Journal of Mathematical Research with Applications May, 2015, Vol. 35, No. 3, pp. 343–349 DOI:10.3770/j.issn:2095-2651.2015.03.012 Http://jmre.dlut.edu.cn

Measures of Countable Compactness and the Lindelöf Property in *L*-Fuzzy Topological Spaces

Hongyan LI^{1,*}, Qinghua LI², Ying ZHAO³

1. School of Mathematics and Information Science, Shandong Institute of Business and Technology, Shandong 264005, P. R. China;

2. School of Mathematics and Information Science, Yantai University, Shandong 264005, P. R. China;

3. Department of Strategy and Development, Beijing North Vehicle Group Corporation,

Beijing 100072, P. R. China

Abstract In this paper, the concept of countable compactness degree and the concept of Lindelöf property degree are defined in *L*-fuzzy topological spaces by means of implication operator \mapsto . Many properties of them are discussed.

Keywords *L*-fuzzy topology; countable compactness; Lindelöf property; implication operator; fuzzy compactness degree

MR(2010) Subject Classification 54A40; 54D30; 03E72

1. Introduction

Chang [1] first introduced the concept of compactness to [0, 1]-topological spaces by means of open cover. Afterward, many researchers have tried successfully to generalize the compactness theory of general topology to fuzzy setting [2-6].

For the more general case, in an *L*-fuzzy topology, open sets are not crisp subset, and topology comprising those open sets is a fuzzy set of L^X . There have been many research results about fuzzy compactness in *L*-fuzzy topological spaces [7–14]. The definitions of countable compactness and the Lindelöf property in *L*-topological spaces were introduced by Shi [4]. The aim of this paper is to introduce the notion of countable compactness degree and the Lindelöf property degree to *L*-fuzzy topological spaces, thus some properties of them are researched.

2. Preliminaries

In this paper, $(L, \bigvee, \bigwedge, ')$ is a completely distributive DeMorgan algebra (i.e., completely distributive lattice with order-reversing involution) [2]. The largest element and the smallest element in L are denoted by \top and \bot , respectively.

The binary wedge below relation \prec in L is defined as follows: For $a, b \in L$, a is called wedge below b in L(i.e., $a \prec b$) if and only if for every subset $D \subseteq L$, $\bigvee D \ge b$ implies $d \ge a$ for some

Received October 13, 2014; Accepted April 21, 2015

Supported by the National Natural Science Foundation of China (Grant No. 11471297).

^{*} Corresponding author

E-mail address: lihongyan@sdibt.edu.cn (Hongyan LI)

 $d \in D$. L is completely distributive lattice if and only if $b = \bigvee \{a \in L : a \prec b\}$ for each $b \in L$. For $b \in L$, $\beta(b) = \{a \in L : a \prec b\}$ is called the greatest minimal family of b.

In a completely distributive DeMorgan algebra L, binary operation $a \mapsto b = \bigvee \{c \in L \mid a \land c \leq b\}$ is called implication operator. It is easy to get the following results:

- (1) $a \le b \Leftrightarrow a \mapsto b = \top;$
- (2) $c \leq (a \mapsto b) \Leftrightarrow a \land c \leq b;$
- (3) $(\bigvee_i a_i) \mapsto b = \bigwedge_i (a_i \mapsto b);$
- (4) $a \mapsto (\bigwedge_i b_i) = \bigwedge_i (a \mapsto b_i).$

 $[a \leq b] = a \mapsto b$ can be viewed as the degree of $a \leq b$.

Definition 2.1 ([15]) An L-fuzzy topology on a set X is a map $\tau : L^X \to L$ such that

- (1) $\tau(\underline{\top}) = \tau(\underline{\perp}) = \overline{\top};$
- (2) $\forall U, V \in L^X, \tau(U \wedge V) \ge \tau(U) \wedge \tau(V);$
- (3) $\forall U_j \in L^X, j \in J, \tau(\bigvee_{i \in J} U_j) \ge \bigwedge_{i \in J} \tau(U_j).$

Generally, $\tau(U)$ can be regarded as degree to which $U \in L^X$ is an open set; while $\tau^*(U) = \tau(U')$ is called the degree of closedness of U. $\forall \mathcal{U} \subseteq L^X, \tau(\mathcal{U}) = \bigwedge_{A \in \mathcal{U}} \tau(A)$ will be called the degree of openness of \mathcal{U} . The pair (X, τ) is called an L-fuzzy topological space.

