))p.

By the equivalence of condition (a) and (c), the function µ̃ belongs to Lp(Cn, dV ), and applying

the equivalence of (a) and (c) once more, we conclude that {µ(B(aj , r))} is in lp. This completes

the proof of the lemma. �

Lemma 4.2 Suppose µ ≥ 0, 0 < p ≤ 1, and the function µ̃(z) is in Lp(Cn, dV ). Then the

Toeplitz operator Tµ is in the Schatten class Sp.

Proof As we know Tµ ∈ Sp if and only if T pµ ∈ S1 if and only if tr(T pµ) <∞. In order to prove

Tµ ∈ Sp, we just ought to show that tr(T pµ) <∞. In fact,

tr(T pµ) = (
α

π
)n

∫
Cn

⟨T pµkz, kz⟩dV (z) ≤ (
α

π
)n

∫
Cn

⟨Tµkz, kz⟩pdV (z) = (
α

π
)n

∫
Cn

µ̃(z)pdV (z)

where the first inequality comes from Proposition 6.3.3(2) of [12]. Thus, the integral is convergent

from the assumption that µ̃(z) ∈ Lp(Cn, dV ). This completes the proof of this Lemma. �

Lemma 4.3 Suppose φ ≥ 0, 0 < p ≤ 1, and Tφ ∈ Sp. Then φ ∈ Lp(Cn,dV ).

Proof It is similar to the case when n = 1, we omit here [3]. Furthermore, the condition

0 < p ≤ 1 here is sharp because we can also give an counter-example to show that this conclusion

is false as p > 1. Just take φ(z) = χ[0,1](|z|)|z|−
2
p , it is not difficult to check that φ is not in

Lp(Cn, dV ) when p > 1. However, as φ is radial, the operator Tφ is diagonal with respect to

the standard orthonormal basis {
√

α∥k∥

k! z
k}kj≥0 of H2(Cn, dVα), and one can easily check that

Tφ ∈ Sp for each p > 1.

To obtain the necessary and sufficient condition of Schatten p-class Toeplitz operators as

0 < p ≤ 1, we also need the following Lemma whose proof can be found in [12].

Lemma 4.4 If 0 < p ≤ 1, then for any orthonormal basis {ek} of a separable Hilbert space H

and any compact operator T on H, we have that ∥T∥pSp
≤

∑
l∈Nn

∑
k∈Nn |⟨Tel, ek⟩|p.

Now, we are ready to characterize Toeplitz operator Tµ in Sp in the case of 0 < p ≤ 1. The

careful reader will find that several key ideas in the proof of the following theorem are similar to

the counterpart of the Bergman space theory.

Theorem 4.5 Suppose µ ≥ 0, 0 < p ≤ 1, r > 0, and {aj} is the lattice in Cn generated by

{ξri }2ni=1. Then the following conditions are equivalent:

(a) The Toeplitz operator Tµ is in the Schatten class Sp.

(b) The function µ̃(z) is in Lp(Cn, dV ).
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(c) The function µ̂r is in Lp(Cn, dV ).

(d) The sequence {µ̂r(aj)} is in lp.

Proof We have proved the equivalence of (b), (c) and (d) in Lemma 4.1. Moreover, condition

(b) implies condition (a) was proved in Lemma 4.2. Therefore, to complete our proof of this

theorem, we just ought to show condition (a) implies any condition of (b), (c) and (d). We

choose to prove condition (a) implies (d) here. In what follows, C1, C2, . . . will denote positive

constants that only depend on p, α and r. For convenience, we will use the norm

|z|∞ = max{|x1|, |y1|, |x2|, |y2|, . . . , |xn|, |yn|}

where z = (x1, y1, x2, y2, . . . , xn, yn) ∈ R2n. Denote by B(z, r) the closed ball centered at z with

radius r in this norm. If we can prove that condition (a) implies

∞∑
j=1

µ(B(2aj , r))
p <∞,

then condition (d) will easily follow. To this end, fix some R > 0 and partition {2aj} into M

subsequence such that the Euclidean distance between any two points in each subsequence is at

least R. Let {ζj} be such a subsequence and let ν =
∑∞
j=1 µχj , where χj is the characteristic

function of B(ζj , r). Since Tµ ∈ Sp and µ ≥ ν, we have Tν ≤ Tµ, and so Tν ∈ Sp with

∥Tν∥Sp ≤ ∥Tµ∥Sp . (4)

Suppose {ek} is an orthonormal basis for H2(Cn, dVα). Then we can construct an one-to-

one mapping from {k = (k1, k2, . . . , kn) ∈ Nn} to N = {0, 1, 2, . . .} because both of them are

countable sets. Thus, we can define a bounded linear operator A on H2(Cn,dVα) such that

Aek = kζjk , where k = (k1, k2, . . . , kn) ∈ Nn and jk is a non-negative number depending on k.

