Existence of Entire Solutions for Semilinear Elliptic Problems with Convection Terms

Hongtao XUE
Mathematics and Physics Teaching Department, Yantai Nanshan University,
Shandong 265713, P. R. China

Abstract

By a sub-supersolution method and a perturbed argument, we show the existence of entire solutions for the semilinear elliptic problem $-\Delta u+a(x)|\nabla u|^{q}=\lambda b(x) g(u), u>0$, $x \in \mathbb{R}^{N}, \lim _{|x| \rightarrow \infty} u(x)=0$, where $q \in(1,2], \lambda>0, a$ and b are locally Hölder continuous, $a \geq 0, b>0, \forall x \in \mathbb{R}^{N}$, and $g \in C^{1}((0, \infty),(0, \infty))$ which may be both possibly singular at zero and strongly unbounded at infinity.

Keywords semilinear elliptic equation; entire solution; convection term; existence
MR(2010) Subject Classification 35B08; 35B25; 35J61; 35J75

1. Introduction and the main result

In this paper, we are concerned with the existence of entire solutions for the following semilinear elliptic problem

$$
\begin{equation*}
-\Delta u+a(x)|\nabla u|^{q}=\lambda b(x) g(u), \quad u>0, x \in \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} u(x)=0 \tag{1.1}
\end{equation*}
$$

where $q \in(1,2], \lambda>0, a(x) \in C_{\text {loc }}^{\alpha}\left(\mathbb{R}^{N}\right)$ for some $\alpha \in(0,1)$ is non-negative, $b(x)$ satisfies
$\left(\mathrm{b}_{1}\right) b \in C_{\mathrm{loc}}^{\alpha}\left(\mathbb{R}^{N}\right)$ and $b(x)>0, \forall x \in \mathbb{R}^{N}$,
$\left(\mathrm{b}_{2}\right)$ the linear problem

$$
\begin{equation*}
-\Delta u=b(x), \quad u>0, x \in \mathbb{R}^{N}, \lim _{|x| \rightarrow \infty} u(x)=0 \tag{1.2}
\end{equation*}
$$

has a unique solution $w \in C_{\text {loc }}^{2+\alpha}\left(\mathbb{R}^{N}\right)$, and the nonlinearity $g \in C^{1}((0, \infty),(0, \infty))$ may be both possibly singular at zero and strongly unbounded at infinity.

Set $g_{0}:=\lim _{s \rightarrow 0} g(s) / s, g_{\infty}:=\lim _{s \rightarrow \infty} g(s) / s$, where $g_{0} \in(0, \infty], g_{\infty} \in[0, \infty]$.
Problem (1.1) arises from many branches of mathematics and applied mathematics. Concerning with entire solutions for semilinear elliptic problems, there is by now a broad literature and we refer the readers to $[1-19]$ and the references cited therein. But we note that in most works, monotonicity on $g(s)$ or $g(s) / s$ is required to some extent.

Recently, the author showed in [13] that the problem

$$
\begin{equation*}
-\Delta u+a(x)|\nabla u|^{q}=b(x) g(u), \quad u>0, x \in \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} u(x)=0 \tag{1.3}
\end{equation*}
$$

[^0]admits a entire solution when $g_{0}=\infty, g_{\infty}=0$, where no monotonicity is required. And in [14], where the nonlinearity is not necessarily separable, the author extended the above results to the following problem
\[

$$
\begin{equation*}
-\Delta u+a(x)|\nabla u|^{q}=f(x, u), \quad u>0, x \in \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} u(x)=0 \tag{1.4}
\end{equation*}
$$

