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Abstract By a sub-supersolution method and a perturbed argument, we show the existence

of entire solutions for the semilinear elliptic problem −∆u + a(x)|∇u|q = λb(x)g(u), u > 0,

x ∈ RN , lim|x|→∞ u(x) = 0, where q ∈ (1, 2], λ > 0, a and b are locally Hölder continuous,

a ≥ 0, b > 0, ∀x ∈ RN , and g ∈ C1((0,∞), (0,∞)) which may be both possibly singular at

zero and strongly unbounded at infinity.
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1. Introduction and the main result

In this paper, we are concerned with the existence of entire solutions for the following

semilinear elliptic problem

−∆u+ a(x)|∇u|q = λb(x)g(u), u > 0, x ∈ RN , lim
|x|→∞

u(x) = 0, (1.1)

where q ∈ (1, 2], λ > 0, a(x) ∈ Cα
loc(RN ) for some α ∈ (0, 1) is non-negative, b(x) satisfies

(b1) b ∈ Cα
loc(RN ) and b(x) > 0, ∀x ∈ RN ,

(b2) the linear problem

−∆u = b(x), u > 0, x ∈ RN , lim
|x|→∞

u(x) = 0 (1.2)

has a unique solution w ∈ C2+α
loc (RN ), and the nonlinearity g ∈ C1((0,∞), (0,∞)) may be both

possibly singular at zero and strongly unbounded at infinity.

Set g0 := lims→0 g(s)/s, g∞ := lims→∞ g(s)/s, where g0 ∈ (0,∞], g∞ ∈ [0,∞].

Problem (1.1) arises from many branches of mathematics and applied mathematics. Con-

cerning with entire solutions for semilinear elliptic problems, there is by now a broad literature

and we refer the readers to [1–19] and the references cited therein. But we note that in most

works, monotonicity on g(s) or g(s)/s is required to some extent.

Recently, the author showed in [13] that the problem

−∆u+ a(x)|∇u|q = b(x)g(u), u > 0, x ∈ RN , lim
|x|→∞

u(x) = 0, (1.3)
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admits a entire solution when g0 = ∞, g∞ = 0, where no monotonicity is required. And in [14],

where the nonlinearity is not necessarily separable, the author extended the above results to the

following problem

−∆u+ a(x)|∇u|q = f(x, u), u > 0, x ∈ RN , lim
|x|→∞

u(x) = 0, (1.4)

under the following conditions

(f1) f(x, s) is locally Hölder continuous on RN × (0,∞) and continuously differentiable in

the variable s,

(f2) f(x, s) ≤ b(x)g(s) for all (x, s) ∈ RN × (0,∞), where b satisfies (b1) and (b2), g satisfies

lim sups→∞ g(s)/s < 1/C0, where w is the solution of problem (1.2) and C0 := maxx∈RN w(x),

(f3) There exists s0 > 0 such that f(x, s) ≥ a(x)h(s) for all (x, s) ∈ RN × (0, s0), where a :

RN → (0,∞) is locally Hölder continuous, h : (0, s0) → (0,∞) is continuous, and lims→0 h(s)/s =

∞.

We refer the readers to the paper [14] for details.

In this paper, we continue to improve the earlier results about the existence of entire solu-

tions for problem (1.1), where the case g0 ∈ (0,∞], g∞ ∈ [0,∞] is treated. Our main result is

summarized in the following theorem.

Theorem 1.1 Let q ∈ (1, 2], λ > 0. Assume that a : RN → [0,∞) is locally Hölder continuous,

and b satisfies (b1)–(b2), g ∈ C1((0,∞), (0,∞)). Then problem (1.1) has at least one solution

u ∈ C2+α
loc (RN ), if one of the following two conditions

(i) 0 < 2βξ1(b,B)
λ < g0 ≤ ∞, 0 ≤ g∞ < ∞, 0 < λ < Λ0,

(ii) g0 = g∞ = ∞, 0 < λ ≤ Λ1,

holds, where β := q/(q − 1), B is the unit ball of RN ,

ξ1(b,B) := inf
{u∈W 1,2

0 (B),u̸=0}

∫
B
|∇u|2dx∫

B
b(x)|u|2dx

. (1.5)

Remark 1.2 Λ0, Λ1 will be shown in the proof of Theorem 2.2.

