Journal of Mathematical Research with Applications Jul., 2015, Vol. 35, No. 4, pp. 417–424 DOI:10.3770/j.issn:2095-2651.2015.04.007 Http://jmre.dlut.edu.cn

Existence of Entire Solutions for Semilinear Elliptic Problems with Convection Terms

Hongtao XUE

Mathematics and Physics Teaching Department, Yantai Nanshan University, Shandong 265713, P. R. China

Abstract By a sub-supersolution method and a perturbed argument, we show the existence of entire solutions for the semilinear elliptic problem $-\Delta u + a(x)|\nabla u|^q = \lambda b(x)g(u), u > 0, x \in \mathbb{R}^N$, $\lim_{|x|\to\infty} u(x) = 0$, where $q \in (1,2], \lambda > 0$, a and b are locally Hölder continuous, $a \ge 0, b > 0, \forall x \in \mathbb{R}^N$, and $g \in C^1((0,\infty), (0,\infty))$ which may be both possibly singular at zero and strongly unbounded at infinity.

Keywords semilinear elliptic equation; entire solution; convection term; existence

MR(2010) Subject Classification 35B08; 35B25; 35J61; 35J75

1. Introduction and the main result

In this paper, we are concerned with the existence of entire solutions for the following semilinear elliptic problem

$$-\Delta u + a(x)|\nabla u|^q = \lambda b(x)g(u), \quad u > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} u(x) = 0, \tag{1.1}$$

where $q \in (1, 2], \lambda > 0, a(x) \in C^{\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$ is non-negative, b(x) satisfies

- (b₁) $b \in C^{\alpha}_{\text{loc}}(\mathbb{R}^N)$ and $b(x) > 0, \forall x \in \mathbb{R}^N$,
- (b_2) the linear problem

$$-\Delta u = b(x), \quad u > 0, \quad x \in \mathbb{R}^N, \quad \lim_{|x| \to \infty} u(x) = 0 \tag{1.2}$$

has a unique solution $w \in C^{2+\alpha}_{loc}(\mathbb{R}^N)$, and the nonlinearity $g \in C^1((0,\infty), (0,\infty))$ may be both possibly singular at zero and strongly unbounded at infinity.

Set $g_0 := \lim_{s \to 0} g(s)/s$, $g_\infty := \lim_{s \to \infty} g(s)/s$, where $g_0 \in (0, \infty]$, $g_\infty \in [0, \infty]$.

Problem (1.1) arises from many branches of mathematics and applied mathematics. Concerning with entire solutions for semilinear elliptic problems, there is by now a broad literature and we refer the readers to [1–19] and the references cited therein. But we note that in most works, monotonicity on g(s) or g(s)/s is required to some extent.

Recently, the author showed in [13] that the problem

$$-\Delta u + a(x)|\nabla u|^q = b(x)g(u), \quad u > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} u(x) = 0,$$
(1.3)

Received July 18, 2014; Accepted April 25, 2015

Supported by the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J12LI54).

E-mail address: hongtaoxue@126.com

admits a entire solution when $g_0 = \infty$, $g_{\infty} = 0$, where no monotonicity is required. And in [14], where the nonlinearity is not necessarily separable, the author extended the above results to the following problem

$$-\Delta u + a(x)|\nabla u|^q = f(x, u), \quad u > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} u(x) = 0, \tag{1.4}$$

under the following conditions

(f₁) f(x,s) is locally Hölder continuous on $\mathbb{R}^N \times (0,\infty)$ and continuously differentiable in the variable s,

(f₂) $f(x,s) \leq b(x)g(s)$ for all $(x,s) \in \mathbb{R}^N \times (0,\infty)$, where b satisfies (b_1) and (b_2) , g satisfies $\lim \sup_{s\to\infty} g(s)/s < 1/C_0$, where w is the solution of problem (1.2) and $C_0 := \max_{x\in\mathbb{R}^N} w(x)$,

(f₃) There exists $s_0 > 0$ such that $f(x, s) \ge a(x)h(s)$ for all $(x, s) \in \mathbb{R}^N \times (0, s_0)$, where $a : \mathbb{R}^N \to (0, \infty)$ is locally Hölder continuous, $h : (0, s_0) \to (0, \infty)$ is continuous, and $\lim_{s \to 0} h(s)/s = \infty$.

