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Abstract A technique is provided to explicitly describe global dimensions of all An-type

finite dimensional k-algebras for k an algebraic closed field. All possible global dimensions of

all An-type finite dimensional algebras are explicitly presented. In particular, it is pointed out

that the maximum is n− 1, and the minimum is 1 for n > 1.
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1. Introduction

Let k be an algebraically closed field, A a finite dimension k-algebra. All modules are finite

dimensional left A-modules. The supremum of the projective dimension of all A-modules, or

equivalently, of all simple A-modules, is called the global dimension of algebra A, and denoted

by gl.dim.A (see [1]).

It is known that global dimensions of semi-simple algebras are zero, of hereditary algebras are

one, of tilting algebras as well as quasi-tilted algebras are at most two, while those of self-injective

algebras except semi-simple ones are infinite [2–5]. Some attractive issues of representation theory

of algebras such as representation dimensions of finite dimensional algebras, the finitistic global

dimension conjecture for Artin algebras are all connected with global dimensions of corresponding

algebras [6–9]. So to find global dimensions of algebras of the particular type is worthwhile and

interesting.

A finite dimension k-algebra A is called basic provided A/radA is a product of copies of

k. It is known that, given a finite dimensional k-algebra A, it is Morita equivalent to a basic

algebra A′, and A′ is isomorphic to k∆/⟨ρ⟩ for some finite quiver ∆ and an admissible ideal ⟨ρ⟩
of k∆ (see [3–5]).

Therefore to know the global dimension of a given finite dimensional k-algebra is just to

know the global dimension of some basic algebra by Morita equivalent theory, furthermore just

to know the global dimension of some algebra k∆/⟨ρ⟩ with ∆ a quiver, k∆ the path algebra of

∆, ⟨ρ⟩ an admissible ideal of k∆. Thus using quiver methods to determine global dimensions of

some particular algebras seems feasible and valuable.
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In this paper we aim to describe global dimensions of all An-type finite dimensional k-

algebras inspired by the above observation. A quiver is called An-type if its underlying graph is

of the form

1 2 · · · n− 1 n.

Given an An-type quiver Λ with relations, first we need to classify these relations on Λ. By

special structure of the quiver Λ, any relations on quiver Λ are of the form αjαj−1 · · ·αi+1αi

with i < j or i > j. Given an ideal ⟨ρ⟩ generated by relations ρi of Λ, we consider its minimal

generators ρi, i ∈ I. That means each ρi cannot be generated by others ρj with j ̸= i, j ∈ I.

This can be done since Λ is a finite quiver without oriented cycles, and relations {ρi} of Λ are

finite sets.

Definition 1.1 If two relations ρ1 and ρ2 on Λ have ρ1 = pp1, ρ2 = p2p with p, p1, p2 non-trivial

paths of Λ, we say that ρ1 is successive to ρ2. If ρ1 is successive to ρ2, we denote it by ρ1 ∼ ρ2.

If ρ1 ∼ ρ2, we say ρi is successive with ρj each other for i = 1, 2.

Definition 1.2 A set T of relations {ρi|i ∈ I} on Λ is named to be successive if there exists a

well order on I such that any ρi, i ∈ I is successive to its direct successor. A relation set T on

Λ is called ultimately successive if T is a successive set on Λ which is not properly contained in

other successive relation sets on Λ.

Definition 1.3 A successive set T of relations {ρi|i ∈ I} on Λ is called perfectly successive if we

can arrange subscripts of all elements of T as 1 ≺ 2 ≺ 3 ≺ · · ·m− 1 ≺ m, subject to ρj ∼ ρj+1

for j = 1, . . . ,m − 1, and if ρj = α(tj ,j) · · ·α(2,j)α(1,j) for j = 1, 2, . . . ,m − 2, then there exists

a non-trivial path starting from α(tj ,j)+1 such that it is contained in the ideal generated by T ,

where α(tj ,j)+1 is the directly successive arrow of α(tj ,j) appearing in ρj+1. A relation set T on

Λ is called ultimately perfectly successive if T is a perfectly successive set on Λ which is not

properly contained in other perfectly successive relation sets on Λ.

Lemma 1.4 Minimal generators {ρi|i ∈ I} of the ideal ⟨ρ⟩ consisting of relations on Λ can be

divided into finitely ultimately successive subsets R1, R2, . . . , Rm of {ρi|i ∈ I} that are mutually

disjoint.

We can choose R̃i from Ri, one of longest ultimately perfectly successive subsets of Ri, for

i = 1, 2 . . . ,m. Denote the cardinal number of the set R̃i by |R̃i|.

