Fractional Domination of the Cartesian Products in Graphs

Baogen XU
Department of Mathematics, East China Jiaotong University, Jiangxi 330013, P. R. China

Abstract

Let $G=(V, E)$ be a simple graph. For any real function $g: V \longrightarrow R$ and a subset $S \subseteq V$, we write $g(S)=\sum_{v \in S} g(v)$. A function $f: V \longrightarrow[0,1]$ is said to be a fractional dominating function $(F D F)$ of G if $f(N[v]) \geq 1$ holds for every vertex $v \in V(G)$. The fractional domination number $\gamma_{f}(G)$ of G is defined as $\gamma_{f}(G)=\min \{f(V) \mid f$ is an $F D F$ of $G\}$. The fractional total dominating function f is defined just as the fractional dominating function, the difference being that $f(N(v)) \geq 1$ instead of $f(N[v]) \geq 1$. The fractional total domination number $\gamma_{f}^{0}(G)$ of G is analogous. In this note we give the exact values of $\gamma_{f}\left(C_{m} \times P_{n}\right)$ and $\gamma_{f}^{0}\left(C_{m} \times P_{n}\right)$ for all integers $m \geq 3$ and $n \geq 2$.

Keywords Cartesian products; fractional domination number; fractional total domination number
MR(2010) Subject Classification 05C69

1. Introduction

We use Bondy and Murty [1] for terminology and notation not defined here and consider finite simple graph only.

Let $G=(V, E)$ be a graph. The open neighborhood of a vertex v in G is $N(v)=\{u \in$ $V \mid u v \in E(G)\}$, while $N[v]=N(v) \cup\{v\}$ is the closed neighborhood of $v . C_{n}$ and P_{n} denote the cycle and the path of order n, respectively. If $u, v \in V(G)$, then $u \sim v$ denotes u is adjacent to v in G.

For any two disjoint graphs G and H, the Cartesian product $G \times H$ is defined as follows:

$$
\begin{gathered}
V(G \times H)=V(G) \times V(H) \\
E(G \times H)=\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \mid\left(u_{1}=u_{2} \text { and } v_{1} \sim v_{2}\right) \text { or }\left(v_{1}=v_{2} \text { and } u_{1} \sim u_{2}\right)\right\}
\end{gathered}
$$

Let $G=(V, E)$ be a graph. For any real function $g: V \longrightarrow R$ and a subset $S \subseteq V$, we write $g(S)=\sum_{v \in S} g(v)$.

Hare [3] and Stewart [4] introduced the following concept of the fractional domination and the fractional total domination in graphs.

Let $G=(V, E)$ be a graph. A function $f: V \longrightarrow[0,1]$ is said to be a fractional dominating function $(F D F)$ of G if $f(N[v]) \geq 1$ holds for every vertex $v \in V(G)$. The fractional domination number $\gamma_{f}(G)$ of G is defined as $\gamma_{f}(G)=\min \{f(V) \mid f$ is an $F D F$ of $G\}$.

A fractional total dominating function $(F T D F) f$ of G is defined similarly, the difference being that $f(N(v)) \geq 1$ instead of $f(N[v]) \geq 1$. The fractional total domination number $\gamma_{f}^{0}(G)$ of G is defined as $\gamma_{f}^{0}(G)=\min \{f(V) \mid f$ is an $F T D F$ of $G\}$.

Fractional packing numbers are defined analogously; a real function $f: V(G) \longrightarrow[0,1]$ is a fractional packing function of G if $f(N[v]) \leq 1$ holds for every vertex $v \in V(G)$. A fractional packing function f is maximal if for every $u \in V(G)$ with $f(u)<1$, there exists a vertex $v \in N[u]$ such that $f(N[v])=1$. The upper fractional packing number $P_{f}(G)$ of G is defined as $P_{f}(G)=\max \{f(V) \mid f$ is a maximal packing function of $G\}$.

Lemma 1.1 ([2]) For any graph $G, P_{f}(G)=\gamma_{f}(G)$.
Lemma 1.2 ([2]) For any r-regular graph $G(r \geq 1)$, then
(1) $\gamma_{f}(G)=\frac{n}{r+1}$; (2) $\gamma_{f}^{0}(G)=\frac{n}{r}$.

For the Cartesian product $P_{m} \times P_{n}$, Hare [3] and Stewart [4] gave an exact formula for $\gamma_{f}\left(P_{2} \times P_{n}\right)$ and some bounds of $\gamma_{f}\left(P_{m} \times P_{n}\right)$ for $3 \leq m \leq n$.