A map $f: (X, \tau) \to (Y, \delta)$ is called continuous with respect to L-fuzzy topologies τ and δ if $\tau(f_L^{\leftarrow}(U)) \ge \delta(U)$ holds for all $U \in L^Y$, where f_L^{\leftarrow} is defined by $f_L^{\leftarrow}(U)(x) = U(f(x)), x \in X$.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . And $2^{[\Phi]}$ denotes the set of all countable subfamilies of Φ .

Definition 2.2 ([13]) A map $\tilde{\subset} : L^X \times L^X \to L$ is an L-fuzzy inclusion on X, defined as $\tilde{\subset}(A,B) = \bigwedge_{x \in X} (A'(x) \lor B(x))$, which is denoted by $[A \tilde{\subset} B]$ for simplicity instead of $\tilde{\subset}(A,B)$, i.e., $[A \tilde{\subset} B] = \bigwedge_{x \in X} (A'(x) \lor B(x))$.

Definition 2.3 ([11]) If (X, τ) is an L-fuzzy topological space and $G \in L^X$, then

$$CD_{\tau}(G) = \bigwedge_{\mathcal{U} \subseteq L^{X}} \left(\tau(\mathcal{U}) \mapsto \left([G \widetilde{\subset} \bigvee \mathcal{U}] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \widetilde{\subset} \bigvee \mathcal{V}] \right) \right)$$

is called the fuzzy compactness degree of G with respect to τ .

Lemma 2.4 ([6]) Let $f: X \to Y$ be a set map. The fuzzy powerset operators $f_L^{\to}: L^X \to L^Y$ and $f_L^{\leftarrow}: L^Y \to L^X$ are defined by $f_L^{\to}(a)(y) = \bigvee \{a(x): f(x) = y\}, f_L^{\leftarrow}(b) = b \circ f$. Then for any $\mathcal{P} \subseteq L^Y$, we have that

$$\bigwedge_{y \in Y} \Big(f_L^{\to}(G)'(y) \lor \bigvee_{B \in \mathcal{P}} B(y) \Big) = \bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{B \in \mathcal{P}} f_L^{\leftarrow}(B)(x) \Big).$$

3. Measures of countable compactness

In the following part, the set $\{\mathcal{U} \mid \mathcal{U} \text{ is a countable family, } \mathcal{U} \subseteq L^X\}$ is written as L_C^X .

Let (X, \mathcal{T}) be an *L*-topological space and $\mathcal{T}_C = \{\mathcal{U} \mid \mathcal{U} \text{ is a countable family, } \mathcal{U} \subseteq \mathcal{T}\}$. Then $G \in L^X$ is countably compact [4] if and only if for every $\mathcal{U} \subseteq \mathcal{T}_C$, it follows that $[G \subset \bigvee \mathcal{U}] \leq$

Measures of countable compactness and the Lindelöf property in L-fuzzy topological spaces

 $\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [G\widetilde{\subset} \bigvee \mathcal{V}]. \text{ This implies that } [[G\widetilde{\subset} \bigvee \mathcal{U}] \leqslant \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [G\widetilde{\subset} \bigvee \mathcal{V}]] = \top.$

On the other hand, an L-topology \mathcal{T} can be regarded as a map $\chi_{\mathcal{T}}: L^X \to L$ defined by

$$\chi_{\mathcal{T}}(A) = \begin{cases} \top, & A \in \mathcal{T}, \\ \bot, & A \notin \mathcal{T}. \end{cases}$$

In this way, $(X, \chi_{\mathcal{T}})$ is a special *L*-fuzzy topological space and $\chi_{\mathcal{T}}(\mathcal{U}) = \top$ for any $\mathcal{U} \subseteq \mathcal{T}$.

From the above analysis, we can obtain that $G \in L^X$ is countably compact if and only if for every family $\mathcal{U} \subseteq \mathcal{T}_C$, it follows that $\chi_{\mathcal{T}}(\mathcal{U}) \leq [[G \subset \bigvee \mathcal{U}] \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \subset \bigvee \mathcal{V}]]$.

