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Abstract By a sub-supersolution method and a perturbed argument, we show the existence
of entire solutions for the semilinear elliptic problem —Au + a(z)|Vu|? = Ab(z)g(u), u > 0,
z € RY, im0 u(x) = 0, where ¢ € (1,2], A > 0, a and b are locally Hélder continuous,
a>0,b>0, VzeRY, and g € C*((0,00), (0,00)) which may be both possibly singular at
zero and strongly unbounded at infinity.
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1. Introduction and the main result

In this paper, we are concerned with the existence of entire solutions for the following

semilinear elliptic problem

—Au+ a(z)|Vu|? = Mb(x)g(u), u>0, 2€RY, lim wu(x)=0, (1.1)

|z|— 00
where g € (1,2], A > 0, a(z) € C2.(RY) for some « € (0,1) is non-negative, b(x) satisfies
(b1) be CE.(RN) and b(x) > 0, Vo € RV,
(ba) the linear problem

—Au=0b(z), u>0, zcRY, ‘ 1|1£>n u(z) =0 (1.2)
has a unique solution w € CZI*(RY), and the nonlinearity g € C*((0,0), (0,00)) may be both
possibly singular at zero and strongly unbounded at infinity.

Set go := lims_,0 g(8)/$, goo = lims_ 00 g($)/8, where go € (0, 0], goo € [0, 00].

Problem (1.1) arises from many branches of mathematics and applied mathematics. Con-
cerning with entire solutions for semilinear elliptic problems, there is by now a broad literature
and we refer the readers to [1-19] and the references cited therein. But we note that in most
works, monotonicity on g(s) or g(s)/s is required to some extent.

Recently, the author showed in [13] that the problem

—Au+ a(z)|Vu|? = b(z)g(u), u>0, x € RN, lim wu(z)=0, (1.3)

|z]—o0
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admits a entire solution when gy = 00, goo = 0, where no monotonicity is required. And in [14],
where the nonlinearity is not necessarily separable, the author extended the above results to the
following problem
—Au+a(x)|Vul? = f(z,u), u>0, xRV, \xlgloo u(z) =0, (1.4)

under the following conditions

(f1) f(=,s) is locally Hélder continuous on RY x (0,00) and continuously differentiable in
the variable s,

(f2) f(z,s) < b(x)g(s) for all (z,s) € RN x (0,0), where b satisfies (b;) and (b2), g satisfies
limsup,_, . g(s)/s < 1/Cp, where w is the solution of problem (1.2) and Cp := max,cpy w(x),

(f3) There exists sg > 0 such that f(z,s) > a(z)h(s) for all (z,s) € RN x (0, s0), where a :
RN — (0, 00) is locally Holder continuous, k : (0, s9) — (0, 00) is continuous, and lims_,o h(s)/s =
00.
We refer the readers to the paper [14] for details.

In this paper, we continue to improve the earlier results about the existence of entire solu-
tions for problem (1.1), where the case gg € (0, 0], goo € [0, 0] is treated. Our main result is

summarized in the following theorem.

Theorem 1.1 Let q € (1,2], A > 0. Assume that a : RN — [0, 00) is locally Holder continuous,
and b satisfies (b1)—(b2), g € C*((0,00),(0,00)). Then problem (1.1) has at least one solution
u € CEF(RN), if one of the following two conditions

(i) O<2ﬁ5+(b’3)<go§oo,0§goo<oo,0</\<1\0,

(ii) go = goo = 00,0 < A < A4,
holds, where B := q/(q — 1), B is the unit ball of RY,

&1(b, B) := inf M. (1.5)
{uew2(B)u0} [p b(@)|ul?dz
Remark 1.2 Ay, A; will be shown in the proof of Theorem 2.2.
The paper is organized as follows. In Section 2, we provide a suitable super-solution for
problem (1.1). In Section 3, we show the existence of positive solutions in bounded domain. In

Section 4, we prove Theorem 1.1.

2. Super-solutions decaying to zero

Consider the differential inequality problem

—Av > Ab(z)g(v), v>0, € RN, lim v(z)=0. (2.1)

|z|—o00
Obviously, any solution of problem (2.1) is a super-solution of problem (1.1).

First we recall the following auxiliary result.

Lemma 2.1 ([15, Lemma 2.1]) Assume g € C1((0, 00), (0,00)) with 0 < go < 00 and 0 < goo <
00. Then there exists a function I'y(s) such that
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(i) Ty(s) € C*((0,00), (0,00));

(ii) g(s)/s <Ty(s), Vs > 0;

(iii) T'4(s) is non-increasing on (0, c0);
(iv) limgs 00 Ty ($) = goo-

The result below will provide a suitable super-solution for problem (1.1).

Theorem 2.2 Let q € (1,2], A > 0. Assume that a : RN — [0, 00) is locally Holder continuous,
and b satisfies (by)—(b2), g € C*((0,00),(0,00)). Then, there exists a function v satisfying
problem (2.1), if one of the following two conditions

(i) 0<go<00,0<goo <00,0<A<Ap,

(i) go = goo = 00,0 < A < Ay,
holds.