\]

under the following conditions
$\left(\mathrm{f}_{1}\right) f(x, s)$ is locally Hölder continuous on $\mathbb{R}^{N} \times(0, \infty)$ and continuously differentiable in the variable s,
$\left(\mathrm{f}_{2}\right) f(x, s) \leq b(x) g(s)$ for all $(x, s) \in \mathbb{R}^{N} \times(0, \infty)$, where b satisfies $\left(b_{1}\right)$ and $\left(b_{2}\right), g$ satisfies $\lim \sup _{s \rightarrow \infty} g(s) / s<1 / C_{0}$, where w is the solution of problem (1.2) and $C_{0}:=\max _{x \in \mathbb{R}^{N}} w(x)$,
$\left(\mathrm{f}_{3}\right)$ There exists $s_{0}>0$ such that $f(x, s) \geq a(x) h(s)$ for all $(x, s) \in \mathbb{R}^{N} \times\left(0, s_{0}\right)$, where a : $\mathbb{R}^{N} \rightarrow(0, \infty)$ is locally Hölder continuous, $h:\left(0, s_{0}\right) \rightarrow(0, \infty)$ is continuous, and $\lim _{s \rightarrow 0} h(s) / s=$ ∞.
We refer the readers to the paper [14] for details.
In this paper, we continue to improve the earlier results about the existence of entire solutions for problem (1.1), where the case $g_{0} \in(0, \infty], g_{\infty} \in[0, \infty]$ is treated. Our main result is summarized in the following theorem.

Theorem 1.1 Let $q \in(1,2], \lambda>0$. Assume that $a: \mathbb{R}^{N} \rightarrow[0, \infty)$ is locally Hölder continuous, and b satisfies $\left(b_{1}\right)-\left(b_{2}\right), g \in C^{1}((0, \infty),(0, \infty))$. Then problem (1.1) has at least one solution $u \in C_{\text {loc }}^{2+\alpha}\left(\mathbb{R}^{N}\right)$, if one of the following two conditions
(i) $0<\frac{2 \beta \xi_{1}(b, B)}{\lambda}<g_{0} \leq \infty, 0 \leq g_{\infty}<\infty, 0<\lambda<\Lambda_{0}$,
(ii) $g_{0}=g_{\infty}=\infty, 0<\lambda \leq \Lambda_{1}$,
holds, where $\beta:=q /(q-1), B$ is the unit ball of \mathbb{R}^{N},

$$
\begin{equation*}
\xi_{1}(b, B):=\inf _{\left\{u \in W_{0}^{1,2}(B), u \neq 0\right\}} \frac{\int_{B}|\nabla u|^{2} \mathrm{~d} x}{\int_{B} b(x)|u|^{2} \mathrm{~d} x} \tag{1.5}
\end{equation*}
$$

Remark 1.2 Λ_{0}, Λ_{1} will be shown in the proof of Theorem 2.2.
The paper is organized as follows. In Section 2, we provide a suitable super-solution for problem (1.1). In Section 3, we show the existence of positive solutions in bounded domain. In Section 4, we prove Theorem 1.1.

2. Super-solutions decaying to zero

Consider the differential inequality problem

$$
\begin{equation*}
-\Delta v>\lambda b(x) g(v), \quad v>0, x \in \mathbb{R}^{N}, \lim _{|x| \rightarrow \infty} v(x)=0 \tag{2.1}
\end{equation*}
$$

Obviously, any solution of problem (2.1) is a super-solution of problem (1.1).
First we recall the following auxiliary result.
Lemma 2.1 ([15, Lemma 2.1]) Assume $g \in C^{1}((0, \infty),(0, \infty))$ with $0<g_{0} \leq \infty$ and $0 \leq g_{\infty}<$ ∞. Then there exists a function $\Gamma_{g}(s)$ such that
(i) $\Gamma_{g}(s) \in C^{1}((0, \infty),(0, \infty))$;
(ii) $g(s) / s \leq \Gamma_{g}(s), \forall s>0$;
(iii) $\Gamma_{g}(s)$ is non-increasing on $(0, \infty)$;
(iv) $\lim _{s \rightarrow \infty} \Gamma_{g}(s)=g_{\infty}$.

The result below will provide a suitable super-solution for problem (1.1).
Theorem 2.2 Let $q \in(1,2], \lambda>0$. Assume that $a: \mathbb{R}^{N} \rightarrow[0, \infty)$ is locally Hölder continuous, and b satisfies $\left(b_{1}\right)-\left(b_{2}\right), g \in C^{1}((0, \infty),(0, \infty))$. Then, there exists a function v satisfying problem (2.1), if one of the following two conditions
(i) $0<g_{0} \leq \infty, 0 \leq g_{\infty}<\infty, 0<\lambda<\Lambda_{0}$,
(ii) $g_{0}=g_{\infty}=\infty, 0<\lambda \leq \Lambda_{1}$,
holds.

