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Abstract The purpose of the paper is to characterize epigroups in which the idempotent-
generated subsemigroups are completely regular. Some special subclasses of the class of epi-
groups having the same property are also described.
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1. Introduction

A semigroup S is called an epigroup if for each element a in S there exists some power a”
of a such that @™ is a member of some maximal subgroup G of S. Let a* stand for the identity
of the subgroup G. It is known that aa”(= a“a) lies in G; we then denote the group inverse
of aa” in G by @ and call it the pseudo-inverse of a. Thus, an epigroup can alternatively be
regarded as a unary semigroup with the unary operation of taking pseudo-inverse x — T. For
these and more informations on the theory of epigroups we refer to Shevrin [1,2] and his survey
[3]. For the further growth of the related topics on the theory of epigroups, we refer to Shevrin
and Ovsyannikov [4], Volkov [5], Wang and Jin [6], Wang and Luo [7] and Liu [8-10].

It is known that a recurring theme throughout the study of some subclasses of the class
of semigroups (for examples, regular semigroups, epigroups) is the role of the idempotent. The
idempotent-generated subsemigroup of a semigroup S is called the core of S. Since the 1970s, a
number of works concerning the core of a regular semigroup have been given (see, for example,
Fitz-Gerald [11], Eberhart et al [12] and Hall [13]). Theorem 3 in [13] says that for a regular
semigroup S, the core of S is completely regular if and only if S is E-solid: i.e., for all idempotents
e, f,g in S with eLgR f, there exists an idempotent h in S such that eRhLf.

For an epigroup, its core is itself an epigroup (and this satement will be repeated in Section
2). Some works have been done devotedly or partly on epigroups (including its subclasses, for
example, the class of finite semigroups) whose cores belong to some known subclass of semigroups
(see, for example, Moura [14], Almeida and Moura [15], Auinger and Szendrei [16] and certain
contents of Almeida [17]). In this paper we will focus on epigroups whose cores are completely

regular. In Section 2, we start with some basic properties of this type; in particular, we present an
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example to illustrate that even for an epigroup with a completely regular core, the subepigroup
and the subsemigroup generated by idempotens in the same regular D-class D of it, respectively,
may be different. Under what conditions they are equal, in Section 4, we give one answer,
where we show that, for an epigroup with a completely regular core, the subsemigroup (E(D))
generated by idempotents in a regular D-class D is completely regular if and only if the identity
of the group containing the product of any two idempotents in (E(D)) also lies in (E(D)).
Moreover, in this section, some special subclasses of epigroups with completely regular cores
are also considered. The principal result in the paper is formulated in Section 3, where we
characterize epigroups whose cores are completely regular in terms of the behaving of the product
of two idempotents, in terms of epidivisors, in terms of certain decomposition, as well as in
terms of identities respectively. The readers will see that some proofs in the paper mainly use

mathematical induction and Fitz-Gerald’s method.

2. Preliminaries

In this paper, we adopt the notation and terminology of [18-21], and for a background of
epigroups we refer to [1,2] or [3].

The set of idempotents of a subset A of a semigroup S is denoted by E(A). The set of
idempotents of S is denoted by E(S). On E(S) there is a natural partial order relation defined
by the rule that

e< feef=fe=e.

Let S be a semigroup, and let a be an element in S. An element z in S is an inverse of a
in S if axza = a and zax = x. The set of inverses of a is denoted by V(a), and a is regular if
V(a) is not empty. The set of regular elements of S is denoted by Reg(S), and we say that S is
regular if Reg(S) = S. The element a in S is completely regular if there exists 2 € V(a) such
that ax = za, and S is called completely regular if all its elements have this property. Obviously,
a € S is completely regular if and only if ¢ is a member of some subgroup G of 5, that is, a is
a group element of S. Then the set of all completely regular elements of a semigroup S (i.e.,
the group part of §) is denoted by Gr(S). For a D-class D of S, if D contains at least one
idempotent, then it is called a regular D-class of S. The collection of all the regular D-classes of
S is denoted by Reg(S/D). Then for any D € Reg(S/D), E(D) # () and every element of D is
regular [21, Proposition 2.3.1]. For the element a € S, write the principal ideal S*aS! generated
by a as J(a) and the D-class containing a by D,. It should be emphasized that Green’s relation
D coincides with Green’s relation J in an epigroup S, that is, b € D, if and only if J(b) = J(a).