Proof of Theorem 2.2
Proof of (i) Define )
““):K;ﬂw;+1d&tzq
it follows that
(i) g1(s)/s is non-decreasing; (ii) lims o0 §;(5)/$ = 1/goo; (iil) lims_0 g, (s)/s = 0.
Set Ag = @, where Cy = max w(x), w is the solution of problem (1.2). For any

A € (0,Ag), there exists a positive constant p such that

l/wg—i——ﬂu—Ac
wlo tT,0)+1

Now, we define a function v by

1 v(x) t
g

Then, 0 < v(z) < p, and lim v(x)=0.

|| =00

Differentiating (2.2), we have

v d v
A =——ANv+ —(——~——
pAAw(z) vl (v) +1 v dv(vFg(v) +1

— pAAw(z) < W
So, 1 1
—Av > Aub(z)(Ty(v) + ;) > Xb(z)v(Ty(v) + —). (2.3)

v
By Lemma 2.1(ii), we have —Av > A\b(x)g(v).

Proof of (ii) There is some m > 0 such that

mﬂﬁzﬂ@:%em@.
s>0 8 m
We define

“(s) {M@70<8§m,
s) ==
g Ins, s>m.
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Notice that g* € C! and satisfies
(1) lin%) g*(s)/s = oo; (i) lims 00 g*(8)/s = Iy, € [0, 00).
S—

Moreover, any solution of

—Av > Ab(z)g*(v), v>0, x € RN lim v(z) =0, v <m, (2.4)

|| —o0
is also a super-solution of problem (1.1).
Next, we show that problem (2.4) has at least one solution.
Define

t
S
G(t)= [ — " ds, t>0,
92( ) /0 ng*(s)+1 il

it follows that
(i) go(s)/s is non-decreasing; (ii) lims o0 Go(8)/s = 1/1,;  (iil) limg—0 go(s)/s = 0.
Notice that 22(2) ig non-decreasing. And set Ay := M, where Cy = max,cpy w(x), w is
S Com S

the solution of problem (1.2).
For any A € (0, A4], there exists 1 € (0,m] such that

l/ﬂ¥dt—)\0
wlo the(t)+1 %

Now, we define a function v by
1 @ t
Aw(z) = ;/0 mdt. (2.5)
Then, 0 < v(z) < p < m, and lim;|,oc v(x) = 0. The remaining part of the proof follows as in
the proof of (i).
The proof of Theorem 2.2 is completed. [

3. Positive solutions on bounded domains

Consider the following problem
—Au+ a(x)|Vu|? = Ab(z)g(u), ©w>0, z€Q, ulspo =0, (3.1)

where Q is a bounded domain with smooth boundary 0f2.
In this section, by a sub-supersolution method [16, Lemma 3], we show the existence of
positive solutions for problem (3.1).
Let ¢1(b,Q) € CH(Q) N C?**t*(Q) be the first eigenfunction corresponding to the first eigen-
value & (b, Q) of
—Au=¢&b(z)u, u>0, z€Q, ulgg=0.

Notice that & (b, ) is given by an expression like (1.5).
For the convenience, we denote |u|oc = max,cgq |u(z)], |ulo = mingcq |u(z)|, whenever

u € C(9).

Theorem 3.1 Let ¢ € (1,2], A\ > 0. Assume that a,b € C%(Q), and a > 0,b > 0, g €
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C1((0,00) (0,00)). Then problem (3.1) has at least one solution u € C(Q) N C?T%(Q), if one of
the following two conditions

(i) O<M<go§oo,0§goo<oo,0</\<Ao,

(U) 9o = Joo = O0,0 < A SAL
holds.

Proof of Theorem 3.1 In the course of the following proof, denote & = £1(b, ), d1 = ¢1(b, Q).

Proof of (i) Take A € (0,Ag). Since b > 0 on Q and go > 2’6:\'51, there is ¢ > 0 such that
2
9(s) ﬁ/\il

S

, s €(0,0).

Let u = cqu{j, where ¢; € (0, min{1, Wl‘;‘ﬁ ’(ﬁqfl\f\lif\‘ovm\go)ﬁ)' We claim that u is a

sub-solution of problem (3.1).

&11blo
B~ aleo [ V1]

a(@) 11V Ve |1 < Bererb(x) e

1
In fact, since ¢; < ( )a-1, we have

Then,

~Ou+a(@)| Vul? = Barerbla)d] — e1f(8 — Do) |Varl +a(x)sele{ V|V
< Bereab(@)] + a(@)B1e] ¢ Ven|?
< 2B6e1b(2)¢7 < Ab(w)g(c197)
< Ab(z)g(w).
Let @ = v be given as in Theorem 2.2(i). Then @ is a super-solution of problem (3.1). We
claim that u <.

Indeed if we assume the contrary that there is zo € € such that w(xg) > w(zg), then
sup,cq(ln(u(z)) —In(@(x))) > 0. There is some z1 € Q such that

V(ln(u(z1)) — In(w(z1))) = 0 and A(In(u(zy)) — In(u(x1))) <O0.