Proof of Theorem 2.2

Proof of (i) Define

$$
\bar{g}_{1}(t)=\int_{0}^{t} \frac{s}{s \Gamma_{g}(s)+1} \mathrm{~d} s, t \geq 0
$$

it follows that
(i) $\bar{g}_{1}(s) / s$ is non-decreasing; (ii) $\lim _{s \rightarrow \infty} \bar{g}_{1}(s) / s=1 / g_{\infty}$; (iii) $\lim _{s \rightarrow 0} \bar{g}_{1}(s) / s=0$.

Set $\Lambda_{0}:=\frac{1}{C_{0} g_{\infty}}$, where $C_{0}=\max _{x \in \mathbb{R}^{N}} w(x), w$ is the solution of problem (1.2). For any $\lambda \in\left(0, \Lambda_{0}\right)$, there exists a positive constant μ such that

$$
\frac{1}{\mu} \int_{0}^{\mu} \frac{t}{t \Gamma_{g}(t)+1} \mathrm{~d} t=\lambda C_{0}
$$

Now, we define a function v by

$$
\begin{equation*}
\lambda w(x)=\frac{1}{\mu} \int_{0}^{v(x)} \frac{t}{t \Gamma_{g}(t)+1} \mathrm{~d} t \tag{2.2}
\end{equation*}
$$

Then, $0<v(x) \leq \mu$, and $\lim _{|x| \rightarrow \infty} v(x)=0$.
Differentiating (2.2), we have

$$
\begin{aligned}
& \mu \lambda \Delta w(x)=\frac{v}{v \Gamma_{g}(v)+1} \Delta v+\frac{\mathrm{d}}{\mathrm{~d} v}\left(\frac{v}{v \Gamma_{g}(v)+1}\right)|\nabla v|^{2} \\
& -\mu \lambda \Delta w(x) \leq \frac{v}{v \Gamma_{g}(v)+1}(-\Delta v)
\end{aligned}
$$

So,

$$
\begin{equation*}
-\Delta v \geq \lambda \mu b(x)\left(\Gamma_{g}(v)+\frac{1}{v}\right) \geq \lambda b(x) v\left(\Gamma_{g}(v)+\frac{1}{v}\right) \tag{2.3}
\end{equation*}
$$

By Lemma 2.1(ii), we have $-\Delta v>\lambda b(x) g(v)$.
Proof of (ii) There is some $m>0$ such that

$$
\inf _{s>0} \frac{g(s)}{s}=\frac{g(m)}{m}:=I_{m} \in[0, \infty)
$$

We define

$$
g^{*}(s):= \begin{cases}g(s), & 0<s \leq m \\ I_{m} s, & s>m\end{cases}
$$

Notice that $g^{*} \in C^{1}$ and satisfies
(i) $\lim _{s \rightarrow 0} g^{*}(s) / s=\infty$; (ii) $\lim _{s \rightarrow \infty} g^{*}(s) / s=I_{m} \in[0, \infty)$.

Moreover, any solution of

$$
\begin{equation*}
-\Delta v>\lambda b(x) g^{*}(v), \quad v>0, x \in \mathbb{R}^{N}, \quad \lim _{|x| \rightarrow \infty} v(x)=0, v \leq m \tag{2.4}
\end{equation*}
$$

is also a super-solution of problem (1.1).
Next, we show that problem (2.4) has at least one solution.
Define

$$
\bar{g}_{2}(t)=\int_{0}^{t} \frac{s}{s \Gamma_{g^{*}}(s)+1} \mathrm{~d} s, t \geq 0
$$

it follows that
(i) $\bar{g}_{2}(s) / s$ is non-decreasing; (ii) $\lim _{s \rightarrow \infty} \bar{g}_{2}(s) / s=1 / I_{m}$; (iii) $\lim _{s \rightarrow 0} \bar{g}_{2}(s) / s=0$.

