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Abstract The 2-step domination problem is to find a minimum vertex set D of a graph such

that every vertex of the graph is either in D or at distance two from some vertex of D. In the

present paper, by using a labeling method, we provide an O(m) time algorithm to solve the

2-step domination problem on block graphs, a superclass of trees.
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1. Introduction

In this paper, all graphs considered are finite, undirected, loopless and without multiple

edges. We refer the reader to the book [13] for graph theory notation and terminology not defined

here. Specifically, let G = (V,E) be a simple graph with vertex set V and edge set E. For any

v ∈ V , the neighborhood N(v) of v is the set of vertices adjacent to v, the closed neighborhood

of v is N [v] = N(v)∪ {v}. The distance between two vertices x and y is the length of a shortest

xy-path in G, denoted by dG(x, y). The 2-step neighborhood of v is N2(v) = {u|dG(v, u) = 2}.
The closed 2-step neighborhood of v is N2[v] = N2(v) ∪ {v}.

Given a graph G = (V,E), a subset D ⊆ V is called a dominating set of G if every vertex in

G is either in D or adjacent to a vertex in D. The domination number γ(G) of G is the minimum

cardinality among all dominating sets of G.

Given a graph G = (V,E), a subset D ⊆ V is called a 2-step dominating set of G if every

vertex in G is either in D or at distance two from a vertex in D. The 2-step domination number

γ2(G) of G is the minimum cardinality among all 2-step dominating sets of G. If u ∈ N2[v], then

we usually say that v 2-step dominates u.

Domination theory has become an important part of graph theory, and various domination-

related parameters have been widely studied. Among these parameters, the 2-step domina-
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tion was introduced by Slater in [11], and has been extensively studied in papers such as

[7,10,12,14,19,20]. However, these papers mainly concentrate on the characterizations of 2-step

domination graphs. A graph G is called a 2-step domination graph if it contains a set S ⊆ V (G)

such that the sets N2(v), v ∈ S form a partition of V (G). In the present paper, we focus on the

computation of the 2-step domination numbers of graphs.

Since the domination problem is NP-complete for general graphs, chordal graphs, and bi-

partite graphs [1,3,8,18], it is easy to see that 2-step domination problem is also NP-complete

for the above classes of graphs. The purpose of this paper is to initiate the study of efficient

algorithms for solving 2-step domination problem on some graph classes. In this paper, by using

labeling method, we provide a linear-time algorithm to solve 2-step domination problem in block

graphs, a superclass of trees.

2. Definitions

A forest is a graph without cycles. A tree is a connected forest. A leaf in a graph is a

vertex with degree one. In a graph G, a vertex x is a cut vertex if deleting x (together with all

edges incident to it) increases the number of connected components. A block of G is a maximal

connected subgraph without a cut vertex. If G has no cut vertex, G itself is a block. The

intersection of two blocks contains at most one vertex and a vertex is a cut vertex if and only

if it is the intersection of two or more blocks. In general, the blocks of a connected graph fit

together in a treelike structure. A block B of G is called an end block if B contains at most one

cut vertex of G. A block graph is a graph whose blocks are complete graphs. This name arises

because a graph G is the intersection graph of the blocks of some graph if and only if every block

of G is complete [12].

Given a block graph G, since its blocks fit together in a treelike structure, then we may

give some similar terminology and definitions to that in a tree. Define the distance between two

blocks B1 and B2 as dG(B1, B2) = max{dG(v1, v2)|v1 ∈ B1, v2 ∈ B2} − 1. Define the distance

between a vertex v and a block B as dG(v,B) = max{dG(v, u)|u ∈ B}−1. Now, we assume that

the block graph G is rooted at any block, say B0, of it. Then the height of G is the maximum

distance from an end block to the root block B0. If G = B0, then the height of G is zero. Let

h be the height of G and let the i-th level Ai, 0 ≤ i ≤ h, be the set of blocks of G which are at

distance i from B0.

