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Abstract Let ϵ : N → R be a parameter function satisfying the condition ϵ(k) + k + 1 > 0

and let Tϵ : (0, 1] → (0, 1] be a transformation defined by

Tϵ(x) =
−1 + (k + 1)x

1 + k − kϵx
for x ∈

( 1

k + 1
,
1

k

]
.

Under the algorithm Tϵ, every x ∈ (0, 1] is attached an expansion, called generalized continued

fraction (GCFϵ) expansion with parameters by Schweiger. Define the sequence {kn(x)}n≥1 of

the partial quotients of x by k1(x) = ⌊1/x⌋ and kn(x) = k1(T
n−1
ϵ (x)) for every n ≥ 2. Under

the restriction −k − 1 < ϵ(k) < −k, define the set of non-recurring GCFϵ expansions as

Fϵ = {x ∈ (0, 1] : kn+1(x) > kn(x) for infinitely many n}.

It has been proved by Schweiger that Fϵ has Lebesgue measure 0. In the present paper, we

strengthen this result by showing that{
dimH Fϵ ≥ 1

2
, when ϵ(k) = −k − 1 + ρ for a constant 0 < ρ < 1;

1
s+2

≤ dimH Fϵ ≤ 1
s
, when ϵ(k) = −k − 1 + 1

ks for any s ≥ 1

where dimH denotes the Hausdorff dimension.
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1. Introduction

In 2003, Schweiger [1] introduced a new class of continued fractions with parameters, called

generalized continued fractions (GCFϵ), which are induced by the transformations Tϵ : (0, 1] →
(0, 1]

Tϵ(x) :=
−1 + (k + 1)x

1 + ϵ− kϵx
when x ∈

( 1

k + 1
,
1

k

]
=: B(k) (1)

where the parameter ϵ : N → R satisfies

ϵ(k) + k + 1 > 0, for all k ≥ 1. (2)
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For any x ∈ (0, 1], its partial quotients {kn}n≥1 in the GCFϵ expansion are defined as

k1 = k1(x) :=
⌊ 1
x

⌋
, and kn = kn(x) := k1

(
Tn−1
ϵ (x)

)
.

By the algorithm (1), it follows [1] that

x =
An +BnT

n
ϵ (x)

Cn +DnTn
ϵ (x)

for all n ≥ 1,

where the numbers An, Bn, Cn, Dn are given by the recursive relations(
Cn Dn

An Bn

)
=

(
Cn−1 Dn−1

Cn−1 Bn−1

)(
kn + 1 knϵ(kn)

1 1 + ϵ(kn)

)
n ≥ 1, (3)

with

(
C0 D0

A0 B0

)
=

(
1 0

0 1

)
.

A well known example of the generalized continued fraction is in the case that the parameter

function ϵ ≡ 0. In this case, the algorithm (1) becomes

T (x) = −1 + (k + 1)x when x ∈
( 1

k + 1
,
1

k

]
.

Then every x ∈ (0, 1] can be expanded into a series with the form

x =
1

k1(x) + 1
+ · · ·+ 1

(k1 + 1)(k2(x) + 1) · · · (kn(x) + 1)
+ · · · .

Actually this is the Engel series expansion which was well studied in the literature, see Erdös,

Rényi & Szüsz [2], Rényi [3], Galambos [4] and Liu, Wu [5], etc.

Schweiger [1] studied the arithmetical as well as the ergodic properties of GCFϵ map. At

the same time, he showed that with different choices of the parameter functions ϵ, the stochas-

tic properties of the partial quotients differ greatly. Concerning the properties of the partial

quotients, by the condition shared by the parameter ϵ(k) (see (2)), it is clear that

kn+1(x) ≥ kn(x) for all n ≥ 1,

i.e., the partial quotients sequence of x is non-decreasing. We investigated the metrical properties

of {kn}n≥1 further in [8] and proved that when −1 < ϵ(k) ≤ 1, for almost all x ∈ (0, 1],

lim
n→∞

log kn(x)

n
= 1,

and when ϵ(k) = −1, this equality is no longer true. It was also shown [7] that the partial

quotients in the GCFϵ expansions share a 0-1 law and the central limit theorem under the

restriction of −1 < ϵ(k) ≤ 1. These results showed that when −1 < ϵ(k) ≤ 1, the metric

properties of GCFϵ and Engel series expansion are very similar. However, in this paper we will

see that the situation changes radically when −k − 1 < ϵ(k) < −k − ρ for a constant 0 < ρ < 1.