Naturally, we can introduce a countable compactness degree defined as follows:

Definition 3.1 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then

$$\begin{split} CCD_{\tau}(G) &= \bigwedge_{\mathcal{U} \subseteq L_{C}^{X}} \left[\tau(\mathcal{U}) \leqslant \left[[G \widetilde{\subset} \bigvee \mathcal{U}] \leqslant \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \widetilde{\subset} \bigvee \mathcal{V}] \right] \right] \\ &= \bigwedge_{\mathcal{U} \subseteq L_{C}^{X}} \Big(\bigwedge_{A \in \mathcal{U}} \tau(A) \mapsto \Big(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right) \Big) \Big) \end{split}$$

is called the countable compactness degree of G with respect to τ .

Obviously, G is countably compact in L-topological space \mathcal{T} if and only if $CCD_{\chi\tau}(G) = \top$. According to the properties of implication operation \mapsto , the following lemma can be proved.

Lemma 3.2 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then $a \leq CCD_{\tau}(G)$ if and only if for any $\mathcal{U} \subseteq L_C^X$,

$$\tau(\mathcal{U}) \wedge [G \widetilde{\subset} \bigvee \mathcal{U}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \widetilde{\subset} \bigvee \mathcal{V}].$$
(3.1)

Theorem 3.3 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then

$$CCD_{\tau}(G) = \bigvee \left\{ a \in L : \tau(\mathcal{U}) \land [G \widetilde{\subset} \bigvee \mathcal{U}] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \widetilde{\subset} \bigvee \mathcal{V}] \text{ for any } \mathcal{U} \subseteq L_C^X \right\}.$$
(3.2)

It is easy to get the following theorem according to Definitions 2.3 and 3.1.

Theorem 3.4 Let (X,τ) be an L-fuzzy topological space and $G \in L^X$. Then $CD_{\tau}(G) \leq CCD_{\tau}(G)$.

By Lemma 3.2, Theorem 3.3 and the properties of implication operation \mapsto , we can obtain the following result.

Theorem 3.5 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then

$$\begin{split} CCD_{\tau}(G) &= \bigwedge_{\mathcal{U} \subseteq L_{C}^{X}} \Big(\bigwedge_{A \in \mathcal{U}} \tau(A) \wedge \bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \Big) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \Big) \Big) \\ &= \bigwedge_{\mathcal{U} \subseteq L_{C}^{X}} \Big[\tau(\mathcal{U}) \wedge [G \widetilde{\subset} \bigvee \mathcal{U}] \leqslant \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \widetilde{\subset} \bigvee \mathcal{V}] \Big]. \end{split}$$

Theorem 3.6 Let (X, τ) be an L-fuzzy topological space. Then $\forall G, H \in L^X, CCD_{\tau}(G \land H) \geq CCD_{\tau}(G) \land \tau^*(H).$

Proof For any $a \in L$ and $a \leq CCD_{\tau}(G) \wedge \tau^*(H)$, now the proof of $a \leq CCD_{\tau}(G \wedge H)$ will be conducted. Suppose any $\mathcal{U} \subseteq L_C^X$, since $a \leq CCD_{\tau}(G) \wedge \tau^*(H)$, we have that $a \leq \tau^*(H)$ and $a \leq CCD_{\tau}(G)$. Let $\mathcal{W} = \mathcal{U} \bigcup H'$. Then $\mathcal{W} \subseteq L_C^X$. Therefore $\tau(\mathcal{W}) \wedge [G \subset \mathcal{V} \mathcal{W}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{W})}} [G \subset \mathcal{V} \mathcal{V}]$ by Lemma 3.2. And because $\tau(\mathcal{W}) = \tau(\mathcal{U}) \wedge \tau(H') = \tau(\mathcal{U}) \wedge \tau^*(H)$,

$$[G\widetilde{\subset}\bigvee\mathcal{W}] = \bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{A\in\mathcal{W}} A(x) \right) = \bigwedge_{x\in X} \left(G'(x) \lor H'(x) \lor \bigvee_{A\in\mathcal{U}} A(x) \right)$$
$$= \bigwedge_{x\in X} \left((G(x) \land H(x))' \lor \bigvee_{A\in\mathcal{U}} A(x) \right) = [(G \land H)\widetilde{\subset}\bigvee\mathcal{U}]$$

and

$$\begin{split} \bigvee_{\mathcal{V}\in 2^{(\mathcal{W})}} [G\widetilde{\subset}\bigvee\mathcal{V}] &= \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [G\widetilde{\subset}\bigvee\mathcal{V}]\vee\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [G\widetilde{\subset}\bigvee(\mathcal{V}\vee H')] \\ &= \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [G\widetilde{\subset}\bigvee\mathcal{V}]\vee\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [(G\wedge H)\widetilde{\subset}\bigvee\mathcal{V}] \\ &= \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [(G\wedge H)\widetilde{\subset}\bigvee\mathcal{V}], \end{split}$$