By Lemma 2.1(ii)—(iii) and (2.3), we have

Alln(u(z1)) — In(a(a,))) =24z _ Au)

u(wy) u(xy)
e Vae o) o
= u(ry) Ab(ar1)( u(z) (g (( 1))+ﬂ(1’1))) >0,

which is a contradiction. So we can obtain that u(z) < @(z), x € Q. It follows that problem
(3.1) has at least one solution u € C27%(Q) N C(f) in the ordered interval [u, 1.

Proof of (ii) We notice that any solution of the problem
—Au+ a(x)|Vu|? = Ab(z)g" (u), u>0, z€Q, ulgn =0, u<m, (3.2)

where ¢* was defined in the proof of Theorem 2.2, is a solution of problem (3.1). Since
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lim g*(s)/s = oo, there is 6 > 0 such that

s—0

g (s))s > 2*6;51, s € (0,0).

Proceeding as in the proof of item (i), it follows that u = cl(,zbf is a sub-solution of problem
(3.1).

On the other hand, the function @ = v with v given by Theorem 2.2(ii) is a super-solution
of problem (3.1). Proceeding as in the proof of (i), we have u <@ in 2. Then problem (3.1) has
at least one solution u € C?T%(Q) N C() such that u € [u, u).

The proof of Theorem 3.1 is completed. O

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.
Proof of (i) Take A € (0,Aq) and consider the problem
—Aug + a(x)|Vug|? = Ao(2)g(ur), ur >0, x € B(0,k), urlopo,r =0, (4.1)

where B(0,k) = {zr e RY : |z| < k}, k=1,2,3,....
Using the conditions of Theorem 1.1(i), we have
> 2551§\a73) > 2551(5730
It follows by Theorem 3.1 that problem (4.1) has at least one solution uy € C*+%(B(0,k)) N
C(B(0,k)). Put ug(x) =0, V|z| > k. Then,

. (4.2)

O<u<uy<v<p, (4.3)

where u is the sub-solution corresponding to 2 = Bj and v is the function given by Theorem
2.2(i).
Now, we need to estimate {uy}. For any bounded C?*“-smooth domain ' C R¥, take O,

and Qy with C?T®-smooth boundaries, and K large enough, such that
Q' ccccQycC B, k> K.
Note that
ug(z) > u(xz) >0, Vo e B(0,Ky), (4.4)

when B(0, K1) is the substitution for Q in the proof of Theorem 3.1.
Let

pi(@) = Ab(@)g(ur) — a(@)| Vur(@)|?, @ € B(0, Ky).

Since —Aug(x) = pr(x), © € B(0,K7), by the interior estimate theorem of Ladyzenskaja and
Ural’tseva [20, Theorem 3.1, pp.266], we get a positive constant C independent of k such that

max [Vug(z)] < C1 max  wuk(z) <Cp max v(z), Vx e B(0,K), (4.5)
z€Q2 z€B(0,K1) z€B(0,K1)
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i.e., |[Vug(2)| is uniformly bounded on Q. It follows that {px}32 is uniformly bounded on Q,
and hence p, € LP(§2) for any p > 1. Since —Auy(z) = pr(x),z € Qa, we see by [21, Theorem
9.11] that there exists a positive constant Cs independent of k such that

llurllw2r@y) < Colllprl| ey + HurllLe(o,)), VE > K. (4.6)

Taking p > N such that « < 1 — N/p and applying Sobolev’s embedding inequality, we see
that {||ug||ci+a(q,)}%, is uniformly bounded. Therefore pr € C%(Q1) and {||pk||ca(a,)} %, is
uniformly bounded. It follows by Schauder’s interior estimate theorem [21, Chapter 1, pp.2] that

there exists a positive constant C3 independent of k such that

lukllc2veay < Calllpllce@yy + lluklle@,)), vk > K, (4.7)

ie, {|lukllc2+a(@y}%, is uniformly bounded. Using Ascoli-Arzela’s theorem and the diagonal
sequential process, we see that {uy,}% has a subsequence that converges uniformly in the C?(QY)

norm to a function u € C?(Q) and u satisfies
—Au+ a(z)|Vul? = \b(z)g(u), =€ Q.

By (4.4), we obtain that u > 0, Vx € . Applying Schauder’s regularity theorem, we see that
u € C**t(Q). Since ' is arbitrary, we also see that u € CEL*(RN). Tt follows by (4.3) that

loc
lim| ;| o u(x) = 0. Thus, a standard bootstrap argument (with the same details as in [22]) shows

that w is one solution of problem (1.1).

Proof of (ii) Take A € (0,A;]. By Theorem 3.1(ii), problem (4.1) admits a solution uj €
C?**t2(B(0,k)) N C(B(0,k)) satisfying 0 < u < u, < v < m. The proof now follows as in the
proof of (i). The proof of Theorem 1.1 is completed. [J
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