We refer the readers to the paper [14] for details.

In this paper, we continue to improve the earlier results about the existence of entire solutions for problem (1.1), where the case $g_0 \in (0, \infty]$, $g_\infty \in [0, \infty]$ is treated. Our main result is summarized in the following theorem.

Theorem 1.1 Let $q \in (1,2]$, $\lambda > 0$. Assume that $a : \mathbb{R}^N \to [0,\infty)$ is locally Hölder continuous, and b satisfies $(b_1)-(b_2)$, $g \in C^1((0,\infty), (0,\infty))$. Then problem (1.1) has at least one solution $u \in C^{2+\alpha}_{\text{loc}}(\mathbb{R}^N)$, if one of the following two conditions

i)
$$0 < \frac{2\beta\xi_1(b,B)}{\lambda} < g_0 \le \infty, 0 \le g_\infty < \infty, 0 < \lambda < \Lambda_0$$

(ii)
$$g_0 = g_\infty = \infty, 0 < \lambda \leq \Lambda_1,$$

holds, where $\beta := q/(q-1)$, B is the unit ball of \mathbb{R}^N ,

$$\xi_1(b,B) := \inf_{\{u \in W_0^{1,2}(B), u \neq 0\}} \frac{\int_B |\nabla u|^2 \mathrm{d}x}{\int_B b(x) |u|^2 \mathrm{d}x}.$$
(1.5)

Remark 1.2 Λ_0 , Λ_1 will be shown in the proof of Theorem 2.2.

The paper is organized as follows. In Section 2, we provide a suitable super-solution for problem (1.1). In Section 3, we show the existence of positive solutions in bounded domain. In Section 4, we prove Theorem 1.1.

2. Super-solutions decaying to zero

Consider the differential inequality problem

$$-\Delta v > \lambda b(x)g(v), \quad v > 0, \ x \in \mathbb{R}^N, \ \lim_{|x| \to \infty} v(x) = 0.$$

$$(2.1)$$

Obviously, any solution of problem (2.1) is a super-solution of problem (1.1).

First we recall the following auxiliary result.

Lemma 2.1 ([15, Lemma 2.1]) Assume $g \in C^1((0,\infty), (0,\infty))$ with $0 < g_0 \le \infty$ and $0 \le g_\infty < \infty$. Then there exists a function $\Gamma_g(s)$ such that Existence of entire solutions for semilinear elliptic problems with convection terms

- (i) $\Gamma_g(s) \in C^1((0,\infty), (0,\infty));$
- (ii) $g(s)/s \leq \Gamma_g(s), \ \forall s > 0;$
- (iii) $\Gamma_g(s)$ is non-increasing on $(0, \infty)$;
- (*iv*) $\lim_{s\to\infty} \Gamma_g(s) = g_\infty$.

The result below will provide a suitable super-solution for problem (1.1).

Theorem 2.2 Let $q \in (1,2]$, $\lambda > 0$. Assume that $a : \mathbb{R}^N \to [0,\infty)$ is locally Hölder continuous, and b satisfies $(b_1)-(b_2)$, $g \in C^1((0,\infty), (0,\infty))$. Then, there exists a function v satisfying problem (2.1), if one of the following two conditions

(i) $0 < g_0 \leq \infty, 0 \leq g_\infty < \infty, 0 < \lambda < \Lambda_0,$

(ii)
$$g_0 = g_\infty = \infty, 0 < \lambda \le \Lambda_1,$$

holds.

Proof of Theorem 2.2

Proof of (i) Define

$$\overline{g}_1(t)=\int_0^t \frac{s}{s\Gamma_g(s)+1} \mathrm{d} s, \ t\geq 0,$$

it follows that

(i) $\overline{g}_1(s)/s$ is non-decreasing; (ii) $\lim_{s\to\infty} \overline{g}_1(s)/s = 1/g_{\infty}$; (iii) $\lim_{s\to0} \overline{g}_1(s)/s = 0$.