This is because in this case, Tϵ has two fixed points −1
ϵ and 1

k in every interval B(k) :=
(

1
k+1 ,

1
k

]
.

So all B(k) can be divided into two subintervals as:

B(k−) =:
[ 1

k + 1
,− 1

ϵ(k)

]
and B(k+) =:

(
− 1

ϵ(k)
,
1

k

]
.
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such that TB(k+) = B(k+). Therefore if (k−1 , k
−
2 , . . . , k

−
n , k

+) is an admissible block, then

kn < k. And it is easy to see that, the set defined by

Fϵ =

∞∩
n=1

∪
k1≤···≤kn

B(k−1 , k
−
2 , . . . , k

−
n ) (4)

is a complementary set of the ultimately recurring GCFϵ expansion. That is

Fϵ := {x ∈ (0, 1] : kn+1(x) > kn(x) for infinitely many n}.

We define the cylinder set as follows. For any non-decreasing integer vector (k1, . . . , kn),

define the n-th order cylinders as follows

B(k1, . . . , kn) = {x ∈ (0, 1] : kj(x) = kj , ∀1 ≤ j ≤ n}.

an nth order cylinder, which is the set of points whose partial quotients begin with (k1, . . . , kn).

Then the following results have been obtained in section 3 of [1]:

|B(k1, k2, . . . , kn)| =
BnCn −AnDn

Cn(knCn +Dn)
; (5)

∣∣B(k−1 , k
−
2 , . . . , k

−
n )
∣∣ = BnCn −AnDn

Cn(−ϵ(kn)Cn +Dn)
; (6)

λ
(
Fϵ

)
= λ

( ∞∩
n=1

∪
k1<···<kn

B(k−1 , k
−
2 , . . . , k

−
n )
)
= 0, (7)

where −k − 1 < ϵ(k) < −k − 1 + ρ for a constant 0 < ρ < 1.

In this paper, we strengthen the result (7) by showing that

Theorem 1.1 Let Fϵ be the set defined above. Then{
dimH Fϵ ≥ 1

2 , when ϵ(k) = −k − 1 + ρ for a constant 0 < ρ < 1;
1

s+2 ≤ dimH Fϵ ≤ 1
s , when ϵ(k) = −k − 1 + 1

ks for any s ≥ 1

where dimH denotes the Hausdorff dimension.

2. Preliminary

In this section, we present some simple facts about the generalized continued fractions for

later use.

The first lemma concerns the relationships between An, Bn, Cn, Dn which are recursively

defined by (3).

Lemma 2.1 ([1,8]) For all n ≥ 1,

(i) Cn = (kn + 1)Cn−1 +Dn−1 > 0;

(ii) Dn = knϵ(kn)Cn−1 + (1 + ϵ(kn))Dn−1, and Dn ≥ 0 when ϵ ≥ 0; Dn < 0 when ϵ < 0;

(iii) knCn +Dn = (knCn−1 +Dn−1)(kn + 1 + ϵ(kn));

(iv) BnCn −AnDn = (BNCN −ANDN )
∏n

i=N+1(ki + 1 + ϵ(ki)) > 0, ∀0 ≤ N < n.

The following lemmas are especially aimed for ϵ(k) = −k − 1 + 1
ks .
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Lemma 2.2 If ϵ(k) = −k − 1 + 1
ks , then when kn ≥ 2,

knCn +Dn =
knCn−1 +Dn−1

ksn
> 0; −ϵ(kn)Cn +Dn ≥ Cn

2
≥ 1.

Proof By Lemma 2.1 (iii) and the condition ϵ(k) = −k − 1 + 1
ks , noticing that kn ≥ kn−1, we

have

knCn +Dn =
knCn−1 +Dn−1

ksn
≥ kn−1Cn−1 +Dn−1

ksn
≥ · · · ≥ k1C1 +D1

ksnk
s
n−1 · · · ks2

> 0.

This also gives that

Dn ≥ −knCn. (8)

Using Lemma 2.1 (i) and (8), we get

Cn ≥ (kn + 1)Cn−1 − kn−1Cn−1 ≥ (kn + 1− kn−1)Cn−1

≥ Cn−1 ≥ · · · ≥ C1 = k1 + 1 ≥ 2.

