Some Sets of GCF ϵ_{ϵ} Expansions Whose Parameter ϵ Fetch the Marginal Value

Liang TANG*, Peijuan ZHOU, Ting ZHONG
Department of Mathematics, Jishou University, Hunan 427000, P. R. China

Abstract Let $\epsilon: \mathbb{N} \rightarrow \mathbb{R}$ be a parameter function satisfying the condition $\epsilon(k)+k+1>0$ and let $T_{\epsilon}:(0,1] \rightarrow(0,1]$ be a transformation defined by

$$
T_{\epsilon}(x)=\frac{-1+(k+1) x}{1+k-k \epsilon x} \text { for } x \in\left(\frac{1}{k+1}, \frac{1}{k}\right] .
$$

Under the algorithm T_{ϵ}, every $x \in(0,1]$ is attached an expansion, called generalized continued fraction $\left(\mathrm{GCF}_{\epsilon}\right)$ expansion with parameters by Schweiger. Define the sequence $\left\{k_{n}(x)\right\}_{n \geq 1}$ of the partial quotients of x by $k_{1}(x)=\lfloor 1 / x\rfloor$ and $k_{n}(x)=k_{1}\left(T_{\epsilon}^{n-1}(x)\right)$ for every $n \geq 2$. Under the restriction $-k-1<\epsilon(k)<-k$, define the set of non-recurring GCF_{ϵ} expansions as

$$
\mathcal{F}_{\epsilon}=\left\{x \in(0,1]: k_{n+1}(x)>k_{n}(x) \text { for infinitely many } n\right\} .
$$

It has been proved by Schweiger that \mathcal{F}_{ϵ} has Lebesgue measure 0 . In the present paper, we strengthen this result by showing that

$$
\begin{cases}\operatorname{dim}_{H} \mathcal{F}_{\epsilon} \geq \frac{1}{2}, & \text { when } \epsilon(k)=-k-1+\rho \text { for a constant } 0<\rho<1 \\ \frac{1}{s+2} \leq \operatorname{dim}_{H} \mathcal{F}_{\epsilon} \leq \frac{1}{s}, & \text { when } \epsilon(k)=-k-1+\frac{1}{k^{s}} \text { for any } s \geq 1\end{cases}
$$

where dim_{H} denotes the Hausdorff dimension.
Keywords $G C F_{\epsilon}$ expansions; metric properties; Hausdorff dimension
MR(2010) Subject Classification 11K55; 28A80

1. Introduction

In 2003, Schweiger [1] introduced a new class of continued fractions with parameters, called generalized continued fractions $\left(\mathrm{GCF}_{\epsilon}\right)$, which are induced by the transformations $T_{\epsilon}:(0,1] \rightarrow$ $(0,1]$

$$
\begin{equation*}
T_{\epsilon}(x):=\frac{-1+(k+1) x}{1+\epsilon-k \epsilon x} \text { when } x \in\left(\frac{1}{k+1}, \frac{1}{k}\right]=: B(k) \tag{1}
\end{equation*}
$$

where the parameter $\epsilon: \mathbb{N} \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\epsilon(k)+k+1>0, \text { for all } k \geq 1 \tag{2}
\end{equation*}
$$

Received July 24, 2014; Accepted December 22, 2014
Supported by the National Natural Science Foundation of China (Grant No. 11361025).

* Corresponding author

E-mail address: tl3022@126.com (Liang TANG); peijuanzhou@126.com (Peijuan ZHOU); zhongting_2005@126. com (Ting ZHONG)

For any $x \in(0,1]$, its partial quotients $\left\{k_{n}\right\}_{n \geq 1}$ in the GCF_{ϵ} expansion are defined as

$$
k_{1}=k_{1}(x):=\left\lfloor\frac{1}{x}\right\rfloor, \quad \text { and } \quad k_{n}=k_{n}(x):=k_{1}\left(T_{\epsilon}^{n-1}(x)\right) .
$$