Theorem 1.5 If A is an An-type finite dimensional k-algebra that is Morita equivalent to

kΛ/⟨ρ⟩ with Λ being an An-type quiver and ⟨ρ⟩ an admissible ideal of kΛ. Then the global

dimension of A is the maximal of {|R̃i| + 1, i ∈ I} where R̃i, i ∈ I are all ultimately perfectly

successive relation subsets of minimal generators {ρi|i ∈ I} of the ideal ⟨ρ⟩ consisting of relations

on Λ.

Example 1.6 Let Λ be the quiver

1 2
α1 // //α2

3 //α3
4 //α4

5 // 6
α5

.
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If ⟨ρ⟩ is an ideal of kΛ generated by α3α2α1, α4α3α2, α5α4α3, then T = {α3α2α1, α4α3α2, α5α4α3}
is a successive set, but is not a perfectly successive set since there is no non-trivial path starting

from α4 that can be generated by T . T̃ = {α3α2α1, α4α3α2} is one of longest ultimately perfectly

successive subsets of T , |T̃ | = 2, so the global dimension of kΛ/⟨ρ⟩ is 2 + 1 = 3 by Theorem 1.5.

If ⟨ρ⟩ is an ideal of kΛ generated by α2α1, α3α2, α4α3, then T = {α2α1, α3α2, α4α3} is an

ultimately perfectly successive set, |T | = 3, so the global dimension of kΛ/⟨ρ⟩ is 3 + 1 = 4 by

Theorem 1.5.

Corollary 1.7 {1, 2, . . . , n− 1} are exactly all global dimensions of An-type finite dimensional

k-algebras for n > 1. So the maximal global dimension of An-type finite dimension algebras is

n− 1, and the minimum is 1.

2. Proof of the main theorem

A quiver ∆ = (∆0,∆1, s, e) is given by two sets ∆0,∆1 and two maps s, e : ∆1 → ∆0;

∆0,∆1 are respectively called the set of vertices and the sets of arrows of ∆, s(α) and e(α) are

respectively called the head and the tail of α ∈ ∆1. A path p in ∆ of length l means a sequence

of arrows p = αl · · ·α1 with e(αi) = s(αi+1) for 1 ≤ i ≤ l− 1. Set s(p) = s(α1), e(p) = e(αl) and

l(p) = l, which are called the head, the tail and the length of p respectively. A vertex i ∈ ∆0 is

regarded as a path of length 0 and is denoted by ei. For any field k and any quiver ∆, let k∆ be

the k-space with basis the set of all finite length paths in ∆. For any two paths p = αm · · ·α1

and q = βn · · ·β1 in ∆, define the multiplication

qp =

{
βn · · ·β1αm · · ·α1, if e(p) = s(q),

0, otherwise.

Then k∆ becomes a k-algebra, which is called the path algebra of ∆. In k∆, we denote by k∆+

the ideal generated by all arrows. Note that (k∆+)n is the ideal generated by all paths of length

≥ n.

A relation σ on a quiver ∆ over a field k is a k-linear combination of paths σ = a1p1 +

· · · + anpn with ai ∈ k and e(p1) = · · · = e(pn) and s(p1) = · · · = s(pn). If ρ = {σt}t∈T is a

set of relations on ∆ over k, the pair (∆, ρ) is called a quiver with relations over k. Associated

with (∆, ρ) is the k-algebra k(∆, ρ) = k∆/⟨ρ⟩, where ⟨ρ⟩ denotes the ideal in k∆ generated

by the set of relations ρ. An ideal ⟨ρ⟩ of k∆ generated by the set of relations ρ in k∆ with

(k∆+)n ⊆ ⟨ρ⟩ ⊆ (k∆+)2 for some n ≥ 2 is called an admissible ideal of k∆.

Lemma 2.1 Minimal generators {ρi|i ∈ I} of the ideal ⟨ρ⟩ consisting of relations on Λ can be

divided into finitely ultimately successive subsets R1, R2, . . . , Rm of {ρi|i ∈ I} that are mutually

disjoint.

Proof The proof is given by induction on |I|. If non-elements in {ρi|i ∈ I} are successive

with ρ1, we set R1 = {ρ1}. Otherwise we find all elements {ρi1, . . . , ρit1} in {ρi|i ∈ I} which are

successive with ρ1. Putting them together with ρ1, we get a set {ρ1, ρi1, . . . , ρit1}. If non-elements
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in {ρi|i ∈ I} are successive with {ρ1, ρi1, . . . , ρit1}, we set R1 = {ρ1, ρi1, . . . , ρit1}. Otherwise we

continue to find all elements in {ρi|i ∈ I} which are successive with {ρ1, ρi1, . . . , ρit1}, and these

elements together with elements {ρ1, ρi1, . . . , ρit1} constitute a bigger set than {ρ1, ρi1, . . . , ρit1}.
Repeat former steps until we get a set R1 whose elements are non-successive with elements in

{ρi|i ∈ I}/R1. Certainly R1 is an ultimately successive set. Consider the set {ρi|i ∈ I}/R1,

its cardinal number is smaller than |I|. By induction on |I| we can divide {ρi|i ∈ I}/R1 into

mutually non-successive subsets R2, . . . , Rm where each Ri, i = 2, . . . ,m is ultimately successive.

