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Abstract We investigate relationships between the Moore-Penrose inverse (ABA∗)† and
the product [(AB)(1,2,3)]∗B(AB)(1,2,3) through some rank and inertia formulas for the differ-
ence of (ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3), where B is Hermitian matrix and (AB)(1,2,3)

is a {1, 2, 3}-inverse of AB. We show that there always exists an (AB)(1,2,3) such that
(ABA∗)† = [(AB)(1,2,3)]∗B(AB)(1,2,3) holds. In addition, we also establish necessary and suffi-
cient conditions for the two inequalities (ABA∗)† ≻ [(AB)(1,2,3)]∗B(AB)(1,2,3) and (ABA∗)† ≺
[(AB)(1,2,3)]∗B(AB)(1,2,3) to hold in the Löwner partial ordering. Some variations of the e-
qualities and inequalities are also presented. In particular, some equalities and inequalities
for the Moore-Penrose inverse of the sum A + B of two Hermitian matrices A and B are
established.
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1. Introduction

It is well known that a fundamental work in matrix theory is to establish equalities and

inequalities between matrices. Assume that A, B and C are three matrices such that the product

ABC is defined. If the triple matrices are nonsingular, then AB and ABC are nonsingular as

well, and the standard inverses of AB and ABC satisfy the equalities (AB)−1 = B−1A−1 and

(ABC)−1 = (BC)−1B(AB)−1 = C−1B−1A−1. These equalities are called the reverse-order

laws for inverse operations of matrix products in matrix theory. If A, B and C are singular,

we can use generalized inverses of the matrices instead of standard inverses of the matrices. In

this case, various equalities for generalized inverses of matrix products, called reverse-order laws

for generalized inverses, may hold as well. Motivated by (ABC)−1 = (BC)−1B(AB)−1, it was

shown in [6] that there always exist two generalized inverses (AB)(1,2,3) and (BC)(1,2,4) such

that the Moore-Penrose inverse of ABC can be expressed as

(ABC)† = (BC)(1,2,4)B(AB)(1,2,3). (1.1)
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This equality in fact establishes a decomposition for the Moore-Penrose inverse of ABC, and

can be applied to analyze properties of (ABC)†. In this paper, we consider the triple product

ABA∗, with B = B∗, and show that the following reverse-order law

(ABA∗)† = [(AB)(1,2,3)]∗B(AB)(1,2,3) (1.2)

always holds. We also give identifying conditions for the following matrix inequalities

(ABA∗)† ≻ [(AB)(1,2,3)]∗B(AB)(1,2,3) and (ABA∗)† ≺ [(AB)(1,2,3)]∗B(AB)(1,2,3) (1.3)

to hold in the Löwner partial ordering.

As formulated in Lemma 2.1 below, we can use ranks and inertias of matrices to prove

possible equalities and inequalities. In this paper, we shall first establish a group of formulas for

calculating the maximal and minimal values of

rank{(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)}, (1.4)

inertia{(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)}. (1.5)

We then utilize the formulas to characterize (1.2) and (1.3). Some variations of (1.2) and (1.3)

are also presented. In particular, a group of equalities and inequalities for the Moore-Penrose

inverse of the sum A+B of two Hermitian matrices are established.

Before proceeding, we introduce the notation used in this paper. We use Cm×n and Cm
H

to denote the sets of all complex m × n matrices and all complex Hermitian m × m matrices,

respectively. The symbols A∗, r(A), and R(A) stand for the conjugate transpose, the rank, and

the range (column space) of a matrix A ∈ Cm×n, respectively. The Moore-Penrose inverse of

A ∈ Cm×n is defined to be the unique matrix X ∈ Cn×m satisfying the four equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA,

and is denoted by A†. Further let EA and FA stand for the two orthogonal projectors EA =