By the algorithm (1), it follows [1] that

$$
x=\frac{A_{n}+B_{n} T_{\epsilon}^{n}(x)}{C_{n}+D_{n} T_{\epsilon}^{n}(x)} \text { for all } n \geq 1,
$$

where the numbers $A_{n}, B_{n}, C_{n}, D_{n}$ are given by the recursive relations

$$
\begin{align*}
\left(\begin{array}{cc}
C_{n} & D_{n} \\
A_{n} & B_{n}
\end{array}\right)= & \left(\begin{array}{cc}
C_{n-1} & D_{n-1} \\
C_{n-1} & B_{n-1}
\end{array}\right)\left(\begin{array}{cc}
k_{n}+1 & k_{n} \epsilon\left(k_{n}\right) \\
1 & 1+\epsilon\left(k_{n}\right)
\end{array}\right) n \geq 1 \tag{3}\\
& \text { with }\left(\begin{array}{cc}
C_{0} & D_{0} \\
A_{0} & B_{0}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{align*}
$$

A well known example of the generalized continued fraction is in the case that the parameter function $\epsilon \equiv 0$. In this case, the algorithm (1) becomes

$$
T(x)=-1+(k+1) x \text { when } x \in\left(\frac{1}{k+1}, \frac{1}{k}\right]
$$

Then every $x \in(0,1]$ can be expanded into a series with the form

$$
x=\frac{1}{k_{1}(x)+1}+\cdots+\frac{1}{\left(k_{1}+1\right)\left(k_{2}(x)+1\right) \cdots\left(k_{n}(x)+1\right)}+\cdots .
$$

Actually this is the Engel series expansion which was well studied in the literature, see Erdös, Rényi \& Szüsz [2], Rényi [3], Galambos [4] and Liu, Wu [5], etc.

Schweiger [1] studied the arithmetical as well as the ergodic properties of GCF_{ϵ} map. At the same time, he showed that with different choices of the parameter functions ϵ, the stochastic properties of the partial quotients differ greatly. Concerning the properties of the partial quotients, by the condition shared by the parameter $\epsilon(k)$ (see (2)), it is clear that

$$
k_{n+1}(x) \geq k_{n}(x) \text { for all } n \geq 1
$$

i.e., the partial quotients sequence of x is non-decreasing. We investigated the metrical properties of $\left\{k_{n}\right\}_{n \geq 1}$ further in [8] and proved that when $-1<\epsilon(k) \leq 1$, for almost all $x \in(0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{\log k_{n}(x)}{n}=1
$$

and when $\epsilon(k)=-1$, this equality is no longer true. It was also shown [7] that the partial quotients in the GCF_{ϵ} expansions share a $0-1$ law and the central limit theorem under the restriction of $-1<\epsilon(k) \leq 1$. These results showed that when $-1<\epsilon(k) \leq 1$, the metric properties of GCF_{ϵ} and Engel series expansion are very similar. However, in this paper we will see that the situation changes radically when $-k-1<\epsilon(k)<-k-\rho$ for a constant $0<\rho<1$. This is because in this case, T_{ϵ} has two fixed points $-\frac{1}{\epsilon}$ and $\frac{1}{k}$ in every interval $B(k):=\left(\frac{1}{k+1}, \frac{1}{k}\right]$. So all $B(k)$ can be divided into two subintervals as:

$$
B\left(k^{-}\right)=:\left[\frac{1}{k+1},-\frac{1}{\epsilon(k)}\right] \quad \text { and } \quad \mathrm{B}\left(\mathrm{k}^{+}\right)=:\left(-\frac{1}{\epsilon(\mathrm{k})}, \frac{1}{\mathrm{k}}\right] .
$$

such that $T B\left(k^{+}\right)=B\left(k^{+}\right)$. Therefore if $\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}, k^{+}\right)$is an admissible block, then $k_{n}<k$. And it is easy to see that, the set defined by

$$
\begin{equation*}
\mathcal{F}_{\epsilon}=\bigcap_{n=1}^{\infty} \bigcup_{k_{1} \leq \cdots \leq k_{n}} B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right) \tag{4}
\end{equation*}
$$

is a complementary set of the ultimately recurring GCF_{ϵ} expansion. That is

$$
\mathcal{F}_{\epsilon}:=\left\{x \in(0,1]: k_{n+1}(x)>k_{n}(x) \text { for infinitely many } n\right\} .
$$