Set $\Lambda_0 := \frac{1}{C_0 g_{\infty}}$, where $C_0 = \max_{x \in \mathbb{R}^N} w(x)$, w is the solution of problem (1.2). For any $\lambda \in (0, \Lambda_0)$, there exists a positive constant μ such that

$$\frac{1}{\mu} \int_0^\mu \frac{t}{t\Gamma_g(t) + 1} \mathrm{d}t = \lambda C_0$$

Now, we define a function v by

$$\lambda w(x) = \frac{1}{\mu} \int_0^{v(x)} \frac{t}{t\Gamma_g(t) + 1} \mathrm{d}t.$$
(2.2)

Then, $0 < v(x) \le \mu$, and $\lim_{|x| \to \infty} v(x) = 0$.

Differentiating (2.2), we have

$$\begin{split} \mu \lambda \Delta w(x) &= \frac{v}{v \Gamma_g(v) + 1} \Delta v + \frac{\mathrm{d}}{\mathrm{d}v} \left(\frac{v}{v \Gamma_g(v) + 1} \right) |\nabla v|^2, \\ &- \mu \lambda \Delta w(x) \leq \frac{v}{v \Gamma_g(v) + 1} (-\Delta v). \end{split}$$

So,

$$-\Delta v \ge \lambda \mu b(x)(\Gamma_g(v) + \frac{1}{v}) \ge \lambda b(x)v(\Gamma_g(v) + \frac{1}{v}).$$

By Lemma 2.1(ii), we have $-\Delta v > \lambda b(x)g(v)$.

Proof of (ii) There is some m > 0 such that

$$\inf_{s>0} \frac{g(s)}{s} = \frac{g(m)}{m} := I_m \in [0, \infty).$$

We define

$$g^*(s) := \begin{cases} g(s), & 0 < s \le m \\ I_m s, & s > m. \end{cases}$$

(2.3)

Notice that $g^* \in C^1$ and satisfies

(i) $\lim_{s\to 0} g^*(s)/s = \infty$; (ii) $\lim_{s\to\infty} g^*(s)/s = I_m \in [0,\infty)$. Moreover, any solution of

$$-\Delta v > \lambda b(x)g^*(v), \quad v > 0, \quad x \in \mathbb{R}^N, \quad \lim_{|x| \to \infty} v(x) = 0, \quad v \le m,$$

$$(2.4)$$

is also a super-solution of problem (1.1).

Next, we show that problem (2.4) has at least one solution.

Define

$$\overline{g}_2(t) = \int_0^t \frac{s}{s\Gamma_{g^*}(s) + 1} \mathrm{d}s, \ t \ge 0,$$

it follows that

(i) $\overline{g}_2(s)/s$ is non-decreasing; (ii) $\lim_{s\to\infty} \overline{g}_2(s)/s = 1/I_m$; (iii) $\lim_{s\to0} \overline{g}_2(s)/s = 0$.

Notice that $\frac{\overline{g}_2(s)}{s}$ is non-decreasing. And set $\Lambda_1 := \frac{\overline{g}_2(m)}{C_0 m}$, where $C_0 = \max_{x \in \mathbb{R}^N} w(x)$, w is the solution of problem (1.2).

For any $\lambda \in (0, \Lambda_1]$, there exists $\mu \in (0, m]$ such that

$$\frac{1}{\mu} \int_0^\mu \frac{t}{t\Gamma_{g^*}(t) + 1} \mathrm{d}t = \lambda C_0$$

Now, we define a function v by

$$\lambda w(x) = \frac{1}{\mu} \int_0^{v(x)} \frac{t}{t \Gamma_{g^*}(t) + 1} \mathrm{d}t.$$
 (2.5)

Then, $0 < v(x) \le \mu \le m$, and $\lim_{|x|\to\infty} v(x) = 0$. The remaining part of the proof follows as in the proof of (i).