Im−AA†, and FA = In−A†A induced by A, and both EA∗ = FA and FA∗ = EA always hold. A

matrix X is called a g-inverse of A, denoted by A−, if it satisfies (i); called an {i, . . . , j}-inverse
of A, denoted by A(i,...,j), if it satisfies the ith,. . . , jth equations. For A ∈ Cm

H , the symbols

i+(A) and i−(A) stand for the number of the positive and negative eigenvalues of A counted

with multiplicities, respectively, where r(A) = i+(A)+i−(A). The notation A < 0 (A ≻ 0) means

that A is Hermitian positive semi-definite (positive definite). Two A, B ∈ Cm
H are said to satisfy

the inequality A < B (A ≻ B) in the Löwner partial ordering if A − B is Hermitian positive

semi-definite (positive definite).

We use the following rank and inertia expansion formulas for calculating (1.4) and (1.5).

Lemma 1.1 ([3]) Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n. Then

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.6)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (1.7)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC). (1.8)
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The results on ranks and inertias of matrices in the following lemma are obvious or well

known (see also [4] for their references).

Lemma 1.2 Let A ∈ Cm
H , B ∈ Cn

H, B ∈ Cn
H, and Q ∈ Cm×n, and assume that P ∈ Cm×m is

nonsingular. Then

i±(PAP ∗) = i±(A), (1.9)

i±(A
†) = i±(A), i±(−A) = i∓(A), (1.10)

i±

[
A 0
0 B

]
= i±(A) + i±(B), (1.11)

i+

[
0 Q
Q∗ 0

]
= i−

[
0 Q
Q∗ 0

]
= r(Q). (1.12)

Lemma 1.3 ([4]) Let A ∈ Cm
H , B ∈ Cm×n, and D ∈ Cn

H. Then

i±

[
A B
B∗ 0

]
= r(B) + i±(EBAEB), (1.13)

i±

[
A B
B∗ D

]
= i±(A) + i±

[
0 EAB

B∗EA D −B∗A†B

]
. (1.14)

Theorem 1.4 ([5]) Let

f(X) = ϕ(X; A, B, C, D, M) = (AXB + C )M(AXB + C)
∗
+D, (1.15)

where A ∈ Cn×p, B ∈ Cm×q, C ∈ Cn×q, D ∈ Cn
H, and M ∈ Cq

H are given, and X ∈ Cp×m is a

variable matrix. Also, define

N1 =

[
D + CMC∗ A

A∗ 0

]
, N2 =

[
D + CMC∗ CMB∗ A

A∗ 0 0

]
,

N3 =

[
D + CMC∗ CMB∗

BMC∗ BMB∗

]
, N4 =

[
D + CMC∗ CMB∗ A

BMC∗ BMB∗ 0

]
.

Then, the global maximal and minimal ranks and inertias of f(X) are given by

max
X∈Cp×m

r[ f(X) ] = min { r[D + CMC∗, CMB∗, A ], r(N1), r(N3) } , (1.16)

min
X∈Cp×m

r[ f(X) ] = 2r[D + CMC∗, CMB∗, A ] + max{ s1, s2, s3, s4 }, (1.17)

max
X∈Cp×m

i±[ f(X) ] = min { i±(N1), i±(N3) } , (1.18)

min
X∈Cp×m

i±[ f(X) ] = r[D+CMC∗, CMB∗, A ]+max {i±(N1)− r(N2), i±(N3)− r(N4)} , (1.19)

where s1 = r(N1) − 2r(N2), s2 = r(N3) − 2r(N4), s3 = i+(N1) + i−(N3) − r(N2) − r(N4), and

s4 = i−(N1) + i+(N3)− r(N2)− r(N4).

2. Main results

The assertions in the following lemma arise directly from the definitions of rank and inertia

of matrix.

Lemma 2.1 Let S be a set of Cm
H . Then, the following results hold.
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(a) 0 ∈ S if and only if minX∈S r(X) = 0.

(b) S has a nonsingular matrix if and only if maxX∈S r(X) = m.