we have that $(\tau(\mathcal{U}) \land \tau^*(H)) \land [(G \land H) \widetilde{\subset} \bigvee \mathcal{U}] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [(G \land H) \widetilde{\subset} \bigvee \mathcal{V}]$. Since $a \leq \tau^*(H)$, this means that $\tau(\mathcal{U}) \land [(G \land H) \widetilde{\subset} \bigvee \mathcal{U}] \land a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [(G \land H) \widetilde{\subset} \bigvee \mathcal{V}]$.

Thus $a \leq CCD_{\tau}(G \wedge H)$ by Lemma 3.2. The proof is completed. \Box

Corollary 3.7 Let (X, τ) be an L-fuzzy topological spaces. Then $\forall G \in L^X$, $CCD_{\tau}(G) \geq CCD_{\tau}(\underline{T}) \wedge \tau^*(G)$.

Theorem 3.8 Let (X, τ) be an L-fuzzy topological space. Then $\forall G, H \in L^X, CCD_{\tau}(G \lor H) \ge CCD_{\tau}(G) \land CCD_{\tau}(H).$

Proof For any $a \in L$ and $a \leq CCD_{\tau}(G) \wedge CCD_{\tau}(H)$, we need to prove that $a \leq CCD_{\tau}(G \vee H)$. Suppose any $\mathcal{U} \subseteq L_C^X$, since $a \leq CCD_{\tau}(G) \wedge CCD_{\tau}(H)$, we have that $a \leq CCD_{\tau}(G)$ and $a \leq CCD_{\tau}(H)$. According to Lemma 3.2, we can obtain that $\tau(\mathcal{U}) \wedge [G \subset \mathcal{V}\mathcal{U}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \subset \mathcal{V}\mathcal{V}]$ and $\tau(\mathcal{U}) \wedge [H \subset \mathcal{V}\mathcal{U}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [H \subset \mathcal{V}\mathcal{V}]$.

Moreover, we have that

$$\tau(\mathcal{U}) \wedge [G\widetilde{\subset} \bigvee \mathcal{U}] \wedge [H\widetilde{\subset} \bigvee \mathcal{U}] \wedge a \leq \Big(\bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G\widetilde{\subset} \bigvee \mathcal{V}]\Big) \wedge \Big(\bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [H\widetilde{\subset} \bigvee \mathcal{V}]\Big).$$

By

$$\begin{split} [G\widetilde{\subset}\bigvee\mathcal{U}]\wedge[H\widetilde{\subset}\bigvee\mathcal{U}] &= \Big(\bigwedge_{x\in X}\Big(G'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\Big)\Big)\wedge\Big(\bigwedge_{x\in X}\Big(H'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\Big)\Big)\\ &= \bigwedge_{x\in X}\Big(\Big(G'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\Big)\wedge\Big(H'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\Big)\Big)\\ &= \bigwedge_{x\in X}\Big((G\vee H)'(x)\vee\bigvee_{A\in\mathcal{U}}A(x)\Big) = [(G\vee H)\widetilde{\subset}\bigvee\mathcal{U}] \end{split}$$

Measures of countable compactness and the Lindelöf property in L-fuzzy topological spaces

and

$$\begin{split} \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [G\widetilde{\subset}\bigvee\mathcal{V}]\wedge\bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [H\widetilde{\subset}\bigvee\mathcal{V}] = \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \{[G\widetilde{\subset}\bigvee\mathcal{V}]\wedge[H\widetilde{\subset}\bigvee\mathcal{V}]\} \\ = \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [(G\vee H)\widetilde{\subset}\bigvee\mathcal{V}], \end{split}$$

we have that $\tau(\mathcal{U}) \wedge [(G \lor H) \widetilde{\subset} \bigvee \mathcal{U}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [(G \lor H) \widetilde{\subset} \bigvee \mathcal{V}].$

Thus $a \leq CCD_{\tau}(G \lor H)$ by Lemma 3.2. The proof is completed. \Box

Theorem 3.9 Let $f: X \to Y$ be a set map, τ_1 be an *L*-fuzzy topology on X, τ_2 be an *L*-fuzzy topology on Y, and $f: (X, \tau_1) \to (Y, \tau_2)$ be continuous. Then $CCD_{\tau_2}(f_L^{\to}(G)) \ge CCD_{\tau_1}(G)$.