Let T = A∗TνA so that ∥T∥Sp ≤ ∥Tµ∥Sp . We split the operator T as T = D+E where D is the

diagonal operator defined on H2(Cn,dVα) by Df =
∑
k∈Nn⟨Tek, ek⟩⟨f, ek⟩ek and E = T −D.

By the triangle inequality, we have

∥T∥pSp
≥ ∥D∥pSp

− ∥E∥pSp
. (5)

From the definition of D, we have

∥D∥pSp
=

∑
k∈Nn

⟨Tek, ek⟩p =
∑
k∈Nn

⟨TνAek, Aek⟩p =
∞∑
jk=1

⟨Tνkζjk , kζjk ⟩
p

=

∞∑
jk=1

(∫
Cn

e−α|z−ζjk |
2

dν(z)
)p

≥
∞∑
jk=1

(∫
B(ζjk ,r)

e−α|z−ζjk |
2

dν(z)
)p

≥ e−αpr
2

∞∑
jk=1

ν(B(ζjk , r))
p = C1

∞∑
j=1

ν(B(ζj , r))
p.

On the other hand, we have

∥E∥pSp
≤

∑
l∈Nn

∑
k∈Nn

|⟨Eel, ek⟩|p =
∑
l∈Nn

∑
k∈Nn

|⟨Tel, ek⟩ − ⟨Del, ek⟩|p
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=
∑
jl ̸=jk

⟨Tνkζjl , kζjk ⟩
p =

∑
jl ̸=jk

∣∣∣ ∫
Cn

kζjl (z)kζjk (z)e
−α|z|2dν(z)

∣∣∣p
=

∑
jl ̸=jk

⟨Tνkζjl , kζjk ⟩
p =

∑
jl ̸=jk

∣∣∣ ∫
Cn

e−
α|z−ζjl

|2

2 e−
α|z−ζjk

|2

2 eαi·Im(zζjl+zζjk )dν(z)
∣∣∣p

≤
∑
jl ̸=jk

(∫
Cn

e−
α|z−ζjl

|2

2 e−
α|z−ζjk

|2

2 dν(z)
)p
.

If jl ̸= jk, then |ζjl−ζjk | ≥ R. Thus for |z−ζjl | ≤ R
2 the triangle inequality gives us |z−ζjk | ≥ R

2 .

Hence,

e−
α|z−ζjl

|2

2 e−
α|z−ζjk

|2

2 ≤ e−
αR2

16 e−
α|z−ζjl

|2

4 e−
α|z−ζjk

|2

4

holds for each z ∈ Cn.
Therefore, we have

∥E∥pSp
≤ e−

pαR2

16

∑
jl ̸=jk

(∫
Cn

e−
α|z−ζjl

|2

4 e−
α|z−ζjk

|2

4 dν(z)
)p
.

For each m in {0, 1, 2, . . .} and jl ∈ N, let

Em,jl = {z : r(2m− 1) ≤ |z − ζjl |∞ < 2rm}.

Since 0 < p ≤ 1, we know that∑
jl ̸=jk

(∫
Cn

e−
α|z−ζjl

|2

4 e−
α|z−ζjk

|2

4 dν(z)
)p

≤
∑
jl ̸=jk

∞∑
m=0

(∫
Em,jl

e−
α|z−ζjl

|2

4 e−
α|z−ζjk

|2

4 dν(z)
)p

≤ C2

∞∑
m=0

e−
pαr2(2m−1)2

4

∑
jl ̸=jk

(∫
Em,jl

e−
α|z−ζjk

|2

4 dν(z)
)p

for some constant C2.

For any fixed m and jl, we write N = Ω1
m,jl

∪
Ω2
m,jl

, where

Ω1
m,jl

= {jk ∈ N : |ζjl − ζjk |∞ ≤ 2rm}, Ω2
m,jl

= {jk ∈ N : |ζjl − ζjk |∞ > 2rm}.