The proof of Theorem 2.2 is completed. \Box

3. Positive solutions on bounded domains

Consider the following problem

$$-\Delta u + a(x)|\nabla u|^q = \lambda b(x)g(u), \quad u > 0, \ x \in \Omega, \ u|_{\partial\Omega} = 0,$$
(3.1)

where Ω is a bounded domain with smooth boundary $\partial \Omega$.

In this section, by a sub-supersolution method [16, Lemma 3], we show the existence of positive solutions for problem (3.1).

Let $\phi_1(b,\Omega) \in C^1(\overline{\Omega}) \cap C^{2+\alpha}(\Omega)$ be the first eigenfunction corresponding to the first eigenvalue $\xi_1(b,\Omega)$ of

$$-\Delta u = \xi b(x)u, \quad u > 0, \ x \in \Omega, \ u|_{\partial\Omega} = 0.$$

Notice that $\xi_1(b, \Omega)$ is given by an expression like (1.5).

For the convenience, we denote $|u|_{\infty} = \max_{x \in \bar{\Omega}} |u(x)|, |u|_{0} = \min_{x \in \bar{\Omega}} |u(x)|$, whenever $u \in C(\bar{\Omega})$.

Theorem 3.1 Let $q \in (1,2]$, $\lambda > 0$. Assume that $a, b \in C^{\alpha}(\overline{\Omega})$, and $a \geq 0, b > 0, g \in \mathbb{C}^{\alpha}(\overline{\Omega})$

420

 $C^1((0,\infty)(0,\infty))$. Then problem (3.1) has at least one solution $u \in C(\overline{\Omega}) \cap C^{2+\alpha}(\Omega)$, if one of the following two conditions

holds.

Proof of Theorem 3.1 In the course of the following proof, denote $\xi_1 = \xi_1(b, \Omega), \phi_1 = \phi_1(b, \Omega)$.

Proof of (i) Take $\lambda \in (0, \Lambda_0)$. Since b > 0 on $\overline{\Omega}$ and $g_0 > \frac{2\beta\xi_1}{\lambda}$, there is $\delta > 0$ such that

$$\frac{g(s)}{s} > \frac{2\beta\xi_1}{\lambda}, \ s \in (0,\delta).$$

Let $\underline{u} = c_1 \phi_1^{\beta}$, where $c_1 \in (0, \min\{1, \frac{\delta}{|\phi_1|_{\infty}^{\beta}}, (\frac{\xi_1 |b|_0}{\beta^{q-1} |a|_{\infty} |\nabla \phi_1|_{\infty}^{q}})^{\frac{1}{q-1}})$. We claim that \underline{u} is a sub-solution of problem (3.1).

In fact, since $c_1 \leq \left(\frac{\xi_1|b|_0}{\beta^{q-1}|a|_{\infty}|\nabla\phi_1|_{\infty}^q}\right)^{\frac{1}{q-1}}$, we have

$$a(x)\beta^{q}c_{1}^{q}\phi_{1}^{q(\beta-1)}|\nabla\phi_{1}|^{q} \leq \beta\xi_{1}c_{1}b(x)\phi_{1}^{\beta}.$$

Then,

$$\begin{aligned} -\triangle \underline{u} + a(x) |\nabla \underline{u}|^q &= \beta \xi_1 c_1 b(x) \phi_1^{\beta} - c_1 \beta (\beta - 1) \phi_1^{\beta - 2} |\nabla \phi_1|^2 + a(x) \beta^q c_1^q \phi_1^{q(\beta - 1)} |\nabla \phi_1|^q \\ &\leq \beta \xi_1 c_1 b(x) \phi_1^{\beta} + a(x) \beta^q c_1^q \phi_1^{\beta} |\nabla \phi_1|^q \\ &\leq 2\beta \xi_1 c_1 b(x) \phi_1^{\beta} \leq \lambda b(x) g(c_1 \phi_1^{\beta}) \\ &\leq \lambda b(x) g(\underline{u}). \end{aligned}$$

Let $\overline{u} = v$ be given as in Theorem 2.2(i). Then \overline{u} is a super-solution of problem (3.1). We claim that $\underline{u} \leq \overline{u}$.