Thus Cn

2 ≥ 1 is proved.

Using (8) again, we can find that when kn ≥ 2,

−ϵ(kn)Cn +Dn ≥ (kn + 1− 1

ksn
)Cn − knCn = (1− 1

ksn
)Cn ≥ 1

2
Cn. �

The next lemma will be used for estimating the lower bound of dimH Fϵ.

Lemma 2.3 ([1,8]) Let ϵ(k) = −k − 1 + 1
ks . Then when kn ≥ 2,

Cn +Dn ≤ 0; knCn +Dn ≤ −ϵ(kn)Cn +Dn ≤ Cn ≤ knkn−1 · · · k1.

Proof By Lemma 2.1 (i) (ii), we have

Cn +Dn = (kn + 1)Cn−1 +Dn−1 + kn(−kn − 1 +
1

ksn
)Cn−1 + (−kn +

1

ksn
)Dn−1

= Cn−1 +Dn−1 + (−kn +
1

ksn
)(knCn−1 +Dn−1)

≤ Cn−1 +Dn−1 − (knCn−1 +Dn−1) ≤ 0.

Then by Lemma 2.1 (i), we have

Cn = knCn−1 + (Cn−1 +Dn−1) ≤ knCn−1 ≤ · · · ≤ knkn−1 · · · k1. (9)

By the condition ϵ(k) = −k − 1 + 1
ks , we have,

kn < −ϵ(kn) = −kn − 1 +
1

ksn
.

Thus

knCn +Dn ≤ −ϵ(kn)Cn +Dn = (knCn +Dn) + (1− 1

ksn
)Cn. (10)

Then using the first equality of Lemma 2.2, we get

−ϵ(kn)Cn +Dn =
knCn−1 +Dn−1

ksn
+ (1− 1

ksn
)Cn = Cn − Cn−1

ksn
≤ Cn. (11)

So the second result follows from (10), (11) and (9). �
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Now we focus on the properties of the point set Fϵ with ϵ(k) = −k − 1 + 1
ks
n
for any s ≥ 1.

From now on until the end of this paper, we fix a point x ∈ Fϵ and let kn = kn(x) be the nth

partial quotient of x. The numbers An, Bn, Cn, Dn are recursively defined by (3) for x.

3. The Hausdorff dimension of Eϵ(α)

The proof of Theorem 1.1 is divided into two parts: one for upper bound, the other for

lower bound.

3.1. Upper bound

Fix δ > 0. Since
∑∞

kn=1

(
1
ks
n

) 1+δ
s

=
∑∞

n=1
1

n1+δ converges, there exists M large enough so

that for all kj ≥ M ,
∞∑

kn=kj

( 1

ksn

) 1+δ
s ≤ 1. (12)

From (4), we can see that
∪

k1≤···≤kn
B(k−1 , k

−
2 , . . . , k

−
n ) is a natural covering of Fϵ for any

n ≥ 1. Then the 1+δ
s -dimensional Hausdorff measure of Fϵ can be estimated as

H
1+δ
s (Fϵ) ≤ lim inf

n→∞

∑
ki+1 ≥ ki

1 ≤ i ≤ n − 1

∣∣∣B(k−1 , k
−
2 , . . . , k

−
n )
∣∣∣ 1+δ

s

.

Under the condition ϵ(k) = −k − 1 + 1
ks
, by Lemma 2.1 (iv), we have

BnCn −AnDn =
1

(k1k2 · · · kn)s
. (13)

On the other hand, by Lemma 2.2, we have Cn(−ϵ(kn)Cn +Dn) ≥ 2. Then using (6), we get∣∣∣B(k−1 , k
−
2 , . . . , k

−
n )
∣∣∣ = BnCn −AnDn

Cn(−ϵ(kn)Cn +Dn)
≤ 1

2(k1k2 · · · kn)s

≤ 1

2(k1k2 · · · kN )s
1

ksN+1

1

ksN+2

· · · 1

ksn
.