Thus, we have that

∞∑
m=0

e−
pαr2(2m−1)2

4

∑
jl ̸=jk

(∫
Em,jl

e−
α|z−ζjk

|2

4 dν(z)
)p

≤
∞∑
m=0

e−
pαr2(2m−1)2

4

∞∑
jl=1

∑
jk∈Ω1

m,jl

(∫
Em,jl

e−
α|z−ζjk

|2

4 dν(z)
)p

+

∞∑
m=0

e−
pαr2(2m−1)2

4

∞∑
jl=1

∑
jk∈Ω2

m,jl

(∫
Em,jl

e−
α|z−ζjk

|2

4 dν(z)
)p

= S1 + S2,

where

S1 =

∞∑
m=0

e−
pαr2(2m−1)2

4

∞∑
jl=1

∑
jk∈Ω1

m,jl

(∫
Em,jl

e−
α|z−ζjk

|2

4 dν(z)
)p
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and

S2 =

∞∑
m=0

e−
pαr2(2m−1)2

4

∞∑
jl=1

∑
jk∈Ω2

m,jl

(∫
Em,jl

e−
α|z−ζjk

|2

4 dν(z)
)p
.

From the definition of Ω1
m,jl

, we know that card(Ω1
m,jl

) ≤ C3(m+1)2n for some constant C3 > 0,

which implies that

S1 ≤ C4

∞∑
m=0

(m+ 1)2ne−
pαr2(2m−1)2

4

∞∑
jl=1

ν(Em,jl)
p

≤ C4

∞∑
m=0

(m+ 1)2ne−
pαr2(2m−1)2

4

∞∑
jl=1

∑
{jk:|2ajk−ζjl |=2rm}

ν(B(2ajk , r))
p

≤ C5

∞∑
m=0

(m+ 1)4ne−
pαr2(2m−1)2

4

∞∑
jk=1

ν(B(2ajk , r))
p

≤ C6

∞∑
jk=1

ν(B(2ajk , r))
p = C6

∞∑
j=1

ν(B(ζj , r))
p.

We still have to estimate the sum S2. Note that if k ∈ Ω2
m,jl

, then z ∈ Em,jl implies that

|z − ζjk |∞ ≥ |ζjl − ζjk |∞ − |z − ζjl |∞ ≥ |ζjl − ζjk |∞ − 2rm > 0.

Therefore,

S2 ≤
∞∑
m=0

e−
pαr2(2m−1)2

4

∞∑
jl=1

ν(Em,jl)
p

∑
jk∈Ω2

m,jl

e−
pα(|ζjl−ζjk

|∞−2rm)2

4

≤ C7

∞∑
m=0

e−
pαr2(2m−1)2

4

∞∑
jl=1

ν(Em,jl)
p

∞∑
jk=1

e−
pα(2rjk)2

4 (m+ jk + 1)2n

≤ C8

∞∑
m=0

(m+ 1)2ne−
pαr2(2m−1)2

4

∞∑
jl=1

∑
{jk:|2ajk−ζjl |=2rm}

ν(B(2ajk , r))
p

≤ C9

∞∑
m=0

(m+ 1)4ne−
pαr2(2m−1)2

4

∞∑
jk=1

ν(B(2ajk , r))
p

≤ C10

∞∑
j=1

ν(B(2aj , r))
p = C10

∞∑
j=1

ν(B(ζj , r))
p.

Now, we conclude that there is a positive constant C11 such that

∥E∥pSp
≤ C11e

− pαR2

16

∞∑
j=1

ν(B(ζj , r))
p

from the estimates about S1 and S2. Moreover, combining (4) and (5) gives

∥Tµ∥pSp
≥ ∥T∥pSp

≥ ∥D∥pSp
− ∥E∥pSp

≥ (C1 − C11e
− pαR2

16 )

∞∑
j=1

ν(B(ζj , r))
p.
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Since C1 and C11 are not dependent on R, setting R > 0 large enough gives us

∞∑
j=1

ν(B(ζj , r))
p ≤ C12∥Tµ∥pSp

.

Since this holds for each of the M subsequences of {2aj}, we get

∞∑
j=1

µ(B(2aj , r))
p ≤ C12M∥Tµ∥pSp

for all positive Borel measures µ, which implies that the sequence {µ̂r(aj)} is in lp. This means

(a)⇒(d) holds, and thus completes the proof of the Theorem 4.5. �
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