The paper is organized as follows. In Section 2, we provide a suitable super-solution for

problem (1.1). In Section 3, we show the existence of positive solutions in bounded domain. In

Section 4, we prove Theorem 1.1.

2. Super-solutions decaying to zero

Consider the differential inequality problem

−∆v > λb(x)g(v), v > 0, x ∈ RN , lim
|x|→∞

v(x) = 0. (2.1)

Obviously, any solution of problem (2.1) is a super-solution of problem (1.1).

First we recall the following auxiliary result.

Lemma 2.1 ([15, Lemma 2.1]) Assume g ∈ C1((0,∞), (0,∞)) with 0 < g0 ≤ ∞ and 0 ≤ g∞ <

∞. Then there exists a function Γg(s) such that
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(i) Γg(s) ∈ C1((0,∞), (0,∞));

(ii) g(s)/s ≤ Γg(s), ∀s > 0;

(iii) Γg(s) is non-increasing on (0,∞);

(iv) lims→∞ Γg(s) = g∞.

The result below will provide a suitable super-solution for problem (1.1).

Theorem 2.2 Let q ∈ (1, 2], λ > 0. Assume that a : RN → [0,∞) is locally Hölder continuous,

and b satisfies (b1)–(b2), g ∈ C1((0,∞), (0,∞)). Then, there exists a function v satisfying

problem (2.1), if one of the following two conditions

(i) 0 < g0 ≤ ∞, 0 ≤ g∞ < ∞, 0 < λ < Λ0,

(ii) g0 = g∞ = ∞, 0 < λ ≤ Λ1,

holds.

Proof of Theorem 2.2

Proof of (i) Define

g1(t) =

∫ t

0

s

sΓg(s) + 1
ds, t ≥ 0,

it follows that

(i) g1(s)/s is non-decreasing; (ii) lims→∞ g1(s)/s = 1/g∞; (iii) lims→0 g1(s)/s = 0.

Set Λ0 := 1
C0g∞

, where C0 = max
x∈RN

w(x), w is the solution of problem (1.2). For any

λ ∈ (0,Λ0), there exists a positive constant µ such that

1

µ

∫ µ

0

t

tΓg(t) + 1
dt = λC0.

Now, we define a function v by

λw(x) =
1

µ

∫ v(x)

0

t

tΓg(t) + 1
dt. (2.2)

Then, 0 < v(x) ≤ µ, and lim
|x|→∞

v(x) = 0.

Differentiating (2.2), we have

µλ∆w(x) =
v

vΓg(v) + 1
∆v +

d

dv
(

v

vΓg(v) + 1
)|∇v|2,

− µλ∆w(x) ≤ v

vΓg(v) + 1
(−∆v).

So,

−∆v ≥ λµb(x)(Γg(v) +
1

v
) ≥ λb(x)v(Γg(v) +

1

v
). (2.3)

By Lemma 2.1(ii), we have −∆v > λb(x)g(v).

Proof of (ii) There is some m > 0 such that

inf
s>0

g(s)

s
=

g(m)

m
:= Im ∈ [0,∞).

We define

g∗(s) :=

{
g(s), 0 < s ≤ m,

Ims, s > m.
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Notice that g∗ ∈ C1 and satisfies

(i) lim
s→0

g∗(s)/s = ∞; (ii) lims→∞ g∗(s)/s = Im ∈ [0,∞).

Moreover, any solution of

−∆v > λb(x)g∗(v), v > 0, x ∈ RN , lim
|x|→∞

v(x) = 0, v ≤ m, (2.4)

is also a super-solution of problem (1.1).

Next, we show that problem (2.4) has at least one solution.