3. Algorithm for 2-step domination in block graphs

Now, we work on an algorithm for finding a minimum 2-step dominating set of a block graph.

For technical reasons, we actually consider a slightly more general problem. Suppose the vertex

set of a graph G is partitioned into three sets, N,F , and R, where N consists of needed vertices,

F consists of free vertices, and R consists of required vertices. An optional 2-step dominating set

of G is any set D ⊆ V which contains all required vertices, that is, R ⊆ D, and 2-step dominates

all vertices in N . The optional 2-step domination number γ2
opt(G) is the minimum cardinality
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among all optional 2-step dominating sets of G. An optional 2-step dominating set of G with

cardinality γ2
opt(G) is also called a γ2

opt-set.

Note that the 2-step domination problem is just the optional 2-step domination problem

with F = R = ∅ and N = V . This generalization can be viewed as a labeling algorithm in

which a vertex has a label “needed” or “free” or “required” if it is in N or F or R, respectively.

The labeling method was first used by Cockayne, Goodman, and Hedetniemi for solving the

domination problem in trees [5], and then widely used by various authors in the literature for

solving the domination-related problems [4,6,8,9,15-17,21,22]. It is a natural but powerful tool

when we use an induction to treat a tree from leaves toward to the center.

As an optional 2-step dominating set of a graph G = (V,E) is indeed a 2-step dominating

set of G when V = N , in order to find a minimum 2-step dominating set, we only have to label

all vertices “needed” and find a minimum optional 2-step dominating set. Now a linear-time

algorithm for finding a minimum optional 2-step dominating set of a block graph is shown as

follows.

Algorithm 2-StepDomBlock (finding a minimum optional 2-step dominating set of a block

graph).

Input: A block graph G = (V,E) rooted at B0, with an arbitrary FNR assignments to its

vertex set.

Output: A minimum optional 2-step dominating set D of G, consisting of the vertices with

label R.

Method. In every step, the algorithm visits a non-cut vertex in an end block B, label or relabel

some vertices, deletes this vertex from B and G. For a non-cut vertex v ∈ B, define a parameter

f2(v) as follows. If the height of G is at least two, then let f2(v) be the cut vertex in N2(v) with

the closest distance from B0. If the height of G is one, then let f2(v) be an arbitrary non-cut

vertex in N2(v).

Begin

L(x)← N for all x ∈ N ;

L(x)← F for all x ∈ F ;

L(x)← R for all x ∈ R;

D ← ∅;
do while the height of G is at least 1

do while B is an end block of G with the maximum level number

for any non-cut vertex v ∈ B do

if L(v) = F , then B ← B − v, G← G− v;

if L(v) = N , then

if there exists some vertex x ∈ N2(v) such that L(x) = R, then

B ← B − v, G← G− v;

if all vertices in N2(v) are not labeled R, then

B ← B − v, G← G− v, L(f2(v))← R;

if L(v) = R, then



288 Yancai ZHAO, Lianying MIAO and Zuhua LIAO

for every vertex x ∈ N2(v) do

if L(x) = R, then do nothing;

if L(x) ̸= R, then L(x)← F ;

end for

B ← B − v, G← G− v, D ← D ∪ {v};
end while

end while

do while the height of G is zero

Let L(x) = R for every vertex with L(x) = N , and then D ← D ∪ {u ∈ G| L(u) = R};
end while

End

It is easy to see that the running time of the algorithm is O(m), where m is the edge number

of a graph. When we visit a vertex v, we should scan the labels of the vertices in N2(v), whose

cardinality is less by one than the degree of the father of v. Then the amount of time for scanning

is at most
∑

v∈V (d(v) − 1) = 2m − 2. Thus the running time of the algorithm is O(m). The

correctness of the algorithm is based on the following theorem.

Theorem 3.1 2-StepDomBlock produces a minimum optional 2-step dominating set of a block

graph G.