We define the cylinder set as follows. For any non-decreasing integer vector $\left(k_{1}, \ldots, k_{n}\right)$, define the n-th order cylinders as follows

$$
B\left(k_{1}, \ldots, k_{n}\right)=\left\{x \in(0,1]: k_{j}(x)=k_{j}, \forall 1 \leq j \leq n\right\}
$$

an nth order cylinder, which is the set of points whose partial quotients begin with $\left(k_{1}, \ldots, k_{n}\right)$. Then the following results have been obtained in section 3 of [1]:

$$
\begin{gather*}
\left|B\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right|=\frac{B_{n} C_{n}-A_{n} D_{n}}{C_{n}\left(k_{n} C_{n}+D_{n}\right)} \tag{5}\\
\left|B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right)\right|=\frac{B_{n} C_{n}-A_{n} D_{n}}{C_{n}\left(-\epsilon\left(k_{n}\right) C_{n}+D_{n}\right)} \tag{6}\\
\lambda\left(\mathcal{F}_{\epsilon}\right)=\lambda\left(\bigcap_{n=1}^{\infty} \bigcup_{k_{1}<\cdots<k_{n}} B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right)\right)=0 \tag{7}
\end{gather*}
$$

where $-k-1<\epsilon(k)<-k-1+\rho$ for a constant $0<\rho<1$.
In this paper, we strengthen the result (7) by showing that
Theorem 1.1 Let \mathcal{F}_{ϵ} be the set defined above. Then

$$
\left\{\begin{array}{cl}
\operatorname{dim}_{H} \mathcal{F}_{\epsilon} \geq \frac{1}{2}, & \text { when } \epsilon(k)=-k-1+\rho \text { for a constant } 0<\rho<1 \\
\frac{1}{s+2} \leq \operatorname{dim}_{H} \mathcal{F}_{\epsilon} \leq \frac{1}{s}, & \text { when } \epsilon(k)=-k-1+\frac{1}{k^{s}} \text { for any } s \geq 1
\end{array}\right.
$$

where dim_{H} denotes the Hausdorff dimension.

2. Preliminary

In this section, we present some simple facts about the generalized continued fractions for later use.

The first lemma concerns the relationships between $A_{n}, B_{n}, C_{n}, D_{n}$ which are recursively defined by (3).

Lemma $2.1([1,8])$ For all $n \geq 1$,
(i) $C_{n}=\left(k_{n}+1\right) C_{n-1}+D_{n-1}>0$;
(ii) $D_{n}=k_{n} \epsilon\left(k_{n}\right) C_{n-1}+\left(1+\epsilon\left(k_{n}\right)\right) D_{n-1}$, and $D_{n} \geq 0$ when $\epsilon \geq 0$; $D_{n}<0$ when $\epsilon<0$;
(iii) $k_{n} C_{n}+D_{n}=\left(k_{n} C_{n-1}+D_{n-1}\right)\left(k_{n}+1+\epsilon\left(k_{n}\right)\right)$;
(iv) $B_{n} C_{n}-A_{n} D_{n}=\left(B_{N} C_{N}-A_{N} D_{N}\right) \prod_{i=N+1}^{n}\left(k_{i}+1+\epsilon\left(k_{i}\right)\right)>0, \forall 0 \leq N<n$.

The following lemmas are especially aimed for $\epsilon(k)=-k-1+\frac{1}{k^{s}}$.