(c) S has a matrix X ≻ 0 (X ≺ 0) if and only if maxX∈S i+(X) = m (maxX∈S i−(X) = m).

(d) AllX ∈ S satisfyX≻ 0 (X≺ 0) if and only ifminX∈S i+(X) = m (minX∈S i−(X) = m).

(e) S has a matrix X < 0 (X 4 0) if and only if minX∈S i−(X) = 0 (minX∈S i+(X) = 0).

(f) AllX ∈ S satisfyX < 0 (X 4 0) if and only ifmaxX∈S i−(X) = 0 (maxX∈S i+(X) = 0).

This lemma shows that if certain expansion formulas for calculating ranks and inertias of

differences of matrices are established, they can be used to characterize the corresponding matrix

equalities and inequalities.

The main result of this paper is given below.

Theorem 2.2 Let A ∈ Cm×n and B ∈ Cn
H. Then, the following equalities hold

max
(AB)(1,2,3)

r
{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= min { r(AB), r(B)− r(ABA∗) } , (2.1)

min
(AB)(1,2,3)

r
{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= 0, (2.2)

max
(AB)(1,2,3)

i±

{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= min { r(AB), i∓(B)− i∓(ABA∗)} , (2.3)

min
(AB)(1,2,3)

i±

{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= 0. (2.4)

Proof It is well known that the general expression of A(1,2,3) can be written as

A(1,2,3) = A† + FAV AA†, (2.5)

where V is arbitrary; see, e.g., [1,2]. So that (ABA∗)†− [(AB)(1,2,3)]∗B(AB)(1,2,3) can be written

as

f(V ∗) =(ABA∗)†− [(AB)(1,2,3)]∗B(AB)(1,2,3)

=(ABA∗)†− [ (AB)† + FABV AB(AB)† ]∗B[ (AB)† + FABV AB(AB)† ]

=(ABA∗)†+ { [(AB)†]∗ +AB(AB)†V ∗FAB }(−B){ [(AB)†]∗ +AB(AB)†V ∗FAB }∗, (2.6)

which is a special case of (1.15). Substituting the given matrices in (2.6) into (1.16)–(1.19) and

simplifying by

R[(ABA∗)†] = R(ABA∗) ⊆ R(AB) = R[AB(AB)†] and R([(AB)†]∗) = R(AB),

and Lemmas 1.1–1.3, we first obtain

i±(N1) = i±

[
(ABA∗)† − [(AB)†]∗B(AB)† AB(AB)†

AB(AB)† 0

]

= i±

[
0 AB(AB)†

AB(AB)† 0

]
= r(AB), (2.7)

i±(N3) = i±

[
(ABA∗)† − [(AB)†]∗B(AB)† [(AB)†]∗BFAB

FABB(AB)† −FABBFAB

]
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= i±

 (ABA∗)† − [(AB)†]∗B(AB)† [(AB)†]∗B 0
B(AB)† −B (AB)∗

0 AB 0

− r(AB)

= i±

 (ABA∗)† − [(AB)†]∗B(AB)† [(AB)†]∗B AB(AB)†

B(AB)† −B 0
AB(AB)† 0 ABA∗

− r(AB)

= i±

 (ABA∗)† 0 AB(AB)†

0 −B 0
AB(AB)† 0 ABA∗

− r(AB)

= i±

[
(ABA∗)† AB(AB)†

AB(AB)† ABA∗

]
+ i±(−B)− r(AB)

= i±

[
(ABA∗)† −AB(AB)†(ABA∗)†AB(AB)† AB(AB)†EABA∗

EABA∗AB(AB)† 0

]
+ i±(ABA∗) + i±(−B)− r(AB)

= i±

[
0 AB(AB)†EABA∗

EABA∗AB(AB)† 0

]
+ i±(ABA∗) + i∓(B)− r(AB)

= r(EABA∗AB) + i±(ABA∗) + i∓(B)− r(AB)