Proof It is sufficient to consider G with height at least one, since the last step obviously produces

a minimum optional 2-step dominating set of a complete graph correctly. We still assume that

B is an end block with the biggest level number in G, v is a non-cut vertex in B, and f2(v) is

defined as in Algorithm 2-StepDomBlock. Then, the proof of Theorem 3.1 is followed by a series

of claims.

Claim 1 If v ∈ F , then γ2
opt(G) = γ2

opt(G− v).

Let D be a γ2
opt-set of G. If v ∈ D, then D \ {v} ∪ {f2(v)} is an optional 2-step dominating

set of G− v. If v /∈ D, then clearly D is also an optional 2-step dominating set of G− v. Hence

γ2
opt(G − v) ≤ γ2

opt(G). Conversely, let D′ be a γ2
opt-set of G − v. Since v ∈ F , D′ is also an

optional 2-dominating set of G. Therefore, γ2
opt(G) ≤ γ2

opt(G− v).

Claim 2 If v ∈ N and there exists some vertex x ∈ N2(v) with label R, then we have γ2
opt(G) =

γ2
opt(G− v).

Let D be a γ2
opt-set of G. Since x ∈ R in G, x ∈ D. If v ∈ D, then D \ {v} ∪ {f2(v)} is

an optional 2-step dominating set of G − v. If v /∈ D, then clearly D is also an optional 2-step

dominating set of G− v. Thus γ2
opt(G− v) ≤ γ2

opt(G). Conversely, let D′ be a γ2
opt-set of G− v.

Since x ∈ R in G− v, x ∈ D′. Then it follows that D′ is also an optional 2-step dominating set

of G, since v ∈ N is 2-step dominated by x in G. Hence, γ2
opt(G) ≤ γ2

opt(G− v).

Claim 3 If v ∈ N and there exists no vertex in N2(v) with label R, and G′ is the block graph

which results from G by deleting v and relabeling f2(v) with R, then γ2
opt(G) = γ2

opt(G
′).
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Let D be a γ2
opt-set of G. If v ∈ D, then D \ {v} ∪ {f2(v)} is an optional 2-step dominating

set of G− v, in which f2(v) is considered as a required vertex. So suppose v /∈ D. Since v ∈ N ,

there must exist some vertex x ∈ N2(v) ∩D to 2-step dominate v. If x ̸= f2(v), then noting the

fact that v is the farthest vertex from B0, it is easy to see that all the vertices which are 2-step

dominated by x can also be 2-step dominated by f2(v). So D\{x}∪{f2(v)} is an optional 2-step

dominating set of G− v, in which f2(v) is considered as a required vertex. If x = f2(v), then D

is obviously an optional 2-step dominating set of G − v, in which f2(v) is also considered as a

required vertex. In either case, γ2
opt(G

′) ≤ γ2
opt(G). Conversely, let D′ be a γ2

opt-set of G
′. Since

f2(v) ∈ R in G′, f2(v) ∈ D′. Then it follows that D′ is also an optional 2-step dominating set of

G, since v ∈ N is 2-step dominated by f2(v) in G. Hence, γ2
opt(G) ≤ γ2

opt(G
′).

Claim 4 If v ∈ R and G′ is the block graph which results from G by deleting v and relabeling the

vertices in N2(v) as the corresponding statements in Algorithm 2-StepDomBlock, then γ2
opt(G) =

γ2
opt(G

′) + 1.

Let D be a γ2
opt-set of G. Since v ∈ R, we have v ∈ D. Then it follows that D \ {v} is an

optional 2-step dominating set of G′, since all the vertices in N2(v) are labeled R or F in G′.

Hence, γ2
opt(G

′) ≤ γ2
opt(G)− 1. Conversely, let D′ be a γ2

opt-set of G
′. Obviously D′ ∪ {v} is an

optional 2-step dominating set of G. This means that γ2
opt(G) ≤ γ2

opt(G
′) + 1. �
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