Lemma 2.2 If $\epsilon(k)=-k-1+\frac{1}{k^{s}}$, then when $k_{n} \geq 2$,

$$
k_{n} C_{n}+D_{n}=\frac{k_{n} C_{n-1}+D_{n-1}}{k_{n}^{s}}>0 ; \quad-\epsilon\left(k_{n}\right) C_{n}+D_{n} \geq \frac{C_{n}}{2} \geq 1
$$

Proof By Lemma 2.1 (iii) and the condition $\epsilon(k)=-k-1+\frac{1}{k^{s}}$, noticing that $k_{n} \geq k_{n-1}$, we have

$$
k_{n} C_{n}+D_{n}=\frac{k_{n} C_{n-1}+D_{n-1}}{k_{n}^{s}} \geq \frac{k_{n-1} C_{n-1}+D_{n-1}}{k_{n}^{s}} \geq \cdots \geq \frac{k_{1} C_{1}+D_{1}}{k_{n}^{s} k_{n-1}^{s} \cdots k_{2}^{s}}>0 .
$$

This also gives that

$$
\begin{equation*}
D_{n} \geq-k_{n} C_{n} . \tag{8}
\end{equation*}
$$

Using Lemma 2.1 (i) and (8), we get

$$
\begin{aligned}
C_{n} & \geq\left(k_{n}+1\right) C_{n-1}-k_{n-1} C_{n-1} \geq\left(k_{n}+1-k_{n-1}\right) C_{n-1} \\
& \geq C_{n-1} \geq \cdots \geq C_{1}=k_{1}+1 \geq 2 .
\end{aligned}
$$

Thus $\frac{C_{n}}{2} \geq 1$ is proved.
Using (8) again, we can find that when $k_{n} \geq 2$,

$$
-\epsilon\left(k_{n}\right) C_{n}+D_{n} \geq\left(k_{n}+1-\frac{1}{k_{n}^{s}}\right) C_{n}-k_{n} C_{n}=\left(1-\frac{1}{k_{n}^{s}}\right) C_{n} \geq \frac{1}{2} C_{n} .
$$

The next lemma will be used for estimating the lower bound of $\operatorname{dim}_{H} \mathcal{F}_{\epsilon}$.
Lemma $2.3([1,8])$ Let $\epsilon(k)=-k-1+\frac{1}{k^{s}}$. Then when $k_{n} \geq 2$,

$$
C_{n}+D_{n} \leq 0 ; \quad k_{n} C_{n}+D_{n} \leq-\epsilon\left(k_{n}\right) C_{n}+D_{n} \leq C_{n} \leq k_{n} k_{n-1} \cdots k_{1} .
$$

Proof By Lemma 2.1 (i) (ii), we have

$$
\begin{aligned}
C_{n}+D_{n} & =\left(k_{n}+1\right) C_{n-1}+D_{n-1}+k_{n}\left(-k_{n}-1+\frac{1}{k_{n}^{s}}\right) C_{n-1}+\left(-k_{n}+\frac{1}{k_{n}^{s}}\right) D_{n-1} \\
& =C_{n-1}+D_{n-1}+\left(-k_{n}+\frac{1}{k_{n}^{s}}\right)\left(k_{n} C_{n-1}+D_{n-1}\right) \\
& \leq C_{n-1}+D_{n-1}-\left(k_{n} C_{n-1}+D_{n-1}\right) \leq 0 .
\end{aligned}
$$

Then by Lemma 2.1 (i), we have

$$
\begin{equation*}
C_{n}=k_{n} C_{n-1}+\left(C_{n-1}+D_{n-1}\right) \leq k_{n} C_{n-1} \leq \cdots \leq k_{n} k_{n-1} \cdots k_{1} . \tag{9}
\end{equation*}
$$

By the condition $\epsilon(k)=-k-1+\frac{1}{k^{s}}$, we have,

$$
k_{n}<-\epsilon\left(k_{n}\right)=-k_{n}-1+\frac{1}{k_{n}^{s}} .
$$

Thus

$$
\begin{equation*}
k_{n} C_{n}+D_{n} \leq-\epsilon\left(k_{n}\right) C_{n}+D_{n}=\left(k_{n} C_{n}+D_{n}\right)+\left(1-\frac{1}{k_{n}^{s}}\right) C_{n} . \tag{10}
\end{equation*}
$$

Then using the first equality of Lemma 2.2 , we get

$$
\begin{equation*}
-\epsilon\left(k_{n}\right) C_{n}+D_{n}=\frac{k_{n} C_{n-1}+D_{n-1}}{k_{n}^{s}}+\left(1-\frac{1}{k_{n}^{s}}\right) C_{n}=C_{n}-\frac{C_{n-1}}{k_{n}^{s}} \leq C_{n} . \tag{11}
\end{equation*}
$$

So the second result follows from (10), (11) and (9).