= r[AB, ABA∗ ]− i∓(ABA∗) + i∓(B)− r(AB)

= i∓(B)− i∓(ABA∗), (2.8)

r(N2) = r

[
(ABA∗)† − [(AB)†]∗B(AB)† [(AB)†]∗BFAB AB(AB)†

AB(AB)† 0 0

]

= r

[
0 0 AB

(AB)∗ 0 0

]
= 2r(AB), (2.9)

r(N4) = r

[
(ABA∗)† − [(AB)†]∗B(AB)† [(AB)†]∗BFAB AB(AB)†

FABB(AB)† −FABBFAB 0

]

= r

[
0 0 AB

FABB(AB)† −FABBFAB 0

]

= r(AB) + r[FABB(AB)†, FABBFAB ] = r

[
(AB)∗ B(AB)† B

0 0 AB

]
− r(AB)

= r

[
0 0 B

ABA∗ AB(AB)† 0

]
− r(AB) = r

[
0 0 B
0 AB 0

]
− r(AB) = r(B), (2.10)

and

s1 = r(N1)− 2r(N2) = −2r(AB), (2.11)

s2 = r(N3)− 2r(N4) = −r(B)− r(ABA∗), (2.12)

s3 = i+(N1) + i−(N3)− r(N2)− r(N4) = −r(AB)− i−(B)− i+(ABA∗), (2.13)

s4 = i−(N1) + i+(N3)− r(N2)− r(N4) = −r(AB)− i+(B)− i−(ABA∗). (2.14)
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Applying (1.18) and (1.19) to (2.6), and simplifying by (2.7)–(2.14) and the following basic inertia

inequalities (see [4])

i+(ABA∗) > r(AB)− i−(B), i−(ABA∗) > r(AB)− i+(B),

we obtain

max
(AB)(1,2,3)

r
{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= max

V
r
{
(ABA∗)† − [ (AB)† + FABV AB(AB)† ]∗B[ (AB)† + FABV AB(AB)† ]

}
= min

{
r
[
(ABA∗)† − [(AB)†]∗B(AB)†, [(AB)†]∗BFAB , AB(AB)†

]
, r(N1), r(N3)

}
= min{ r(AB), r(B)− r(ABA∗) },

and

min
(AB)(1,2,3)

r
{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= min

V
r
{
(ABA∗)† − [ (AB)† + FABV AB(AB)† ]∗B[ (AB)† + FABV AB(AB)† ]

}
= 2r

[
(ABA∗)† − [(AB)†]∗B(AB)†, −[(AB)†]∗BFAB , AB(AB)†

]
+max{s1, s2, s3, s4}

= 2r(AB) + max{s1, s2, s3, s4}

= max {0, 2r(AB)− r(B)− r(ABA∗), r(AB)− i−(B)− i+(ABA∗),

r(AB)− i+(B)− i−(ABA∗)} = 0,

as required for (2.1) and (2.2). Applying (1.20) and (1.21) to (2.6) also gives

max
(AB)(1,2,3)

i±

{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= min { i±(N1), i±(N3)}

= min{ r(AB), i∓(B)− i∓(ABA∗) },

and

min
(AB)(1,2,3)

i±

{
(ABA∗)† − [(AB)(1,2,3)]∗B(AB)(1,2,3)

}
= r

[
(ABA∗)† − [(AB)†]∗B(AB)† , −[(AB)†]∗BFAB , AB(AB)†

]
+max{i±(N1)− r(N2), i±(N3)− r(N4)}

= max{ 0, r(AB)− i±(B)− i∓(ABA∗) } = 0,

as required for (2.3) and (2.4). �
Note from BB†B = B that ABA∗ can be rewritten as ABA∗ = (AB)B†(AB)∗. Applying

Theorem 2.2 to the product also yields the following result.