Indeed if we assume the contrary that there is $x_0 \in \Omega$ such that $\underline{u}(x_0) > \overline{u}(x_0)$, then $\sup_{x \in \Omega} (\ln(\underline{u}(x)) - \ln(\overline{u}(x))) > 0$. There is some $x_1 \in \Omega$ such that

$$\nabla(\ln(\underline{u}(x_1)) - \ln(\overline{u}(x_1))) = 0 \text{ and } \Delta(\ln(\underline{u}(x_1)) - \ln(\overline{u}(x_1))) \le 0.$$

By Lemma 2.1(ii)–(iii) and (2.3), we have

$$\begin{split} \Delta(\ln(\underline{u}(x_1)) - \ln(\overline{u}(x_1))) &= \frac{\Delta \underline{u}(x_1)}{\underline{u}(x_1)} - \frac{\Delta \overline{u}(x_1)}{\overline{u}(x_1)} \\ &\geq \frac{a(x_1)|\nabla \underline{u}(x_1)|^q}{\underline{u}(x_1)} - \lambda b(x_1)(\frac{g(\underline{u}(x_1))}{\underline{u}(x_1)} - (\Gamma_g(\overline{u}(x_1)) + \frac{1}{\overline{u}(x_1)})) > 0, \end{split}$$

which is a contradiction. So we can obtain that $\underline{u}(x) \leq \overline{u}(x), x \in \Omega$. It follows that problem (3.1) has at least one solution $u \in C^{2+\alpha}(\Omega) \cap C(\overline{\Omega})$ in the ordered interval $[\underline{u}, \overline{u}]$.

Proof of (ii) We notice that any solution of the problem

$$-\Delta u + a(x)|\nabla u|^q = \lambda b(x)g^*(u), \quad u > 0, \ x \in \Omega, \ u|_{\partial\Omega} = 0, \ u \le m,$$
(3.2)

where g^* was defined in the proof of Theorem 2.2, is a solution of problem (3.1). Since

 $\lim_{s\to 0} g^*(s)/s = \infty$, there is $\delta > 0$ such that

$$g^*(s)/s > \frac{2\beta\xi_1}{\lambda}, \ s \in (0,\delta).$$

Proceeding as in the proof of item (i), it follows that $\underline{u} = c_1 \phi_1^{\beta}$ is a sub-solution of problem (3.1).

On the other hand, the function $\overline{u} = v$ with v given by Theorem 2.2(ii) is a super-solution of problem (3.1). Proceeding as in the proof of (i), we have $\underline{u} \leq \overline{u}$ in Ω . Then problem (3.1) has at least one solution $u \in C^{2+\alpha}(\Omega) \cap C(\overline{\Omega})$ such that $u \in [\underline{u}, \overline{u}]$.

The proof of Theorem 3.1 is completed. \Box

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of (i) Take $\lambda \in (0, \Lambda_0)$ and consider the problem

$$-\Delta u_k + a(x)|\nabla u_k|^q = \lambda b(x)g(u_k), \quad u_k > 0, \ x \in B(0,k), \ u_k|_{\partial B(0,k)} = 0,$$
(4.1)

where $B(0,k) = \{ x \in \mathbb{R}^N : |x| < k \}, \ k = 1, 2, 3, \dots$

Using the conditions of Theorem 1.1(i), we have

$$g_0 > \frac{2\beta\xi_1(a,B)}{\lambda} \ge \frac{2\beta\xi_1(a,B_k)}{\lambda}.$$
(4.2)

It follows by Theorem 3.1 that problem (4.1) has at least one solution $u_k \in C^{2+\alpha}(B(0,k)) \cap C(\bar{B}(0,k))$. Put $u_k(x) = 0, \forall |x| > k$. Then,

$$0 < \underline{u} \le u_k \le v \le \mu, \tag{4.3}$$

where \underline{u} is the sub-solution corresponding to $\Omega = B_k$ and v is the function given by Theorem 2.2(i).