Notice that $\frac{\bar{g}_{2}(s)}{s}$ is non-decreasing. And set $\Lambda_{1}:=\frac{\bar{g}_{2}(m)}{C_{0} m}$, where $C_{0}=\max _{x \in \mathbb{R}^{N}} w(x), w$ is the solution of problem (1.2).

For any $\lambda \in\left(0, \Lambda_{1}\right]$, there exists $\mu \in(0, m]$ such that

$$
\frac{1}{\mu} \int_{0}^{\mu} \frac{t}{t \Gamma_{g^{*}}(t)+1} \mathrm{~d} t=\lambda C_{0}
$$

Now, we define a function v by

$$
\begin{equation*}
\lambda w(x)=\frac{1}{\mu} \int_{0}^{v(x)} \frac{t}{t \Gamma_{g^{*}}(t)+1} \mathrm{~d} t \tag{2.5}
\end{equation*}
$$

Then, $0<v(x) \leq \mu \leq m$, and $\lim _{|x| \rightarrow \infty} v(x)=0$. The remaining part of the proof follows as in the proof of (i).

The proof of Theorem 2.2 is completed.

3. Positive solutions on bounded domains

Consider the following problem

$$
\begin{equation*}
-\triangle u+a(x)|\nabla u|^{q}=\lambda b(x) g(u), \quad u>0, x \in \Omega,\left.u\right|_{\partial \Omega}=0 \tag{3.1}
\end{equation*}
$$

where Ω is a bounded domain with smooth boundary $\partial \Omega$.
In this section, by a sub-supersolution method [16, Lemma 3], we show the existence of positive solutions for problem (3.1).

Let $\phi_{1}(b, \Omega) \in C^{1}(\bar{\Omega}) \cap C^{2+\alpha}(\Omega)$ be the first eigenfunction corresponding to the first eigenvalue $\xi_{1}(b, \Omega)$ of

$$
-\Delta u=\xi b(x) u, \quad u>0, x \in \Omega,\left.u\right|_{\partial \Omega}=0 .
$$

Notice that $\xi_{1}(b, \Omega)$ is given by an expression like (1.5).
For the convenience, we denote $|u|_{\infty}=\max _{x \in \bar{\Omega}}|u(x)|,|u|_{0}=\min _{x \in \bar{\Omega}}|u(x)|$, whenever $u \in C(\bar{\Omega})$.

Theorem 3.1 Let $q \in(1,2], \lambda>0$. Assume that $a, b \in C^{\alpha}(\bar{\Omega})$, and $a \geq 0, b>0, g \in$
$C^{1}((0, \infty)(0, \infty))$. Then problem (3.1) has at least one solution $u \in C(\bar{\Omega}) \cap C^{2+\alpha}(\Omega)$, if one of the following two conditions
(i) $0<\frac{2 \beta \xi_{1}(b, \Omega)}{\lambda}<g_{0} \leq \infty, 0 \leq g_{\infty}<\infty, 0<\lambda<\Lambda_{0}$,
(ii) $g_{0}=g_{\infty}=\infty, 0<\lambda \leq \Lambda_{1}$,
holds.
Proof of Theorem 3.1 In the course of the following proof, denote $\xi_{1}=\xi_{1}(b, \Omega), \phi_{1}=\phi_{1}(b, \Omega)$.
Proof of (i) Take $\lambda \in\left(0, \Lambda_{0}\right)$. Since $b>0$ on $\bar{\Omega}$ and $g_{0}>\frac{2 \beta \xi_{1}}{\lambda}$, there is $\delta>0$ such that

$$
\frac{g(s)}{s}>\frac{2 \beta \xi_{1}}{\lambda}, s \in(0, \delta)
$$

Let $\underline{u}=c_{1} \phi_{1}^{\beta}$, where $c_{1} \in\left(0, \min \left\{1, \frac{\delta}{\left|\phi_{1}\right|_{\infty}^{\beta}},\left(\frac{\xi_{1}|b|_{0}}{\beta^{q-1}|a|_{\infty}\left|\nabla \phi_{1}\right|_{\infty}^{q}}\right)^{\frac{1}{q-1}}\right)\right.$. We claim that \underline{u} is a sub-solution of problem (3.1).