Theorem 2.3 Let A ∈ Cm×n and B ∈ Cn
H. Then, the following equalities hold

max
(ABB†)(1,2,3)

r
{
(ABA∗)† − [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3)

}
= min{ r(AB), r(B)− r(ABA∗) }, (2.15)

max
(ABB†)(1,2,3)

i±

{
(ABA∗)† − [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3)

}
= min{ r(AB), i∓(B)− i∓(ABA∗) }, (2.16)
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and

min
(ABB†)(1,2,3)

r
{
(ABA∗)† − [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3)

}
= 0, (2.17)

min
(ABB†)(1,2,3)

i±

{
(ABA∗)† − [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3)

}
= 0. (2.18)

Proof Eqs. (2.15)–(2.18) follow directly from (2.1)–(2.4). �
Applying Lemma 2.1 to Theorems 2.2 and 2.3, we obtain the following consequences.

Corollary 2.4 LetA ∈ Cm×n andB ∈ Cn
H. Then there always exist (AB)(1,2,3) and (ABB†)(1,2,3)

such that the following equalities hold

(ABA∗)† =
[
(AB)(1,2,3)

]∗
B(AB)(1,2,3),

(ABA∗)† =
[
(ABB†)(1,2,3)

]∗
B†(ABB†)(1,2,3).

Proof It follows directly from (2.2) and (2.17). �

Corollary 2.5 Let A ∈ Cm×n and B = B∗ ∈ Cn×n be given. Then, the following results hold.

(a) The following statements are equivalent:

(i) There exists an (AB)(1,2,3) such that (ABA∗)†−[(AB)(1,2,3)]∗B(AB)(1,2,3) is nonsingular.

(ii) There exists an (AB)(1,2,3) such that (ABA∗)† − [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3) is

nonsingular.

(iii) r(AB) = m and r(B) > r(ABA∗) +m.

(b) The following statements are equivalent:

(i) There exists an (AB)(1,2,3) such that (ABA∗)† ≻ [(AB)(1,2,3)]∗B(AB)(1,2,3).

(ii) There exists an (ABB†)(1,2,3) such that (ABA∗)† ≻ [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3).

(iii) r(AB) = m and i−(B) > i−(ABA∗) +m.

(c) The following statements are equivalent:

(i) There exists an (AB)(1,2,3) such that (ABA∗)† ≺ [(AB)(1,2,3)]∗B(AB)(1,2,3).

(ii) There exists an (ABB†)(1,2,3) such that (ABA∗)† ≺ [(ABB†)(1,2,3)]∗B†(ABB†)(1,2,3).

(iii) r(AB) = m and i+(B) > i+(ABA∗) +m.

3. Some applications

Assume that A,B ∈ Cm
H . Then their sum can be written as

A+B = [ Im, Im ]

[
A 0
0 B

] [
Im
Im

]
= PJP ∗,

where P = [ Im, Im ] and J =

[
A 0
0 B

]
. Applying the previous results to this PJP ∗, we obtain

the following result.

Corollary 3.1 Let A,B ∈ Cm
H . Then, the following results hold.

(a) There always exist [A, B ](1,2,3) and [AA†, BB† ](1,2,3) such that

(A+B )† =
(
[A, B ](1,2,3)

)∗
J [A, B ](1,2,3),
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(A+B )† =
(
[AA†, BB† ](1,2,3)

)∗
J†[AA†, BB† ](1,2,3).

(b) The following statements are equivalent:

(i) There exists a [A, B ](1,2,3) such that

(A+B )† −
(
[A, B ](1,2,3)

)∗
J [A, B ](1,2,3)

is nonsingular.

(ii) There exists a [AA†, BB† ](1,2,3) such that

(A+B )† −
(
[AA†, BB† ](1,2,3)

)∗
J†[AA†, BB† ](1,2,3)

is nonsingular.

(iii) r[A, B ] = m and r(A) + r(B) > r(A+B ) +m.

(c) The following statements are equivalent:

(i) There exists a [A, B ](1,2,3) such that

(A+B )† ≻
(
[A, B ](1,2,3)

)∗
J [A, B ](1,2,3).