Proof $\forall a \in L$ and $a \leq CCD_{\tau_1}(G)$, the next step is to prove that $a \leq CCD_{\tau_2}(f_L^{\to}(G))$. Suppose any $\mathcal{U} \subseteq L_C^Y$, let $\mathcal{R} = f_L^{\leftarrow}(\mathcal{U}) = \{B | B = f_L^{\leftarrow}(A), A \in \mathcal{U}\}$. Then $\mathcal{R} \subseteq L_C^X$. By $a \leq CCD_{\tau_1}(G)$, we have that $\tau_1(\mathcal{R}) \wedge [G \subset \bigvee \mathcal{R}] \wedge a \leq \bigvee_{\mathcal{S} \in 2^{(\mathcal{R})}} [G \subset \bigvee \mathcal{S}]$. Since f is continuous, $\tau_1(f_L^{\leftarrow}(A)) \geq \tau_2(A)$ holds for all $A \in \mathcal{U}$, i.e., $\tau_1(\mathcal{R}) = \tau_1(f_L^{\leftarrow}(\mathcal{U})) \geq \tau_2(\mathcal{U})$.

By Lemma 2.4, we can obtain that

$$[f_L^{\to}(G)\widetilde{\subset}\bigvee\mathcal{U}] = \bigwedge_{y\in Y} \left(f_L^{\to}(G)'(y) \lor \bigvee_{A\in\mathcal{U}} A(y) \right) = \bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{B\in\mathcal{R}} B(x) \right) = [G\widetilde{\subset}\bigvee\mathcal{R}]$$

and

$$\bigvee_{\mathcal{S}\in 2^{(\mathcal{R})}} [G\widetilde{\subset}\bigvee\mathcal{S}] = \bigvee_{\mathcal{S}\in 2^{(\mathcal{R})}} \bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{C\in\mathcal{S}} C(x) \right) = \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} \bigwedge_{y\in Y} \left(f_L^{\rightarrow}(G)'(y) \lor \bigvee_{D\in\mathcal{V}} D(y) \right)$$
$$= \bigvee_{\mathcal{V}\in 2^{(\mathcal{U})}} [f_L^{\rightarrow}(G)\widetilde{\subset}\bigvee\mathcal{V}].$$

This shows the following inequality is true.

$$\begin{aligned} \tau_{2}(\mathcal{U}) \wedge [f_{L}^{\rightarrow}(G) \widetilde{\subset} \bigvee \mathcal{U}] \wedge a &\leq \tau_{1}(\mathcal{R}) \wedge [G \widetilde{\subset} \bigvee \mathcal{R}] \wedge a \\ &\leq \bigvee_{\mathcal{S} \in 2^{(\mathcal{R})}} [G \widetilde{\subset} \bigvee \mathcal{S}] \\ &= \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [f_{L}^{\rightarrow}(G) \widetilde{\subset} \bigvee \mathcal{V}]. \end{aligned}$$

Thus $a \leq CCD_{\tau_2}(f_L^{\to}(G))$ by Lemma 3.2. The proof is completed. \Box

4. Measures of Lindelöf property

In an *L*-topological space (X, \mathcal{T}) , if $G \in L^X$ has the Lindelöf property [11], then it can be understood that for every $\mathcal{U} \subseteq \mathcal{T}$, it follows that $[G \subset \bigvee \mathcal{U}] \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \subset \bigvee \mathcal{V}]$, which means that $[[G \subset \bigvee \mathcal{U}] \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \subset \bigvee \mathcal{V}]] = \top$, for any $\mathcal{U} \subseteq \mathcal{T}$.