Thus by (12), we have

H
1+δ
s (Fϵ) ≤ lim inf

n→∞

∑
ki+1 ≥ ki

1 ≤ i ≤ n − 1

∣∣∣B(k−1 , k
−
2 , . . . , k

−
n )
∣∣∣ 1+δ

s

≤ lim inf
n→∞

∑
ki+1 ≥ ki

1 ≤ i ≤ N − 1

( 1

2(k1 · · · kN )s

) 1+δ
s

∑
kN+1≥kN

( 1

ksN+1

) 1+δ
s · · ·

∑
kn≥kn−1

( 1

ksn−1

) 1+δ
s

≤ lim inf
n→∞

∑
ki+1 ≥ ki

1 ≤ i ≤ N − 1

( 1

2(k1 · · · kN )s

) 1+δ
s

< ∞

which gives that dimH Eϵ(α) ≤ 1+δ
s . Since this is true for all δ > 0 , we get dimH Eϵ(α) ≤ 1

s for

ϵ(k) = −k − 1 + 1
ks and any s ≥ 1.
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3.2. Lower bound

In order to estimate the lower bound, we recall the classical dimensional result concerning

a specially defined Cantor set.

Lemma 3.1 ([6]) Let I = E0 ⊃ E1 ⊃ E2 ⊃ · · · be a decreasing sequence of sets, with each En, a

union of a finite number of disjoint closed intervals. If each interval of En−1 contains at least mn

intervals of En (n = 1, 2, . . .) which are separated by gaps of at least ηn, where 0 < ηn+1 < ηn

for each n. Then the lower bound of the Hausdorff dimension of E can be given by the following

inequality:

dimH

(
∩n≥1 En

)
≥ lim inf

n→∞

log(m1m2 · · ·mn−1)

− log(mnηn)
.

Now for each n ≥ 1, let E = {x ∈ (0, 1] : 2n < kn(x) < 2n+1, ∀n ≥ 1}. Clearly, if x ∈ E,

then kn(x) > kn−1(x) for all n ≥ 1. This implies that E ⊂ Fϵ.

For each n ≥ 1, let En be the collection of cylinders

En = {Bn(k1, . . . , kn) : 2
i < ki(x) < 2i+1, 1 ≤ i ≤ n}. (14)

Then E =
∩∞

n=1 En, and E fulfills the construction of the Cantor set in Lemma 3.1. Now we

specify the integers {mn, n ≥ 1} and the real numbers {ηn, n ≥ 1}.
Due to the definition of En, each interval of En−1 contains mn = 2n − 1 ≥ 2n−1 intervals of

En, and

m1m2 · · ·mn−1 = 21+2+···+(n−2) = 2
(n−2)(n−1)

2 ; (15)

and any two of intervals in En are separated by at least one interval B(k−1 , . . . , k
−
n−1, k

+
n ).

By (5) and (6), we have

|B(k−1 , . . . , k
−
n−1, k

+
n )| =|B(k1, . . . , kn−1, kn)| −B|(k−1 , . . . , k

−
n−1, k

−
n )|

=
BnCn −AnDn

Cn(knCn +Dn)
− BnCn −AnDn

Cn(−ϵ(kn)Cn +Dn)

=
(BnCn −AnDn)(−ϵ(kn)− kn)

(knCn +Dn)(−ϵ(kn)Cn +Dn)
.

By Lemma 2.3 and the equality (13), the above equality gives that

|B(k−1 , . . . , k
−
n−1, k

+
n )| ≥

1

(k1k2 · · · kn)s+2
.

In view of (14), the partial quotients kn satisfy that 2n < kn(x) < 2n+1 for all n ≥ 1.

Therefore,

|B(k−1 , . . . , k
−
n−1, k

+
n )| ≥

1

(22+3+···+(n+1))s+2
=

1

2
n(n+1)(s+2)

2

=: ηk. (16)

As a result of (15) and (16), we get

lim inf
n→∞

log2(m1 · · ·mn−1)

− log2(mnηn)
=

1

s+ 2
.

Combining this with Lemma 3.1, we get when ϵ(k) = −k − 1 + 1
ks for any s ≥ 1,

dimH Fϵ ≥ dimH E ≥ 1

s+ 2
.
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Using the same method of proof, we can get dimH Fϵ ≥ 1
2 when ϵ(k) = −k − 1 + ρ for a

constant 0 < ρ < 1.

Acknowledgements We thank the referees for their time and comments.

References

[1] F. SCHWEIGER. Continued fraction with increasing digits. Österreich. Akad. Wiss. Math.-Natur. Kl.
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