Define

g2(t) =

∫ t

0

s

sΓg∗(s) + 1
ds, t ≥ 0,

it follows that

(i) g2(s)/s is non-decreasing; (ii) lims→∞ g2(s)/s = 1/Im; (iii) lims→0 g2(s)/s = 0.

Notice that g2(s)
s is non-decreasing. And set Λ1 := g2(m)

C0m
, where C0 = maxx∈RN w(x), w is

the solution of problem (1.2).

For any λ ∈ (0,Λ1], there exists µ ∈ (0,m] such that

1

µ

∫ µ

0

t

tΓg∗(t) + 1
dt = λC0.

Now, we define a function v by

λw(x) =
1

µ

∫ v(x)

0

t

tΓg∗(t) + 1
dt. (2.5)

Then, 0 < v(x) ≤ µ ≤ m, and lim|x|→∞ v(x) = 0. The remaining part of the proof follows as in

the proof of (i).

The proof of Theorem 2.2 is completed. �

3. Positive solutions on bounded domains

Consider the following problem

−△u+ a(x)|∇u|q = λb(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (3.1)

where Ω is a bounded domain with smooth boundary ∂Ω.

In this section, by a sub-supersolution method [16, Lemma 3], we show the existence of

positive solutions for problem (3.1).

Let ϕ1(b,Ω) ∈ C1(Ω̄) ∩ C2+α(Ω) be the first eigenfunction corresponding to the first eigen-

value ξ1(b,Ω) of

−∆u = ξb(x)u, u > 0, x ∈ Ω, u|∂Ω = 0.

Notice that ξ1(b,Ω) is given by an expression like (1.5).

For the convenience, we denote |u|∞ = maxx∈Ω̄ |u(x)|, |u|0 = minx∈Ω̄ |u(x)|, whenever

u ∈ C(Ω̄).

Theorem 3.1 Let q ∈ (1, 2], λ > 0. Assume that a, b ∈ Cα(Ω̄), and a ≥ 0, b > 0, g ∈
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C1((0,∞) (0,∞)). Then problem (3.1) has at least one solution u ∈ C(Ω̄) ∩ C2+α(Ω), if one of

the following two conditions

(i) 0 < 2βξ1(b,Ω)
λ < g0 ≤ ∞, 0 ≤ g∞ < ∞, 0 < λ < Λ0,

(ii) g0 = g∞ = ∞, 0 < λ ≤ Λ1,

holds.

Proof of Theorem 3.1 In the course of the following proof, denote ξ1 = ξ1(b,Ω), ϕ1 = ϕ1(b,Ω).

Proof of (i) Take λ ∈ (0,Λ0). Since b > 0 on Ω̄ and g0 > 2βξ1
λ , there is δ > 0 such that

g(s)

s
>

2βξ1
λ

, s ∈ (0, δ).

Let u = c1ϕ
β
1 , where c1 ∈ (0,min{1, δ

|ϕ1|β∞
, ( ξ1|b|0

βq−1|a|∞|∇ϕ1|q∞ )
1

q−1 ). We claim that u is a

sub-solution of problem (3.1).

In fact, since c1 ≤ ( ξ1|b|0
βq−1|a|∞|∇ϕ1|q∞ )

1
q−1 , we have

a(x)βqcq1ϕ
q(β−1)
1 |∇ϕ1|q ≤ βξ1c1b(x)ϕ

β
1 .

Then,

−△u+ a(x)|∇u|q = βξ1c1b(x)ϕ
β
1 − c1β(β − 1)ϕβ−2

1 |∇ϕ1|2 + a(x)βqcq1ϕ
q(β−1)
1 |∇ϕ1|q

≤ βξ1c1b(x)ϕ
β
1 + a(x)βqcq1ϕ

β
1 |∇ϕ1|q

≤ 2βξ1c1b(x)ϕ
β
1 ≤ λb(x)g(c1ϕ

β
1 )

≤ λb(x)g(u).