Now we focus on the properties of the point set \mathcal{F}_{ϵ} with $\epsilon(k)=-k-1+\frac{1}{k_{n}^{s}}$ for any $s \geq 1$. From now on until the end of this paper, we fix a point $x \in \mathcal{F}_{\epsilon}$ and let $k_{n}=k_{n}(x)$ be the nth partial quotient of x. The numbers $A_{n}, B_{n}, C_{n}, D_{n}$ are recursively defined by (3) for x.

3. The Hausdorff dimension of $E_{\epsilon}(\alpha)$

The proof of Theorem 1.1 is divided into two parts: one for upper bound, the other for lower bound.

3.1. Upper bound

Fix $\delta>0$. Since $\sum_{k_{n}=1}^{\infty}\left(\frac{1}{k_{n}^{s}}\right)^{\frac{1+\delta}{s}}=\sum_{n=1}^{\infty} \frac{1}{n^{1+\delta}}$ converges, there exists M large enough so that for all $k_{j} \geq M$,

$$
\begin{equation*}
\sum_{k_{n}=k_{j}}^{\infty}\left(\frac{1}{k_{n}^{s}}\right)^{\frac{1+\delta}{s}} \leq 1 \tag{12}
\end{equation*}
$$

From (4), we can see that $\bigcup_{k_{1} \leq \cdots \leq k_{n}} B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right)$is a natural covering of \mathcal{F}_{ϵ} for any $n \geq 1$. Then the $\frac{1+\delta}{s}$-dimensional Hausdorff measure of \mathcal{F}_{ϵ} can be estimated as

$$
\mathcal{H}^{\frac{1+\delta}{s}}\left(\mathcal{F}_{\epsilon}\right) \leq \liminf _{n \rightarrow \infty} \sum_{\substack{k_{i+1} \geq k_{i} \\ 1 \leq i \leq n-1}}\left|B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right)\right|^{\frac{1+\delta}{s}} .
$$

Under the condition $\epsilon(k)=-k-1+\frac{1}{k_{s}}$, by Lemma 2.1 (iv), we have

$$
\begin{equation*}
B_{n} C_{n}-A_{n} D_{n}=\frac{1}{\left(k_{1} k_{2} \cdots k_{n}\right)^{5}} \tag{13}
\end{equation*}
$$

On the other hand, by Lemma 2.2, we have $C_{n}\left(-\epsilon\left(k_{n}\right) C_{n}+D_{n}\right) \geq 2$. Then using (6), we get

$$
\begin{aligned}
\left|B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right)\right| & =\frac{B_{n} C_{n}-A_{n} D_{n}}{C_{n}\left(-\epsilon\left(k_{n}\right) C_{n}+D_{n}\right)} \leq \frac{1}{2\left(k_{1} k_{2} \cdots k_{n}\right)^{s}} \\
& \leq \frac{1}{2\left(k_{1} k_{2} \cdots k_{N}\right)^{s}} \frac{1}{k_{N+1}^{s}} \frac{1}{k_{N+2}^{s}} \cdots \frac{1}{k_{n}^{s}} .
\end{aligned}
$$