Now, we need to estimate $\{u_k\}$. For any bounded $C^{2+\alpha}$ -smooth domain $\Omega' \subset \mathbb{R}^N$, take Ω_1 and Ω_2 with $C^{2+\alpha}$ -smooth boundaries, and K_1 large enough, such that

$$\Omega' \subset \subset \Omega_1 \subset \subset \Omega_2 \subset \subset B_k, \ k \ge K_1.$$

Note that

$$u_k(x) \ge \underline{u}(x) > 0, \quad \forall x \in B(0, K_1), \tag{4.4}$$

when $B(0, K_1)$ is the substitution for Ω in the proof of Theorem 3.1. Let

$$\rho_k(x) = \lambda b(x)g(u_k) - a(x)|\nabla u_k(x)|^q, \quad x \in B(0, K_1).$$

Since $-\Delta u_k(x) = \rho_k(x)$, $x \in B(0, K_1)$, by the interior estimate theorem of Ladyzenskaja and Ural'tseva [20, Theorem 3.1, pp.266], we get a positive constant C_1 independent of k such that

$$\max_{x \in \bar{\Omega}_2} |\nabla u_k(x)| \le C_1 \max_{x \in \bar{B}(0,K_1)} u_k(x) \le C_1 \max_{x \in \bar{B}(0,K_1)} v(x), \quad \forall x \in B(0,K_1),$$
(4.5)

422

i.e., $|\nabla u_k(x)|$ is uniformly bounded on $\overline{\Omega}_2$. It follows that $\{\rho_k\}_{K_1}^{\infty}$ is uniformly bounded on $\overline{\Omega}_2$ and hence $\rho_k \in L^p(\Omega_2)$ for any p > 1. Since $-\Delta u_k(x) = \rho_k(x), x \in \Omega_2$, we see by [21, Theorem 9.11] that there exists a positive constant C_2 independent of k such that

$$||u_k||_{W^{2,p}(\Omega_1)} \le C_2(||\rho_k||_{L^p(\Omega_2)} + ||u_k||_{L^p(\Omega_2)}), \quad \forall k \ge K_1.$$

$$(4.6)$$

Taking p > N such that $\alpha < 1 - N/p$ and applying Sobolev's embedding inequality, we see that $\{||u_k||_{C^{1+\alpha}(\bar{\Omega}_1)}\}_{K_1}^{\infty}$ is uniformly bounded. Therefore $\rho_k \in C^{\alpha}(\bar{\Omega}_1)$ and $\{||\rho_k||_{C^{\alpha}(\bar{\Omega}_1)}\}_{K_1}^{\infty}$ is uniformly bounded. It follows by Schauder's interior estimate theorem [21, Chapter 1, pp.2] that there exists a positive constant C_3 independent of k such that

$$\|u_k\|_{C^{2+\alpha}(\bar{\Omega}')} \le C_3(\|\rho_k\|_{C^{\alpha}(\bar{\Omega}_1)} + \|u_k\|_{C(\bar{\Omega}_1)}), \quad \forall k \ge K_1,$$
(4.7)

i.e., $\{\|u_k\|_{C^{2+\alpha}(\bar{\Omega}')}\}_{K_1}^{\infty}$ is uniformly bounded. Using Ascoli-Arzela's theorem and the diagonal sequential process, we see that $\{u_k\}_{K_1}^{\infty}$ has a subsequence that converges uniformly in the $C^2(\bar{\Omega}')$ norm to a function $u \in C^2(\bar{\Omega}')$ and u satisfies

$$-\Delta u + a(x)|\nabla u|^q = \lambda b(x)g(u), \quad x \in \overline{\Omega}'$$

By (4.4), we obtain that u > 0, $\forall x \in \overline{\Omega}'$. Applying Schauder's regularity theorem, we see that $u \in C^{2+\alpha}(\overline{\Omega}')$. Since Ω' is arbitrary, we also see that $u \in C^{2+\alpha}_{\text{loc}}(\mathbb{R}^N)$. It follows by (4.3) that $\lim_{|x|\to\infty} u(x) = 0$. Thus, a standard bootstrap argument (with the same details as in [22]) shows that u is one solution of problem (1.1).