Lemma 1.3 ([2]) For all integers $n \geq 1$, then
(1) when $n \equiv 1(\bmod 2), \gamma_{f}\left(P_{2} \times P_{n}\right)=\frac{n+1}{2}$;
(2) when $n \equiv 0(\bmod 2), \gamma_{f}\left(P_{2} \times P_{n}\right)=\frac{n^{2}+2 n}{2(n+1)}$.

However, there is no known formula of $\gamma_{f}\left(P_{m} \times P_{n}\right)$ for $3 \leq m \leq n$. It is very difficult to give the exact value of $\gamma_{f}\left(P_{m} \times P_{n}\right)$. Fisher [5] has tried without success to find such a formula for $\gamma_{f}\left(P_{3} \times P_{n}\right)$. Up to now, few exact value of $\gamma_{f}\left(P_{m} \times P_{n}\right)$ is known when $3 \leq m \leq n$.

We are interested in the Cartesian products $C_{m} \times P_{n}$. In this note we give exact formulas of $\gamma_{f}\left(C_{m} \times P_{n}\right)$ and $\gamma_{f}^{0}\left(C_{m} \times P_{n}\right)$ for all integers $m \geq 3$ and $n \geq 2$.

2. Fractional total domination number for $C_{m} \times P_{n}$

Theorem 2.1 For all integers $m \geq 3$ and $n \geq 2$, we have $\gamma_{f}^{0}\left(C_{m} \times P_{n}\right)=\frac{m}{4(n+1)}\left(n^{2}+n+2\left\lceil\frac{n}{2}\right\rceil\right)$.
Proof Let $G=C_{m} \times P_{n}, V(G)=\{(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\}$, and

$$
E(G)=\{(i, j)(i, j+1) \mid 1 \leq i \leq m, 1 \leq j \leq n-1\} \cup\{(i, j)(i+1, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\},
$$

where $(m+1, j)=(1, j)$ for every integer $j(1 \leq j \leq n)$.
Define an FTDF f of G as follows:
Let $f((i, j))=x_{j}(i=1,2, \ldots, m)$ for every integer $j(1 \leq j \leq n)$.
Case $1 n=2 k+1$; for some $k \in N^{+}$.
Let $x_{2 j}=0(1 \leq j \leq k)$ and $x_{2 j-1}=\frac{1}{2}$ for every integer $j(1 \leq j \leq k+1)$;
It is easy to check that $f(N(i, j))=1$ holds for all vertices $(i, j) \in V(G)$, and hence f is an

FTDF of G, which means

$$
\begin{equation*}
\gamma_{f}^{0}(G) \leq f(V(G))=\frac{m(n+1)}{4} \tag{1}
\end{equation*}
$$

On the other hand, let g be an FTDF of G such that $\gamma_{f}^{0}(G)=g(V(G))$. By the definition, for every vertex $(i, 2 j-1) \in V(G)(1 \leq i \leq m, 1 \leq j \leq k+1)$, we have $g(N(i, 2 j-1)) \geq 1$, and hence $2 g(V(G))=\sum_{i=1}^{m} \sum_{j=1}^{k+1} g(N(i, 2 j-1)) \geq m(k+1)$, i.e.,

$$
\gamma_{f}^{0}(G)=g(V(G)) \geq \frac{m(k+1)}{2}=\frac{m(n+1)}{4} .
$$

Combining with (1), we have $\gamma_{f}^{0}(G)=\frac{m(n+1)}{4}$, and the theorem holds for all odd $n \geq 3$.
Case $2 n=2 k$; for some $k \in N^{+}$.
Let $x_{2 j}=\frac{j}{n+1}$ and $x_{2 j-1}=\frac{n-2 j+2}{2(n+1)}$ for every integer $j(1 \leq j \leq k)$.
It is easy to see that $f(N(i, j))=1$ holds for all vertices $(i, j) \in V(G)$, and hence f is an FTDF of G, which means

$$
\gamma_{f}^{0}(G) \leq f(V(G))=m \sum_{j=1}^{k}\left(\frac{j}{n+1}+\frac{n-2 j+2}{2(n+1)}\right)=\frac{m k(n+2)}{2(n+1)}=\frac{m\left(n^{2}+2 n\right)}{4(n+1)}
$$

Next we prove that $\gamma_{f}^{0}(G) \geq \frac{m\left(n^{2}+2 n\right)}{4(n+1)}$.
When $n=2, G$ is a 3 -regular graph. By Lemma 1.2, Theorem 2.1 holds. Next suppose that $n \geq 4$ and $n=2 k$ is even.