For $\mathcal{U} \subseteq \mathcal{T}$ we have $\chi_{\mathcal{T}}(\mathcal{U}) = \top$, where $\chi_{\mathcal{T}}(A) = \top$, when $A \in \mathcal{T}$; $\chi_{\mathcal{T}}(A) = \bot$, when $A \notin \mathcal{T}$. Thus, the following results can be obtained.

$$G \in L^X$$
 has Lindelöf property $\Leftrightarrow \chi_{\mathcal{T}}(\mathcal{U}) \leqslant [[G \subset \bigvee \mathcal{U}] \leqslant \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \subset \bigvee \mathcal{V}]], \forall \mathcal{U} \subseteq \mathcal{T}.$

In this way, we can very naturally introduce the definition of degree of G with Lindelöf

347

property as follows:

Definition 4.1 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then

$$LPD_{\tau}(G) = \bigwedge_{\mathcal{U} \subseteq L^{X}} \left[\tau(\mathcal{U}) \leqslant \left[[G \widetilde{\subset} \bigvee \mathcal{U}] \leqslant \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \widetilde{\subset} \bigvee \mathcal{V}] \right] \right]$$
$$= \bigwedge_{\mathcal{U} \subseteq L^{X}} \left(\bigwedge_{A \in \mathcal{U}} \tau(A) \mapsto \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \mapsto \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \right) \right) \right)$$

is called the degree to which G has the Lindelöf property with respect to τ .

Obviously, G has Lindelöf property in L-topological space \mathcal{T} if and only if $LPD_{\chi_{\mathcal{T}}}(G) = \top$.

Analogous to countable compactness degree, we have the following results.

Lemma 4.2 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then $a \leq LPD_{\tau}(G)$ if and only if for any $\mathcal{U} \subseteq L^X$,

$$\tau(\mathcal{U}) \wedge [G\widetilde{\subset} \bigvee \mathcal{U}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G\widetilde{\subset} \bigvee \mathcal{V}].$$
(4.1)

Theorem 4.3 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then

$$LPD_{\tau}(G) = \bigvee \left\{ a \in L : \tau(\mathcal{U}) \land [G \widetilde{\subset} \bigvee \mathcal{U}] \land a \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \widetilde{\subset} \bigvee \mathcal{V}] \text{ for any } \mathcal{U} \subseteq L^X \right\}.$$
(4.2)

Theorem 4.4 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then

$$\begin{split} LPD_{\tau}(G) &= \bigwedge_{\mathcal{U} \subseteq L^{X}} \Big(\bigwedge_{A \in \mathcal{U}} \tau(A) \wedge \bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \Big) \mapsto \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \Big(G'(x) \lor \bigvee_{A \in \mathcal{V}} A(x) \Big) \Big) \\ &= \bigwedge_{\mathcal{U} \subseteq L^{X}} \Big[\tau(\mathcal{U}) \wedge [G \widetilde{\subset} \bigvee \mathcal{U}] \leqslant \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \widetilde{\subset} \bigvee \mathcal{V}] \Big]. \end{split}$$

Theorem 4.5 Let (X, τ) be an L-fuzzy topological space. Then $\forall G, H \in L^X, LPD_{\tau}(G \land H) \geq LPD_{\tau}(G) \land \tau^*(H).$

Corollary 4.6 Let (X, τ) be an L-fuzzy topological space. Then $\forall G \in L^X$, $LPD_{\tau}(G) \ge LPD_{\tau}(\underline{T}) \wedge \tau^*(G)$.

Theorem 4.7 Let (X, τ) be an L-fuzzy topological space. Then $\forall G, H \in L^X, LPD_{\tau}(G \lor H) \ge LPD_{\tau}(G) \land LPD_{\tau}(H)$.

Theorem 4.8 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then $LPD_{\tau}(G) \wedge CCD_{\tau}(G) \leq CD_{\tau}(G)$.

Proof For any $a \in L$ and $a \leq LPD_{\tau}(G) \wedge CCD_{\tau}(G)$, we need to prove that $a \leq CD_{\tau}(G)$. Suppose any $\mathcal{U} \subseteq L^X$, since $a \leq LPD_{\tau}(G) \wedge CCD_{\tau}(G)$, we have that $a \leq LPD_{\tau}(G)$ and $a \leq CCD_{\tau}(G)$. Thus $\tau(\mathcal{U}) \wedge [G \subset \bigvee \mathcal{U}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G \subset \bigvee \mathcal{V}]$ by Lemma 4.2. For any $\mathcal{V} \in 2^{[\mathcal{U}]}$, $\mathcal{V} \subseteq L_C^X$. Therefore $\tau(\mathcal{U}) \leq \tau(\mathcal{V})$ and $\tau(\mathcal{V}) \wedge [G \subset \bigvee \mathcal{V}] \wedge a \leq \bigvee_{\mathcal{W} \in 2^{(\mathcal{V})}} [G \subset \bigvee \mathcal{W}]$ by Lemma 3.2.