In fact, since $c_{1} \leq\left(\frac{\xi_{1}|b|_{0}}{\beta^{q-1}|a|_{\infty}\left|\nabla \phi_{1}\right|_{\infty}^{q}}\right)^{\frac{1}{q-1}}$, we have

$$
a(x) \beta^{q} c_{1}^{q} \phi_{1}^{q(\beta-1)}\left|\nabla \phi_{1}\right|^{q} \leq \beta \xi_{1} c_{1} b(x) \phi_{1}^{\beta} .
$$

Then,

$$
\begin{aligned}
-\triangle \underline{u}+a(x)|\nabla \underline{u}|^{q} & =\beta \xi_{1} c_{1} b(x) \phi_{1}^{\beta}-c_{1} \beta(\beta-1) \phi_{1}^{\beta-2}\left|\nabla \phi_{1}\right|^{2}+a(x) \beta^{q} c_{1}^{q} \phi_{1}^{q(\beta-1)}\left|\nabla \phi_{1}\right|^{q} \\
& \leq \beta \xi_{1} c_{1} b(x) \phi_{1}^{\beta}+a(x) \beta^{q} c_{1}^{q} \phi_{1}^{\beta}\left|\nabla \phi_{1}\right|^{q} \\
& \leq 2 \beta \xi_{1} c_{1} b(x) \phi_{1}^{\beta} \leq \lambda b(x) g\left(c_{1} \phi_{1}^{\beta}\right) \\
& \leq \lambda b(x) g(\underline{u}) .
\end{aligned}
$$

Let $\bar{u}=v$ be given as in Theorem 2.2(i). Then \bar{u} is a super-solution of problem (3.1). We claim that $\underline{u} \leq \bar{u}$.

Indeed if we assume the contrary that there is $x_{0} \in \Omega$ such that $\underline{u}\left(x_{0}\right)>\bar{u}\left(x_{0}\right)$, then $\sup _{x \in \Omega}(\ln (\underline{u}(x))-\ln (\bar{u}(x)))>0$. There is some $x_{1} \in \Omega$ such that

$$
\nabla\left(\ln \left(\underline{u}\left(x_{1}\right)\right)-\ln \left(\bar{u}\left(x_{1}\right)\right)\right)=0 \text { and } \Delta\left(\ln \left(\underline{u}\left(x_{1}\right)\right)-\ln \left(\bar{u}\left(x_{1}\right)\right)\right) \leq 0 .
$$

By Lemma 2.1(ii)-(iii) and (2.3), we have

$$
\begin{aligned}
\Delta\left(\ln \left(\underline{u}\left(x_{1}\right)\right)-\ln \left(\bar{u}\left(x_{1}\right)\right)\right) & =\frac{\Delta \underline{u}\left(x_{1}\right)}{\underline{u}\left(x_{1}\right)}-\frac{\Delta \bar{u}\left(x_{1}\right)}{\bar{u}\left(x_{1}\right)} \\
& \geq \frac{a\left(x_{1}\right)\left|\nabla \underline{u}\left(x_{1}\right)\right|^{q}}{\underline{u}\left(x_{1}\right)}-\lambda b\left(x_{1}\right)\left(\frac{g\left(\underline{u}\left(x_{1}\right)\right)}{\underline{u}\left(x_{1}\right)}-\left(\Gamma_{g}\left(\bar{u}\left(x_{1}\right)\right)+\frac{1}{\bar{u}\left(x_{1}\right)}\right)\right)>0
\end{aligned}
$$

which is a contradiction. So we can obtain that $\underline{u}(x) \leq \bar{u}(x), x \in \Omega$. It follows that problem (3.1) has at least one solution $u \in C^{2+\alpha}(\Omega) \cap C(\bar{\Omega})$ in the ordered interval $[\underline{u}, \bar{u}]$.