Thus by (12), we have

$$
\begin{aligned}
& \mathcal{H}^{\frac{1+\delta}{s}}\left(\mathcal{F}_{\epsilon}\right) \leq \liminf _{n \rightarrow \infty} \sum_{\substack{k_{i+1} \geq k_{i} \\
1 \leq i \leq n-1}}\left|B\left(k_{1}^{-}, k_{2}^{-}, \ldots, k_{n}^{-}\right)\right|^{\frac{1+\delta}{s}} \\
& \leq \liminf _{n \rightarrow \infty} \sum_{\substack{k_{i+1} \geq k_{i} \\
1 \leq i \leq N-1}}\left(\frac{1}{2\left(k_{1} \cdots k_{N}\right)^{s}}\right)^{\frac{1+\delta}{s}} \sum_{k_{N+1} \geq k_{N}}\left(\frac{1}{k_{N+1}^{s}}\right)^{\frac{1+\delta}{s}} \cdots \sum_{k_{n} \geq k_{n-1}}\left(\frac{1}{k_{n-1}^{s}}\right)^{\frac{1+\delta}{s}} \\
& \leq \liminf _{n \rightarrow \infty} \sum_{\substack{k_{i+1} \geq k_{i} \\
1 \leq i \leq N-1}}\left(\frac{1}{2\left(k_{1} \cdots k_{N}\right)^{s}}\right)^{\frac{1+\delta}{s}}<\infty
\end{aligned}
$$

which gives that $\operatorname{dim}_{H} E_{\epsilon}(\alpha) \leq \frac{1+\delta}{s}$. Since this is true for all $\delta>0$, we get $\operatorname{dim}_{H} E_{\epsilon}(\alpha) \leq \frac{1}{s}$ for $\epsilon(k)=-k-1+\frac{1}{k^{s}}$ and any $s \geq 1$.

3.2. Lower bound

In order to estimate the lower bound, we recall the classical dimensional result concerning a specially defined Cantor set.

Lemma $3.1([6])$ Let $I=E_{0} \supset E_{1} \supset E_{2} \supset \cdots$ be a decreasing sequence of sets, with each E_{n}, a union of a finite number of disjoint closed intervals. If each interval of E_{n-1} contains at least m_{n} intervals of $E_{n}(n=1,2, \ldots)$ which are separated by gaps of at least η_{n}, where $0<\eta_{n+1}<\eta_{n}$ for each n. Then the lower bound of the Hausdorff dimension of E can be given by the following inequality:

$$
\operatorname{dim}_{H}\left(\cap_{n \geq 1} E_{n}\right) \geq \liminf _{n \rightarrow \infty} \frac{\log \left(m_{1} m_{2} \cdots m_{n-1}\right)}{-\log \left(m_{n} \eta_{n}\right)}
$$

Now for each $n \geq 1$, let $E=\left\{x \in(0,1]: 2^{n}<k_{n}(x)<2^{n+1}, \forall n \geq 1\right\}$. Clearly, if $x \in E$, then $k_{n}(x)>k_{n-1}(x)$ for all $n \geq 1$. This implies that $E \subset \mathcal{F}_{\epsilon}$.

For each $n \geq 1$, let E_{n} be the collection of cylinders

$$
\begin{equation*}
E_{n}=\left\{B_{n}\left(k_{1}, \ldots, k_{n}\right): 2^{i}<k_{i}(x)<2^{i+1}, 1 \leq i \leq n\right\} . \tag{14}
\end{equation*}
$$

Then $E=\bigcap_{n=1}^{\infty} E_{n}$, and E fulfills the construction of the Cantor set in Lemma 3.1. Now we specify the integers $\left\{m_{n}, n \geq 1\right\}$ and the real numbers $\left\{\eta_{n}, n \geq 1\right\}$.