Therefore {ρi|i ∈ I} is divided into mutually non-successive sets R1, R2, . . . , Rm where each

Ri, i = 1, 2, . . . ,m is ultimately successive. �
Denote by Si the i-th simple module of algebra kΛ/⟨ρ⟩ corresponding to the i-th vertex of

the graph Λ. Denote by pro.dim.Si the projective dimension of kΛ/⟨ρ⟩-module Si.

A representation (V, f) of a quiver ∆ over a field k is a set of vector spaces {Vi|i ∈ ∆0}
together with k-linear maps fα : Vi → Vj for each arrow α : i → j. If V = (Vi, fα) and

W = (Wi, gα) are two representations, a morphism ψ = (ψ1, . . . , ψn) : V → W is given by ψi ∈
Hom(Vi,Wi) such that ψt(α)fα = gαψs(α) : Vs(α) → Wt(α). This defines the category repk∆

of representations of ∆. If w = αl · · ·α1 is a path in ∆, we may denote by Vw the composition

Vαl
· · ·Vα1 . We say that V satisfies the relation ρ =

∑
w cww, provided

∑
w cwVw = 0.

It is well known that the category of finite dimension representations of a quiver ∆ over k

satisfying relations ⟨ρ⟩ is equivalent to the category of finite dimensional k∆/⟨ρ⟩-modules [3,4].

So we usually investigate modules through corresponding quiver representations.

To treat with general cases with the quiver Λ being

· · · i1 + 1
αi1 // oo αi1+1 · · · oo αj1 j1 + 1 // · · ·

αj1+1
(∗),

we first consider the special case with the quiver Γ being

1 2
α1 // //α2

3 // · · · // n− 1 // n
αn−1

(∗∗).

Lemma 2.2 Let {ρi|i ∈ I} be a set of relations on Γ which are minimal generators of the ideal

⟨ρ⟩ in kΓ, ρi = αit · · ·αi1+1αi1 ∈ {ρi|i ∈ I}. Then the projective kΓ/⟨ρ⟩-module P (i1) is

0

(1)

0

(2)
0 // //0 · · · k

(i1)
//1id
k

(i1 + 1)
//1id · · · k
(it − 1)

//0
0

(it)
//0 · · · //0

0

(n)

Proof Since P (i1) ∼= kΓei1/⟨ρ⟩, and one basis of kΓei1/⟨ρ⟩ is ei1 , αi1 , αi1+1αi1 , . . ., αit−1 · · ·αi1+1αi1 ,

the assertion follows. �

Lemma 2.3 If αi does not occur in any ρj of minimal generators {ρi|i ∈ I} of an ideal ⟨ρ⟩
consisting of relations on Γ, then the projective dimension of kΓ/⟨ρ⟩-simple module Si is 1.

Proof It is easy to see that 0 // Pi+1
// Pi

// Si
// 0 is a minimal projective pre-

sentation of Si. So the projective dimension of kΓ/⟨ρ⟩-simple module Si is 1. �

Lemma 2.4 If a perfectly successive relation set Ri in kΓ consists of ρim = αimt · · ·αim+1αim ,

ρim−1 = αim−1t · · ·αim−1+1αim−1 , . . . , ρi1 = αi1t · · ·αi1+1αi1 with im < im−1 < · · · < i1, then

the projective dimension of Sib is b + 1 for b = 1, 2, . . . ,m, respectively. While the projective
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dimension of Sj is 1 when j belongs to other vertexes appearing in the relation set Ri except ib

for b = 1, 2, . . . ,m.

Proof For Sib with b = 1, 2, . . . ,m we have a minimal projective presentation of Sib

0 //Pi1t−1
//Pi1t · · · //Pib−2t

//Pib−1t
// Pib+1

//Pib
// Sib

// 0 .

For Sj with j ̸= ib we have a minimal projective presentation of Sj

0 // Pj+1 // Pj // Sj // 0 .

Therefore the projective dimension of Sib is b+ 1, the projective dimension of Sj is 1. �

Theorem 2.5 If A is a special An-type finite dimensional k-algebra that is Morita equivalent

to kΓ/⟨ρ⟩ for the special An-type quiver Γ and an admissible ideal ⟨ρ⟩ of kΓ. Then the global

dimension of A is the maximal of {|Ri| + 1, i ∈ I} where Ri, i ∈ I are all ultimately perfectly

successive relation subsets of minimal generators {ρi|i ∈ I} of the ideal ⟨ρ⟩ consisting of relations

on Γ.