Let u = v be given as in Theorem 2.2(i). Then u is a super-solution of problem (3.1). We

claim that u ≤ u.

Indeed if we assume the contrary that there is x0 ∈ Ω such that u(x0) > u(x0), then

supx∈Ω(ln(u(x))− ln(u(x))) > 0. There is some x1 ∈ Ω such that

∇(ln(u(x1))− ln(u(x1))) = 0 and ∆(ln(u(x1))− ln(u(x1))) ≤ 0.

By Lemma 2.1(ii)–(iii) and (2.3), we have

∆(ln(u(x1))− ln(u(x1))) =
∆u(x1)

u(x1)
− ∆u(x1)

u(x1)

≥a(x1)|∇u(x1)|q

u(x1)
− λb(x1)(

g(u(x1))

u(x1)
− (Γg(u(x1)) +

1

u(x1)
)) > 0,

which is a contradiction. So we can obtain that u(x) ≤ ū(x), x ∈ Ω. It follows that problem

(3.1) has at least one solution u ∈ C2+α(Ω) ∩ C(Ω̄) in the ordered interval [u, ū].

Proof of (ii) We notice that any solution of the problem

−△u+ a(x)|∇u|q = λb(x)g∗(u), u > 0, x ∈ Ω, u|∂Ω = 0, u ≤ m, (3.2)

where g∗ was defined in the proof of Theorem 2.2, is a solution of problem (3.1). Since
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lim
s→0

g∗(s)/s = ∞, there is δ > 0 such that

g∗(s)/s >
2βξ1
λ

, s ∈ (0, δ).

Proceeding as in the proof of item (i), it follows that u = c1ϕ
β
1 is a sub-solution of problem

(3.1).

On the other hand, the function u = v with v given by Theorem 2.2(ii) is a super-solution

of problem (3.1). Proceeding as in the proof of (i), we have u ≤ u in Ω. Then problem (3.1) has

at least one solution u ∈ C2+α(Ω) ∩ C(Ω̄) such that u ∈ [u, ū].

The proof of Theorem 3.1 is completed. �

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of (i) Take λ ∈ (0,Λ0) and consider the problem

−△uk + a(x)|∇uk|q = λb(x)g(uk), uk > 0, x ∈ B(0, k), uk|∂B(0,k) = 0, (4.1)

where B(0, k) = {x ∈ RN : |x| < k}, k = 1, 2, 3, . . . .

Using the conditions of Theorem 1.1(i), we have

g0 >
2βξ1(a,B)

λ
≥ 2βξ1(a,Bk)

λ
. (4.2)

It follows by Theorem 3.1 that problem (4.1) has at least one solution uk ∈ C2+α(B(0, k))∩
C(B̄(0, k)). Put uk(x) = 0, ∀|x| > k. Then,

0 < u ≤ uk ≤ v ≤ µ, (4.3)

where u is the sub-solution corresponding to Ω = Bk and v is the function given by Theorem

2.2(i).

Now, we need to estimate {uk}. For any bounded C2+α-smooth domain Ω′ ⊂ RN , take Ω1

and Ω2 with C2+α-smooth boundaries, and K1 large enough, such that

Ω′ ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Bk, k ≥ K1.

Note that

uk(x) ≥ u(x) > 0, ∀x ∈ B(0,K1), (4.4)

when B(0,K1) is the substitution for Ω in the proof of Theorem 3.1.

Let

ρk(x) = λb(x)g(uk)− a(x)|∇uk(x)|q, x ∈ B̄(0,K1).