Assume, to the contrary, that

$$
\begin{equation*}
\gamma_{f}^{0}(G)<\frac{m\left(n^{2}+2 n\right)}{4(n+1)} \tag{2}
\end{equation*}
$$

Let g be such an FTDF of G that $\gamma_{f}^{0}(G)=g(V(G))$, and for each $j=1,2, \ldots, n$, let $C(j)=\{(i, j) \mid 1 \leq i \leq m\} \subseteq V(G)$. Clearly, $V(G)=\bigcup_{i=1}^{\frac{n}{2}}(C(2 i-1) \cup C(2 i))$, thus, there exists an odd integer $r(1 \leq r \leq n)$, so that

$$
g(C(r))+g(C(r+1)) \leq \frac{2}{n} g(V(G))=\frac{2}{n} \gamma_{f}^{0}(G)<\frac{m(n+2)}{2(n+1)}
$$

Let $g(N(j))=\sum_{i=1}^{m} g(N(i, j))$ for every integer $j \in\{1,2, \ldots, n\}$. Since $g(N(i, j)) \geq 1$ holds for all vertices $(i, j) \in V(G)$, we have $g(N(j)) \geq m$ holds for all integers $j \in\{1,2, \ldots, n\}$. Note that r is odd and $n=2 k$ is even. We have

$$
\begin{aligned}
& 2 g(V(G))+g(C(r))+g(C(r+1)) \\
& \quad=g(N(1))+g(N(3))+\cdots+g(N(r))+g(N(r+1))+g(N(r+3))+\cdots+g(N(n)) \\
& \quad \geq\left(\frac{n}{2}+1\right) m .
\end{aligned}
$$

And hence, we have

$$
\begin{aligned}
2 g(V(G)) & \geq\left(\frac{n}{2}+1\right) m-(g(C(r))+g(C(r+1)) \\
& \geq\left(\frac{n}{2}+1\right) m-\frac{m(n+2)}{2(n+1)}=\frac{m\left(n^{2}+2 n\right)}{2(n+1)}
\end{aligned}
$$

$$
\gamma_{f}^{0}(G)=g(V(G)) \geq \frac{m\left(n^{2}+2 n\right)}{4(n+1)}
$$

This contradicts (3). Combining with (2), we have proved that $\gamma_{f}^{0}(G)=\frac{m\left(n^{2}+2 n\right)}{4(n+1)}$ holds for all even $n \geq 2$. The proof of Theorem 2.1 is completed.

3. Fractional domination number for $C_{m} \times P_{n}$

The following two lemmas are useful to obtain our main results.
Lemma 3.1 Let A and B be both matrices of order $n \geq 2$, and

$$
A=\left(\begin{array}{cccccc}
3 & 1 & 0 & 0 & \cdots & 0 \\
1 & 3 & 1 & 0 & \cdots & 0 \\
0 & 1 & 3 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & 1 \\
0 & 0 & 0 & \cdots & 1 & 3
\end{array}\right), \quad B=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 3 & 1 & 0 & \cdots & 0 \\
1 & 1 & 3 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & 1 \\
1 & 0 & 0 & \cdots & 1 & 3
\end{array}\right) .
$$

Then (1) $A_{n}=\operatorname{det} A=\frac{a^{n+1}-b^{n+1}}{a-b}$, where $a=\frac{3+\sqrt{5}}{2}$ and $b=\frac{3-\sqrt{5}}{2}$;
(2) $B_{n}=\operatorname{det} B=\frac{1}{5}\left(A_{n}+A_{n-1}+(-1)^{n-1}\right)$, where let $A_{0}=1$.

Proof We use the induction on $n \geq 1$.
When $n=1$, clearly, $A_{1}=3=a+b$, and $B_{1}=1$, and the result follows.
We suppose that Lemma 3.1 is true for all matrices with determinants of order $k \leq n-1$. Now we consider the two $n \times n$ matrices A and B. Note that $a+b=3$ and $a b=1$. By the induction hypothesis, we have

$$
\begin{gathered}
A_{n}=3 A_{n-1}-A_{n-2}=(a+b) \frac{a^{n}-b^{n}}{a-b}-a b \frac{a^{n-1}-b^{n-1}}{a-b}=\frac{a^{n+1}-b^{n+1}}{a-b} \\
B_{n}=A_{n-1}-B_{n-1}=A_{n-1}-\frac{1}{5}\left(A_{n-1}+A_{n-2}+(-1)^{n-2}\right) \\
=\frac{1}{5}\left(4 A_{n-1}-A_{n-2}+(-1)^{n-1}\right)=\frac{1}{5}\left(A_{n}+A_{n-1}+(-1)^{n-1}\right)
\end{gathered}
$$