348

Further, we have the following results

$$\begin{aligned} \tau(\mathcal{U}) \wedge [G\widetilde{\subset} \bigvee \mathcal{U}] \wedge a &\leq \tau(\mathcal{U}) \wedge \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} [G\widetilde{\subset} \bigvee \mathcal{V}] \wedge a \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} (\tau(\mathcal{V}) \wedge [G\widetilde{\subset} \bigvee \mathcal{V}] \wedge a) \\ &\leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} (\bigvee_{\mathcal{W} \in 2^{(\mathcal{V})}} [G\widetilde{\subset} \bigvee \mathcal{W}]) \leq \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} (\bigvee_{\mathcal{W} \in 2^{(\mathcal{U})}} [G\widetilde{\subset} \bigvee \mathcal{W}]) \\ &\leq \bigvee_{\mathcal{W} \in 2^{(\mathcal{U})}} [G\widetilde{\subset} \bigvee \mathcal{W}] = \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G\widetilde{\subset} \bigvee \mathcal{V}]. \end{aligned}$$

This implies $(\tau(\mathcal{U}) \land a) \leq ([G \subset \bigvee \mathcal{U}] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \subset \bigvee \mathcal{V}])$ for any $\mathcal{U} \subseteq L^X$ by the properties of implication operation \mapsto .

Further, we have $a \leq \tau(\mathcal{U}) \mapsto ([G \subset \bigvee \mathcal{U}] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \subset \bigvee \mathcal{V}])$ for any $\mathcal{U} \subseteq L^X$. Thus $a \leq CD_{\tau}(G)$. The proof is completed. \Box

Corollary 4.9 Let (X, τ) be an L-fuzzy topological space and $G \in L^X$. Then $LPD_{\tau}(G) \wedge CCD_{\tau}(G) \leq LPD_{\tau}(G) \wedge CD_{\tau}(G)$.

The proposition can be regarded as the multi-value generalization of the result "if G has the Lindelöf property, then G is compact if and only if it is countably compact".

Acknowledgements We thank the referees for their time and comments.

References

- [1] C. L. CHANG. Fuzzy topological spaces. J. Math. Anal. Appl., 1968, 24(1): 182–190.
- [2] Yingming LIU, Maokang LUO. Fuzzy Topology, World Scientific Publishing, Singapore, 1997.
- [3] R. LOWEN. A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 1978, 64(3): 446–454.
- [4] Fugui SHI. Countable compactness and the Lindelöf property of L-fuzzy sets. Iran. J. Fuzzy Syst., 2004, 1(1): 79–88.
- [5] Fugui SHI. A new motion of fuzzy compactness in L-topological spaces. Inform. Sci., 2005, 173(1-3): 35–48.
- [6] Fugui SHI. A new definition of fuzzy compactness. Fuzzy Sets and Systems, 2007, 158(13): 1486–1495.
- [7] A. ES, D. COKER. On several types of degree of fuzzy compactness. Fuzzy Sets and Systems, 1997, 87(3): 349–359.
- [8] Jinming FANG. Categories isomorphic to L-FTOP. Fuzzy Sets and Systems, 2006, 157(6): 820-831.
- [9] Jinming FANG, Yueli YUE. Base and subbase in I-fuzzy topological spaces. J. Math. Res. Exposition, 2006, 26(1): 89–95.
- [10] G. JÄGER. Degrees of compactness in fuzzy convergence spaces. Fuzzy Sets and Systems, 2002, 125(2): 167–175.
- [11] Hongyan LI, Fugui SHI. Measures of fuzzy compactness in L-fuzzy topological spaces. Comput. Math. Appl., 2010, 59(2): 941–947.
- [12] E. LOWEN, R. LOWEN. On measures of compactness in fuzzy topological spaces. J. Math. Anal. Appl., 1988, 131(2): 329–340.
- [13] A. P. ŠOSTAK. On Compactness and Connectedness Degrees of Fuzzy Sets in Fuzzy Topological Spaces. Heldermann, Berlin, 1988.
- [14] Yueli YUE, Jinming FANG. Generated I-fuzzy topological spaces. Fuzzy Sets and Systems, 2005, 154(1): 103–117.
- [15] U. HÖHLE, S. E. RODABAUGH. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. Kluwer Academic Publishers, Boston, MA, 1999.