Since −∆uk(x) = ρk(x), x ∈ B(0,K1), by the interior estimate theorem of Ladyzenskaja and

Ural’tseva [20, Theorem 3.1, pp.266], we get a positive constant C1 independent of k such that

max
x∈Ω̄2

|∇uk(x)| ≤ C1 max
x∈B̄(0,K1)

uk(x) ≤ C1 max
x∈B̄(0,K1)

v(x), ∀x ∈ B(0,K1), (4.5)
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i.e., |∇uk(x)| is uniformly bounded on Ω̄2. It follows that {ρk}∞K1
is uniformly bounded on Ω̄2

and hence ρk ∈ Lp(Ω2) for any p > 1. Since −∆uk(x) = ρk(x), x ∈ Ω2, we see by [21, Theorem

9.11] that there exists a positive constant C2 independent of k such that

||uk||W 2,p(Ω1) ≤ C2(||ρk||Lp(Ω2) + ||uk||Lp(Ω2)), ∀k ≥ K1. (4.6)

Taking p > N such that α < 1 − N/p and applying Sobolev’s embedding inequality, we see

that {||uk||C1+α(Ω̄1)}
∞
K1

is uniformly bounded. Therefore ρk ∈ Cα(Ω̄1) and {||ρk||Cα(Ω̄1)}
∞
K1

is

uniformly bounded. It follows by Schauder’s interior estimate theorem [21, Chapter 1, pp.2] that

there exists a positive constant C3 independent of k such that

∥uk∥C2+α(Ω̄′) ≤ C3(∥ρk∥Cα(Ω̄1) + ∥uk∥C(Ω̄1)), ∀k ≥ K1, (4.7)

i.e., {∥uk∥C2+α(Ω̄′)}∞K1
is uniformly bounded. Using Ascoli-Arzela’s theorem and the diagonal

sequential process, we see that {uk}∞K1
has a subsequence that converges uniformly in the C2(Ω̄′)

norm to a function u ∈ C2(Ω̄′) and u satisfies

−∆u+ a(x)|∇u|q = λb(x)g(u), x ∈ Ω̄′.

By (4.4), we obtain that u > 0, ∀x ∈ Ω̄′. Applying Schauder’s regularity theorem, we see that

u ∈ C2+α(Ω̄′). Since Ω′ is arbitrary, we also see that u ∈ C2+α
loc (RN ). It follows by (4.3) that

lim|x|→∞ u(x) = 0. Thus, a standard bootstrap argument (with the same details as in [22]) shows

that u is one solution of problem (1.1).

Proof of (ii) Take λ ∈ (0,Λ1]. By Theorem 3.1(ii), problem (4.1) admits a solution uk ∈
C2+α(B(0, k)) ∩ C(B̄(0, k)) satisfying 0 < u ≤ uk ≤ v ≤ m. The proof now follows as in the

proof of (i). The proof of Theorem 1.1 is completed. �
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[3] F. CǏRSTEA, V. D. RǍDULESCU. Existence and uniqueness of positive solutions to a semilinear elliptic

problem in RN . J. Math. Anal. Appl., 1999, 229(2): 417–425.

[4] Weijie FENG, Xiyu LIU. Existence of entire solutions of a singular semilinear elliptic problem. Acta Math.

Sin. (Engl. Ser.), 2004, 20(6): 983–988.

[5] J. V. GONCALVES, C. A. SANTOS. Existence and asymptotic behavior of non-radially symmetric ground

states of semilinear singular elliptic equations. Nonlinear Anal., 2006, 65(4): 719–727.

[6] Zhijun ZHANG. A remark on the existence of positive entire solutions of a sublinear elliptic problem. Non-

linear Anal., 2007, 67(1): 147–153.

[7] Dong YE, Feng ZHOU. Invariant criteria for existence of bounded positive solutions. Discrete Contin. Dyn.

Syst., 2005, 12(3): 413–424.

[8] A. MOHAMMED. Ground state solutions for singular semi-linear elliptic equations. Nonlinear Anal., 2009,

71(3-4): 1276–1280.

[9] C. A. SANTOS. On ground state solutions for singular and semi-linear problems including super-linear terms

at infinity. Nonlinear Anal., 2009, 71(12): 6038–6043.

[10] T. L. DINU. Entire positive solutions of the singular Emden-Fowler equation with nonlinear gradient term.

Results Math., 2003, 43(1-2): 96–100.



424 Hongtao XUE
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