Proof of (ii) We notice that any solution of the problem

$$
\begin{equation*}
-\triangle u+a(x)|\nabla u|^{q}=\lambda b(x) g^{*}(u), \quad u>0, x \in \Omega,\left.u\right|_{\partial \Omega}=0, u \leq m \tag{3.2}
\end{equation*}
$$

where g^{*} was defined in the proof of Theorem 2.2, is a solution of problem (3.1). Since
$\lim _{s \rightarrow 0} g^{*}(s) / s=\infty$, there is $\delta>0$ such that

$$
g^{*}(s) / s>\frac{2 \beta \xi_{1}}{\lambda}, \quad s \in(0, \delta)
$$

Proceeding as in the proof of item (i), it follows that $\underline{u}=c_{1} \phi_{1}^{\beta}$ is a sub-solution of problem (3.1).

On the other hand, the function $\bar{u}=v$ with v given by Theorem 2.2 (ii) is a super-solution of problem (3.1). Proceeding as in the proof of (i), we have $\underline{u} \leq \bar{u}$ in Ω. Then problem (3.1) has at least one solution $u \in C^{2+\alpha}(\Omega) \cap C(\bar{\Omega})$ such that $u \in[\underline{u}, \bar{u}]$.

The proof of Theorem 3.1 is completed.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.
Proof of (i) Take $\lambda \in\left(0, \Lambda_{0}\right)$ and consider the problem

$$
\begin{equation*}
-\triangle u_{k}+a(x)\left|\nabla u_{k}\right|^{q}=\lambda b(x) g\left(u_{k}\right), \quad u_{k}>0, x \in B(0, k),\left.u_{k}\right|_{\partial B(0, k)}=0 \tag{4.1}
\end{equation*}
$$

where $B(0, k)=\left\{x \in \mathbb{R}^{N}:|x|<k\right\}, k=1,2,3, \ldots$
Using the conditions of Theorem 1.1(i), we have

$$
\begin{equation*}
g_{0}>\frac{2 \beta \xi_{1}(a, B)}{\lambda} \geq \frac{2 \beta \xi_{1}\left(a, B_{k}\right)}{\lambda} \tag{4.2}
\end{equation*}
$$

It follows by Theorem 3.1 that problem (4.1) has at least one solution $u_{k} \in C^{2+\alpha}(B(0, k)) \cap$ $C(\bar{B}(0, k))$. Put $u_{k}(x)=0, \forall|x|>k$. Then,

$$
\begin{equation*}
0<\underline{u} \leq u_{k} \leq v \leq \mu, \tag{4.3}
\end{equation*}
$$

where \underline{u} is the sub-solution corresponding to $\Omega=B_{k}$ and v is the function given by Theorem 2.2(i).

Now, we need to estimate $\left\{u_{k}\right\}$. For any bounded $C^{2+\alpha_{-}}$-smooth domain $\Omega^{\prime} \subset \mathbb{R}^{N}$, take Ω_{1} and Ω_{2} with $C^{2+\alpha}$-smooth boundaries, and K_{1} large enough, such that

$$
\Omega^{\prime} \subset \subset \Omega_{1} \subset \subset \Omega_{2} \subset \subset B_{k}, \quad k \geq K_{1}
$$

Note that

$$
\begin{equation*}
u_{k}(x) \geq \underline{u}(x)>0, \quad \forall x \in B\left(0, K_{1}\right), \tag{4.4}
\end{equation*}
$$

when $B\left(0, K_{1}\right)$ is the substitution for Ω in the proof of Theorem 3.1.
Let

$$
\rho_{k}(x)=\lambda b(x) g\left(u_{k}\right)-a(x)\left|\nabla u_{k}(x)\right|^{q}, \quad x \in \bar{B}\left(0, K_{1}\right) .
$$