Proof of (ii) Take $\lambda \in (0, \Lambda_1]$. By Theorem 3.1(ii), problem (4.1) admits a solution $u_k \in C^{2+\alpha}(B(0,k)) \cap C(\bar{B}(0,k))$ satisfying $0 < \underline{u} \le u_k \le v \le m$. The proof now follows as in the proof of (i). The proof of Theorem 1.1 is completed. \Box

Acknowledgements We thank the referees for their time and comments.

References

- A. V. LAIR, A. W. SHAKER. Classical and weak solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl., 1997, 211(2): 371–385.
- [2] Zhijun ZHANG. A remark on the existence of entire solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl., 1997, 215(2): 579–582.
- [3] F. CĬRSTEA, V. D. RĂDULESCU. Existence and uniqueness of positive solutions to a semilinear elliptic problem in R^N. J. Math. Anal. Appl., 1999, 229(2): 417–425.
- Weijie FENG, Xiyu LIU. Existence of entire solutions of a singular semilinear elliptic problem. Acta Math. Sin. (Engl. Ser.), 2004, 20(6): 983–988.
- J. V. GONCALVES, C. A. SANTOS. Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations. Nonlinear Anal., 2006, 65(4): 719–727.
- [6] Zhijun ZHANG. A remark on the existence of positive entire solutions of a sublinear elliptic problem. Nonlinear Anal., 2007, 67(1): 147–153.
- [7] Dong YE, Feng ZHOU. Invariant criteria for existence of bounded positive solutions. Discrete Contin. Dyn. Syst., 2005, 12(3): 413–424.
- [8] A. MOHAMMED. Ground state solutions for singular semi-linear elliptic equations. Nonlinear Anal., 2009, 71(3-4): 1276–1280.
- C. A. SANTOS. On ground state solutions for singular and semi-linear problems including super-linear terms at infinity. Nonlinear Anal., 2009, 71(12): 6038–6043.
- [10] T. L. DINU. Entire positive solutions of the singular Emden-Fowler equation with nonlinear gradient term. Results Math., 2003, 43(1-2): 96–100.

- [11] M. GHERGU, V. RĂDULESCU. Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term. J. Math. Anal. Appl., 2007, 333(1): 265–273.
- [12] Hongtao XUE, Zhijun ZHANG. A remark on ground state solutions for Lane-Emden-Fowler equations with a convection term. Electron. J. Differential Equations, 2007, 53: 1–10.
- [13] Hongtao XUE, Xigao SHAO. Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Anal., 2009, 71(7-8): 3113–3118.
- [14] Hongtao XUE. Ground state solutions for a semilinear elliptic problem with a convection term. J. Math. Anal. Appl., 2011, 384(2): 439–443.
- [15] J. V. GONCALVES, F. K. SILVA. Existence and nonexistence of ground state solutions for elliptic equations with a convection term. Nonlinear Anal., 2010, 72(2): 904–915.
- [16] Shangbin CUI. Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems. Ser. A, Nonlinear Anal., 2000, 41(1-2): 149–176.
- [17] H. AMANN, M. G. CRANDALL. On some existence theorems for semi-linear elliptic equations. Indiana Univ. Math. J., 1978, 27(5): 779–790.
- [18] J. L. KAZDAN, R. J. KRAMER. Invariant criteria for existence of solutions to second order quasilinear elliptic equations. Comm. Pure Appl. Math., 1978, 31(5): 619–645.
- [19] E. S. NOUSSAIR. On semilinear elliptic boundary value problems in unbounded domains. J. Differential Equations, 1981, 41(3): 334–348.
- [20] O. A. LADYZENSKAJA, N. N. URAL'CEVA. Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968.
- [21] D. GILBARG, N. S. TRUDINGER. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1998.
- [22] A. V. LAIR, A. W. SHAKER. Entire solution of a singular semilinear elliptic problem. J. Math. Anal. Appl., 1996, 200(2): 498–505.