So, Lemma 3.1 is true for all determinants of order n, this proof is completed.
Lemma 3.2 Let $X^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $C^{T}=(1,1,1, \ldots, 1)$ be an n-dimensional vector ($n \geq 2$). Then the linear equation

$$
\begin{equation*}
A X=C \tag{*}
\end{equation*}
$$

has the unique solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which satisfies the following two conditions:
(1) $x_{1}=x_{n}=\frac{B_{n}}{A_{n}}$, and $x_{i}=x_{n+1-i}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$;
(2) $0 \leq x_{i} \leq 1(1 \leq i \leq n)$,
where A, A_{n} and B_{n} are defined as in Lemma 3.1.
Proof (1) Since $A_{n} \neq 0$, the linear equation ($*$) has the unique solution ($x_{1}, x_{2}, \ldots, x_{n}$), from the uniqueness of the solution and the symmetry of A, and by Cramer' Rule, we have $x_{1}=x_{n}=\frac{B_{n}}{A_{n}}$, and $x_{i}=x_{n+1-i}\left(1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil\right)$.
(2) When $2 \leq n \leq 6$, it is easy to check that $0 \leq x_{i} \leq 1(1 \leq i \leq n)$. The solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is listed in the proof of Theorem 3.3 (1) for every $n \in\{2,3,4,5,6\}$.

Next we suppose $n \geq 7$.
Now we prove that $x_{i} \geq 0$ holds for every integer $i(1 \leq i \leq n)$.
Assume, to the contrary, that there exists an integer i such that $x_{i}<0$.
Let $r=x_{j}=\min \left\{x_{i} \mid 1 \leq i \leq n\right\}$. Note that $a=\frac{3+\sqrt{5}}{2}, b=\frac{3-\sqrt{5}}{2}, a b=1$, we have $A_{n}=a A_{n-1}+b^{n}, A_{n-1}=b A_{n}-b^{n+1}$. By Lemma 3.1, we have

$$
x_{1}=x_{n}=\frac{B_{n}}{A_{n}}=\frac{1}{5 A_{n}}\left(A_{n}+A_{n-1}+(-1)^{n-1}\right)=\frac{1+b}{5}+\frac{(-1)^{n-1}-b^{n+1}}{5 A_{n}}
$$

Note that $\frac{1}{3} \leq b=\frac{3-\sqrt{5}}{2} \leq \frac{2}{5}$ and $A_{n} \geq 6$, we have $0 \leq x_{1} \leq \frac{1}{3}$. It is easy to see from the linear equation $A X=C$ that $x_{2}=x_{n-1}=1-3 x_{1} \geq 0$, and hence $3 \leq j \leq n-2$. Since $x_{j-1}+3 x_{j}+x_{j+1}=1$, we have $x_{j-1} \geq \frac{1-3 r}{2}$ or $x_{j+1} \geq \frac{1-3 r}{2}$.

If $x_{j-1} \geq \frac{1-3 r}{2}$, since $x_{j-2}+3 x_{j-1}+x_{j}=1$, and note that $r \leq 0$, we have $x_{j-2}=$ $1-3 x_{j-1}-r \leq 1-\frac{3}{2}(1-3 r)-r=\frac{7}{2} r-\frac{1}{2}<r$, this contradicts the choice of r.

If $x_{j+1} \geq \frac{1-3 r}{2}$, similarly, since $x_{j}+3 x_{j+1}+x_{j+2}=1$, we have $x_{j+2}=1-3 x_{j+1}-r \leq$ $1-\frac{3}{2}(1-3 r)-r=\frac{7}{2} r-\frac{1}{2}<r$, this contradicts the choice of r as well.

Thus, $x_{i} \geq 0$ holds for every integer $i(1 \leq i \leq n)$, implying that $x_{i} \leq 1$ holds for every integer $i(1 \leq i \leq n)$. We have completed the proof of Lemma 3.2.