Since $-\Delta u_{k}(x)=\rho_{k}(x), x \in B\left(0, K_{1}\right)$, by the interior estimate theorem of Ladyzenskaja and Ural'tseva [20, Theorem 3.1, pp.266], we get a positive constant C_{1} independent of k such that

$$
\begin{equation*}
\max _{x \in \bar{\Omega}_{2}}\left|\nabla u_{k}(x)\right| \leq C_{1} \max _{x \in \bar{B}\left(0, K_{1}\right)} u_{k}(x) \leq C_{1} \max _{x \in \bar{B}\left(0, K_{1}\right)} v(x), \quad \forall x \in B\left(0, K_{1}\right), \tag{4.5}
\end{equation*}
$$

i.e., $\left|\nabla u_{k}(x)\right|$ is uniformly bounded on $\bar{\Omega}_{2}$. It follows that $\left\{\rho_{k}\right\}_{K_{1}}^{\infty}$ is uniformly bounded on $\bar{\Omega}_{2}$ and hence $\rho_{k} \in L^{p}\left(\Omega_{2}\right)$ for any $p>1$. Since $-\Delta u_{k}(x)=\rho_{k}(x), x \in \Omega_{2}$, we see by [21, Theorem 9.11] that there exists a positive constant C_{2} independent of k such that

$$
\begin{equation*}
\left\|u_{k}\right\|_{W^{2, p}\left(\Omega_{1}\right)} \leq C_{2}\left(\left\|\rho_{k}\right\|_{L^{p}\left(\Omega_{2}\right)}+\left\|u_{k}\right\|_{L^{p}\left(\Omega_{2}\right)}\right), \quad \forall k \geq K_{1} . \tag{4.6}
\end{equation*}
$$

Taking $p>N$ such that $\alpha<1-N / p$ and applying Sobolev's embedding inequality, we see that $\left\{\left\|u_{k}\right\|_{C^{1+\alpha}\left(\bar{\Omega}_{1}\right)}\right\}_{K_{1}}^{\infty}$ is uniformly bounded. Therefore $\rho_{k} \in C^{\alpha}\left(\bar{\Omega}_{1}\right)$ and $\left\{\left\|\rho_{k}\right\|_{C^{\alpha}\left(\bar{\Omega}_{1}\right)}\right\}_{K_{1}}^{\infty}$ is uniformly bounded. It follows by Schauder's interior estimate theorem [21, Chapter 1, pp.2] that there exists a positive constant C_{3} independent of k such that

$$
\begin{equation*}
\left\|u_{k}\right\|_{C^{2+\alpha}\left(\bar{\Omega}^{\prime}\right)} \leq C_{3}\left(\left\|\rho_{k}\right\|_{C^{\alpha}\left(\bar{\Omega}_{1}\right)}+\left\|u_{k}\right\|_{C\left(\bar{\Omega}_{1}\right)}\right), \quad \forall k \geq K_{1}, \tag{4.7}
\end{equation*}
$$

i.e., $\left\{\left\|u_{k}\right\|_{C^{2+\alpha}\left(\bar{\Omega}^{\prime}\right)}\right\}_{K_{1}}^{\infty}$ is uniformly bounded. Using Ascoli-Arzela's theorem and the diagonal sequential process, we see that $\left\{u_{k}\right\}_{K_{1}}^{\infty}$ has a subsequence that converges uniformly in the $C^{2}\left(\bar{\Omega}^{\prime}\right)$ norm to a function $u \in C^{2}\left(\bar{\Omega}^{\prime}\right)$ and u satisfies

$$
-\Delta u+a(x)|\nabla u|^{q}=\lambda b(x) g(u), \quad x \in \bar{\Omega}^{\prime} .
$$

By (4.4), we obtain that $u>0, \forall x \in \bar{\Omega}^{\prime}$. Applying Schauder's regularity theorem, we see that $u \in C^{2+\alpha}\left(\bar{\Omega}^{\prime}\right)$. Since Ω^{\prime} is arbitrary, we also see that $u \in C_{\text {loc }}^{2+\alpha}\left(\mathbb{R}^{N}\right)$. It follows by (4.3) that $\lim _{|x| \rightarrow \infty} u(x)=0$. Thus, a standard bootstrap argument (with the same details as in [22]) shows that u is one solution of problem (1.1).