Due to the definition of E_{n}, each interval of E_{n-1} contains $m_{n}=2^{n}-1 \geq 2^{n-1}$ intervals of E_{n}, and

$$
\begin{equation*}
m_{1} m_{2} \cdots m_{n-1}=2^{1+2+\cdots+(n-2)}=2^{\frac{(n-2)(n-1)}{2}} ; \tag{15}
\end{equation*}
$$

and any two of intervals in E_{n} are separated by at least one interval $B\left(k_{1}^{-}, \ldots, k_{n-1}^{-}, k_{n}^{+}\right)$.
By (5) and (6), we have

$$
\begin{aligned}
\left|B\left(k_{1}^{-}, \ldots, k_{n-1}^{-}, k_{n}^{+}\right)\right| & =\left|B\left(k_{1}, \ldots, k_{n-1}, k_{n}\right)\right|-B\left|\left(k_{1}^{-}, \ldots, k_{n-1}^{-}, k_{n}^{-}\right)\right| \\
& =\frac{B_{n} C_{n}-A_{n} D_{n}}{C_{n}\left(k_{n} C_{n}+D_{n}\right)}-\frac{B_{n} C_{n}-A_{n} D_{n}}{C_{n}\left(-\epsilon\left(k_{n}\right) C_{n}+D_{n}\right)} \\
& =\frac{\left(B_{n} C_{n}-A_{n} D_{n}\right)\left(-\epsilon\left(k_{n}\right)-k_{n}\right)}{\left(k_{n} C_{n}+D_{n}\right)\left(-\epsilon\left(k_{n}\right) C_{n}+D_{n}\right)} .
\end{aligned}
$$

By Lemma 2.3 and the equality (13), the above equality gives that

$$
\left|B\left(k_{1}^{-}, \ldots, k_{n-1}^{-}, k_{n}^{+}\right)\right| \geq \frac{1}{\left(k_{1} k_{2} \cdots k_{n}\right)^{s+2}}
$$

In view of (14), the partial quotients k_{n} satisfy that $2^{n}<k_{n}(x)<2^{n+1}$ for all $n \geq 1$. Therefore,

$$
\begin{equation*}
\left|B\left(k_{1}^{-}, \ldots, k_{n-1}^{-}, k_{n}^{+}\right)\right| \geq \frac{1}{\left(2^{2+3+\cdots+(n+1)}\right)^{s+2}}=\frac{1}{2^{\frac{n(n+1)(s+2)}{2}}}=: \eta_{k} \tag{16}
\end{equation*}
$$

As a result of (15) and (16), we get

$$
\liminf _{n \rightarrow \infty} \frac{\log _{2}\left(m_{1} \cdots m_{n-1}\right)}{-\log _{2}\left(m_{n} \eta_{n}\right)}=\frac{1}{s+2}
$$

Combining this with Lemma 3.1, we get when $\epsilon(k)=-k-1+\frac{1}{k^{s}}$ for any $s \geq 1$,

$$
\operatorname{dim}_{H} \mathcal{F}_{\epsilon} \geq \operatorname{dim}_{H} E \geq \frac{1}{s+2}
$$

Using the same method of proof, we can get $\operatorname{dim}_{H} \mathcal{F}_{\epsilon} \geq \frac{1}{2}$ when $\epsilon(k)=-k-1+\rho$ for a constant $0<\rho<1$.

Acknowledgements We thank the referees for their time and comments.

References

[1] F. SCHWEIGER. Continued fraction with increasing digits. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 2003, 212: 69-77.
[2] P. ERDÖS, A. RÉNYI, P. SZÜSZ. On Engel's and Sylvester's series. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1958, 1: 7-32.
[3] A. RÉNYI. A new approach to the theory of Engel's series. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1962, 5: 25-32.
[4] J. GALAMBOS. Reprentations of Real Numbers by Infinite Series. Lecture Notes in Math. Vol.502, Berlin, Springer, 1976.
[5] Yanyan LIU, Jun WU. Some exceptional sets in Engel expansions. Nonlinearity, 2003, 16(2): 559-566.
[6] K. J. FALCONER. Fractal Geometry. Mathematical Foundations and Application. Wiley, 1990.
[7] Luming SHEN, Yuyuan ZHOU. Some metric properties on the GCF fraction expansion. J. Number Theory, 2010, 130(1): 1-9.
[8] Ting ZHONG. Metrical properties for a class of continued fractions with increasing digits. J. Number Theory, 2008, 128(6): 1506-1515.