(ii) There exists a [AA†, BB† ](1,2,3) such that

(A+B )† ≻
(
[AA†, BB† ](1,2,3)

)∗
J†[AA†, BB† ](1,2,3).

(iii) r[A, B ] = m and i−(A) + i−(B) > i−(A+B ) +m.

(d) The following statements are equivalent:

(i) There exists a [A, B ](1,2,3) such that

(A+B )† ≺
(
[A, B ](1,2,3)

)∗
J [A, B ](1,2,3).

(ii) There exists a [AA†, BB† ](1,2,3) such that

(A+B )† ≺
(
[AA†, BB† ](1,2,3)

)∗
J†[AA†, BB† ](1,2,3).

(iii) r[A, B ] = m and i+(A) + i+(B) > i+(A+B ) +m.

For two given positive definite matrices M ∈ Cm
H and N ∈ Cn

H, the weighted Moore-Penrose

inverse of A ∈ Cm×n is defined to be the unique matrix X ∈ Cn×m satisfying the four equations

(i) AXA = A, (ii) XAX = X, (iii) (MAX)∗ = MAX, (iv) (NXA)∗ = NXA,

and is denoted by A†
M,N . A matrix X is called a {1, 2, 3M}-inverse of A, if it satisfies (i), (ii),

and (iii), and is denoted by A(1,2,3M). In the partial case M = Im and N = In, the matrix A†
M,N

becomes the Moore-Penrose inverse of A.

It is well known (see, e.g., [1]) that the weighted Moore-Penrose inverse A†
M,N of A can be

rewritten as

A†
M,N = N− 1

2 (M
1
2AN− 1

2 )†M
1
2 , (3.1)

where M
1
2 and N

1
2 are the positive definite square roots of M and N , respectively. Assume that

M ∈ Cm
H is positive definite. It turns out from (3.1) that

(ABA∗)†M,M−1 = M
1
2 (M

1
2ABA∗M

1
2 )†M

1
2 ,
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which is also Hermitian matrix. From Corollary 3.1, there exists an (M
1
2AB)(1,2,3) such that

(M
1
2ABA∗M

1
2 )† = [(M

1
2AB)(1,2,3)]∗B(M

1
2AB)(1,2,3),

(ABA∗)†M,M−1 = M
1
2 [(M

1
2AB)(1,2,3)]∗B(M

1
2AB)(1,2,3)M

1
2

hold. Hence, we have the following consequence.

Corollary 3.2 Let A ∈ Cm×n, B ∈ Cn
H, and assume that M ∈ Cm

H is positive definite. Then,

there always exist (AB)(1,2,3M) and (ABB†)(1,2,3M) such that the following equalities hold

(ABA∗)†M,M−1 = [(AB)(1,2,3M)]∗B(AB)(1,2,3M),

(ABA∗)†M,M−1 = [(ABB†)(1,2,3M)]∗B†(ABB†)(1,2,3M).

In addition to (1.2) and (1.3), rank and inertia formulas for the difference

[(AB)(1,2,3)]∗B(AB)(1,2,3) − C

can be established, where C is a general Hermitian matrix, and identifying conditions can also

be obtained for the following matrix equality and inequalities

[(AB)(1,2,3)]∗B(AB)(1,2,3) = C (< C, 4 C,≻ C, ≺ C)

to hold. Further, both (1.1) and (1.2) could be regarded as special cases of the following mixed-

type reverse-order laws

(ABC)† = (BC)(i,...,j)B(AB)(i,...,j), (ABA∗)† = [(AB)(i,...,j)]∗B(AB)(i,...,j),

where the right-hand sides of these two equalities are quadratic matrix-valued functions with one

or more arbitrary matrices for different choices of (AB)(i,...,j) and (BC)(i,...,j). It is, however, a

challenging task to establish necessary and sufficient conditions for these two equalities to hold

in general cases.
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