Proof of (ii) Take $\lambda \in\left(0, \Lambda_{1}\right]$. By Theorem 3.1(ii), problem (4.1) admits a solution $u_{k} \in$ $C^{2+\alpha}(B(0, k)) \cap C(\bar{B}(0, k))$ satisfying $0<\underline{u} \leq u_{k} \leq v \leq m$. The proof now follows as in the proof of (i). The proof of Theorem 1.1 is completed.

Acknowledgements We thank the referees for their time and comments.

References

[1] A. V. LAIR, A. W. SHAKER. Classical and weak solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl., 1997, 211(2): 371-385.
[2] Zhijun ZHANG. A remark on the existence of entire solutions of a singular semilinear elliptic problem. J. Math. Anal. Appl., 1997, 215(2): 579-582.
[3] F. CǏRSTEA, V. D. RǍDULESCU. Existence and uniqueness of positive solutions to a semilinear elliptic problem in \mathbb{R}^{N}. J. Math. Anal. Appl., 1999, 229(2): 417-425.
[4] Weijie FENG, Xiyu LIU. Existence of entire solutions of a singular semilinear elliptic problem. Acta Math. Sin. (Engl. Ser.), 2004, 20(6): 983-988.
[5] J. V. GONCALVES, C. A. SANTOS. Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations. Nonlinear Anal., 2006, 65(4): 719-727.
[6] Zhijun ZHANG. A remark on the existence of positive entire solutions of a sublinear elliptic problem. Nonlinear Anal., 2007, 67(1): 147-153.
[7] Dong YE, Feng ZHOU. Invariant criteria for existence of bounded positive solutions. Discrete Contin. Dyn. Syst., 2005, 12(3): 413-424.
[8] A. MOHAMMED. Ground state solutions for singular semi-linear elliptic equations. Nonlinear Anal., 2009, 71(3-4): 1276-1280.
[9] C. A. SANTOS. On ground state solutions for singular and semi-linear problems including super-linear terms at infinity. Nonlinear Anal., 2009, 71(12): 6038-6043.
[10] T. L. DINU. Entire positive solutions of the singular Emden-Fowler equation with nonlinear gradient term. Results Math., 2003, 43(1-2): 96-100.
[11] M. GHERGU, V. RĂDULESCU. Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term. J. Math. Anal. Appl., 2007, 333(1): 265-273.
[12] Hongtao XUE, Zhijun ZHANG. A remark on ground state solutions for Lane-Emden-Fowler equations with a convection term. Electron. J. Differential Equations, 2007, 53: 1-10.
[13] Hongtao XUE, Xigao SHAO. Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Anal., 2009, 71(7-8): 3113-3118.
[14] Hongtao XUE. Ground state solutions for a semilinear elliptic problem with a convection term. J. Math. Anal. Appl., 2011, 384(2): 439-443.
[15] J. V. GONCALVES, F. K. SILVA. Existence and nonexistence of ground state solutions for elliptic equations with a convection term. Nonlinear Anal., 2010, 72(2): 904-915.
[16] Shangbin CUI. Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems. Ser. A, Nonlinear Anal., 2000, 41(1-2): 149-176.
[17] H. AMANN, M. G. CRANDALL. On some existence theorems for semi-linear elliptic equations. Indiana Univ. Math. J., 1978, 27(5): 779-790.
[18] J. L. KAZDAN, R. J. KRAMER. Invariant criteria for existence of solutions to second order quasilinear elliptic equations. Comm. Pure Appl. Math., 1978, 31(5): 619-645.
[19] E. S. NOUSSAIR. On semilinear elliptic boundary value problems in unbounded domains. J. Differential Equations, 1981, 41(3): 334-348.
[20] O. A. LADYZENSKAJA, N. N. URAL'CEVA. Linear and Quasilinear Elliptic Equations. Academic Press, New York, 1968.
[21] D. GILBARG, N. S. TRUDINGER. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1998.
[22] A. V. LAIR, A. W. SHAKER. Entire solution of a singular semilinear elliptic problem. J. Math. Anal. Appl., 1996, 200(2): 498-505.

[^0]: Received July 18, 2014; Accepted April 25, 2015
 Supported by the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J12LI54).
 E-mail address: hongtaoxue@126.com