Theorem 3.3 For all integers $m \geq 3$ and $n \geq 2$, then
(1) $\gamma_{f}\left(C_{m} \times P_{2}\right)=\frac{1}{2} m, \gamma_{f}\left(C_{m} \times P_{3}\right)=\frac{5}{7} m, \gamma_{f}\left(C_{m} \times P_{4}\right)=\frac{10}{11} m, \gamma_{f}\left(C_{m} \times P_{5}\right)=\frac{10}{9} m$, $\gamma_{f}\left(C_{m} \times P_{6}\right)=\frac{38}{29} m ;$
(2) When $n \geq 7, \gamma_{f}\left(C_{m} \times P_{n}\right)=\frac{(5 n+2) A_{n}+2 A_{n-1}+2(-1)^{n-1}}{25 A_{n}} m$, where $A_{n}=\frac{(3+\sqrt{5})^{n+1}-(3-\sqrt{5})^{n+1}}{2^{n+1} \cdot \sqrt{5}}$ for each integer $n \geq 1$.

Proof Let $G=C_{m} \times P_{n}$, and $V(G)$ and $E(G)$ be the same as in the proof of Theorem 2.1.
Next we define a maximal packing function f of G such that $f(N[v])=1$ holds for every vertex $v \in V(G)$.

For every vertex $(i, j) \in V(G)$, define $f((i, j))=x_{i}(i=1,2, \ldots, n ; j=1,2, \ldots, m) . S(n)=$ $\sum_{i=1}^{n} x_{i}$, clearly, $f(V(G))=m S(n)$.
(1) When $n=2$; let $\left(x_{1}, x_{2}\right)=\left(\frac{1}{4}, \frac{1}{4}\right), S(2)=\frac{1}{2}$;
when $n=3$; let $\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right), S(3)=\frac{5}{7}$;
when $n=4$; let $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{3}{11}, \frac{2}{11}, \frac{2}{11}, \frac{3}{11}\right), S(4)=\frac{10}{11}$;
when $n=5$; let $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(\frac{5}{18}, \frac{3}{18}, \frac{4}{18}, \frac{3}{18}, \frac{5}{18}\right), S(5)=\frac{10}{9}$;
when $n=6$; let $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(\frac{8}{29}, \frac{5}{29}, \frac{6}{29}, \frac{6}{29}, \frac{5}{29}, \frac{8}{29}\right), S(6)=\frac{38}{29}$.
It is easy to see that $f(N[v])=1$ holds for every vertex $v \in V(G)$, and hence f is a maximum packing function. By Lemma 1.1, these five equalities in Theorem 3.3 hold.
(2) When $n \geq 7$, let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the unique solution of the linear equation (*). It is easy to see from Lemma 3.2 that f is a maximum packing function of G. And

$$
4\left(x_{1}+x_{n}\right)+5\left(x_{2}+x_{3}+\cdots+x_{n-1}\right)=C^{T} A X=C^{T} C=n
$$

By Lemmas 3.1 and 3.2, we have

$$
S(n)=\sum_{i=1}^{n} x_{i}=\frac{n+x_{1}+x_{n}}{5}=\frac{n}{5}+\frac{2 B_{n}}{5 A_{n}}=\frac{(5 n+2) A_{n}+2 A_{n-1}+2(-1)^{n-1}}{25 A_{n}}
$$

By Lemma 1.1,

$$
\gamma_{f}(G)=P_{f}(G)=f(V(G))=m S(n)=\frac{(5 n+2) A_{n}+2 A_{n-1}+2(-1)^{n-1}}{25 A_{n}} m
$$

where $A_{n}=\frac{a^{n+1}-b^{n+1}}{a-b}=\frac{(3+\sqrt{5})^{n+1}-(3-\sqrt{5})^{n+1}}{2^{n+1} \cdot \sqrt{5}}$.
We have completed the proof of Theorem 3.3.
Acknowledgements I am very grateful to the referees for their careful reading with corrections.

References

[1] J. A. BONDY, V. S. R. MURTY. Graph Theory with Applications. Elsevier, Amsterdam, 1976.
[2] T. W. HAYNES, S. T. HEDETNIEMI, P. J. SLATER. Domination in graphs. Marcel Dekker INC, New York, 1998.
[3] E. O. HARE. K-weight domination and fractional domination of $P_{m} \times P_{n}$. Congr. Numer., 1990, 78: 71-80.
[4] L. S. STEWART, E. O. HARE. Fractional domination of $P_{m} \times P_{n}$. Congr. Numer., 1992, 91: 35-42.
[5] D. C. FISHER. Domination, fractional domination, 2-packing and graph products. SIAM Discrete Math., 1994, 7(3): 493-498.