Proof Since the global dimension of kΓ/⟨ρ⟩ is max {pro.dim.Si|i = 1, 2, . . . , n}, the theorem

follows from Lemmas 2.3 and 2.4. �

Example 2.6 Let Γ be the following A7-type quiver

1 2
α1 // //α2

3 //α3
4 //α4

5 //α5
6 //α6

7

with the following relations on Γ: ρ1 = α2α1, ρ2 = α4α3, ρ3 = α6α5α4. Let ⟨ρ⟩ be an admissible

ideal of kΓ generated by ρ1, ρ2 and ρ3. Then the global dimension of kΓ/⟨ρ⟩ is 3 by Theorem

2.5, since R1 = {ρ1}, R2 = {ρ2, ρ3}.

Corollary 2.7 The global dimension of kΓ/⟨ρ⟩ is n − 1 if and only if ⟨ρ⟩ is generated by

α2α1, α3α2, . . . , αn−1αn−2.

Proof On one hand, if ⟨ρ⟩ is generated by α2α1, α3α2, . . . , αn−1αn−2, then certainly α2α1,

α3α2, . . ., αn−1αn−2 constitutes only one perfectly successive set of ⟨ρ⟩, its cardinal number is

n− 2, so by Theorem 2.5, the global dimension of kΓ/⟨ρ⟩ is n− 1.

On the other hand, if the global dimension of kΓ/⟨ρ⟩ is n− 1, then by Theorem 2.5 there is

an ultimately perfectly successive set of ⟨ρ⟩ the cardinal number of which is n− 2. In this case,

⟨ρ⟩ has to be generated by α2α1, α3α2, . . . , αn−1αn−2. �
We treat with general cases in the following theorem.

Theorem 2.8 If A is an An-type finite dimensional k-algebra that is Morita equivalent to

kΛ/⟨ρ⟩ for an An-type quiver Λ and an admissible ideal ⟨ρ⟩ of kΛ. Then the global dimension

of A is the maximal of {|Ri| + 1, i ∈ I} where Ri, i ∈ I are all ultimately perfectly successive

relation subsets of minimal generators {ρi|i ∈ I} of the ideal ⟨ρ⟩ consisting of relations on Λ.

Proof The special vertexes of the quiver Λ which are different from the quiver Γ’s are those like

i1+1 and j1+1 by comparing (∗) and (∗∗). Since i1+1 is a sink vertex, Si1+1 is clearly a projective

kΛ/⟨ρ⟩-module. So we only need to consider j1 +1. Since j1 +1 is a source vertex, the relations
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where j1 + 1 is involved can be divided into two successive sets. One is ρj1 = αj1t · · ·αj1−1αj1 ,

ρj2 = αj2t · · ·αj2−1αj2 , . . ., ρjm = αjmt · · ·αjm−1αjm with jm < jm−1 < · · · < j1. The other is

ρl1 = αl1t · · ·αj1+2αj1+1, ρl2 = αl2t · · ·αl2+1αl2 , . . . , ρlu = αlut · · ·αlu+1αlu with j1 + 1 < l2 <

· · · < lu. So a minimal projective presentation of Sj1+1 can be expressed in several cases. One is

0 // Pd−1
// Pd · · · // Pj2t ⊕ Pl2t

//Pj1 ⊕ Pj1+2 //Pj1+1 // Sj1+1 // 0
where d = jmt if m > u ≥ 1, d = lut if u > m ≥ 1.

If m = u, then a minimal projective presentation of Sj1+1 can be expressed as

0 // Pjmt−1 ⊕ Plut+1 // Pjmt
⊕ Plut · · ·

· · · // Pj2t ⊕ Pl2t
// Pj1 ⊕ Pj1+2 // Pj1+1 // Sj1+1 // 0

So we draw a conclusion that the projective dimension of Sj1+1 is max{m+ 1, u+ 1}. We

can treat with other vertexes except i1+1s and j1+1s similarly as Theorem 2.5. This completes

the proof. �

Corollary 2.9 {1, 2, . . . , n−1} are exactly all global dimensions of all An-type finite dimensional

k-algebras for n > 1. So the maximal global dimension of all An-type finite dimension algebras

is n− 1, and the minimum one is 1.

Proof Since {0, 1, . . . , n− 2} are all possible lengths of perfectly successive subsets in An-type

quivers, and it is easy to see that any of these lengths can actually occur in an An-type quiver,

the assertion follows from Theorem 2.8. �
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