In the remainder of this paper, S always stands for an epigroup unless it is stated.

For any a € S, the least positive integer k such that a® € Gr(S) is called the index of a
and will be denoted by ind(a). Of course a € Gr(S) (in this case ind(a) = 1) if and only if
aa® = a. Formally, we sometimes write a*** instead of a*a“ (note that this is well-defined:
since aa® = a“a). Recall that for any a € S and any n > ind(a), a™ € Gr(S) (see [1, Lemma
1]); then @™ can be written in the abbreviation a™ if n > ind(a).
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A subepigroup of an epigroup is a subsemigroup closed under taking pseudo-inverse as well.
A homomorphic image of a subsemigroup of a given semigroup is called a divisor of the semigroup.
A divisor obtained from a subepigroup of an epigroup is called an epidivisor.

For a subset X C S, (X) is the subsemigroup of S generated by X, while (X)) is the
subepigroup of S generated by X. Any element of (X)) can be represented as a unary semigroup
term over X, where operations are multiplication and taking pseudo-inverse. As stated at the
beginning of the 3rd paragraph in Section 1, the core (E(S)) of S is in fact a subepigroup of S,
that is, (E(S)) = (E(S))); for this conclusion we refer to Lemma 2.6 in [3] (followed by further
details on its origin there). We recall that if E™ denotes the set of all elements of S which can
be written as the product of n idempotents of S, then (E(S)) = J,—, E™.

We will denote the class of all epigroups by £ and the variety of all epigroups of index
at most n (treated as unary semigroups) by &,. The variety &; is the variety of all completely
regular semigroups, and in this paper we use the conventional notation CR to denote this variety.

For a subclass V of £, we define
EV) ={S € E|(E(S)) € V}.

In this paper we mainly pay attention to the subclass E(CR) within the class of epigroups.

The next lemma can be drawn from Lemma I1.2.3 in [22].

Lemma 2.1 Let S € E(CR) and ey, ea,...,e, € E(S). Then
€1es- .-, =(erea...ep)?(ener...en_1)?(en_1€pn ... €n_2)" ...
(eze3...ener1)(e1€2...6,)“.

From Lemma 2.1, the pseudo-inverse of the product of idempotents coming from the ordered

n-tuple (e1,ea, ... ,e@& successively is a factorization into the product of terms
(6i6i+1 ...eper1€g ... ei,l)‘”

beginning with e; in the turn (e1,e,,...,e2,e1) as a clockwise rotation, as follows:

e
2 v en

€1

We recall that from Observation 2.3 in [10] S is a completely regular if and only if for any

€S, aa® = a.
emma 2.2 S € E(CR) if and only if (E(S)) C Gr(S).

roof Necessity is clear. Conversely, assume that (E(S)) C Gr(S). Then for any a € (E(S)),



532 Jingguo LIU

aa® = a, and, since as mentioned (F(.5)) is a subepigroup of .S, we get that (F(.S)) is a completely
regular subsemigroup of S. Therefore, S € E(CR). O

We remark that if S € E(CR), then, from Proposition 2.4.2 in [21], for K € {£,R,H}, we
have K(EW) = 15 0 ((E(S)) x (E(S))), since (E(S)) is a (completely) regular subsemigroup
of S (according to this comment, if S € E(CR), an element in (E(S)) is a completely regular
element of S must be a completely regular element of (E/(S))). But the corresponding assertion

for D is not true if we consider, for example, the semigroup Bs, where
By = (¢, d|c* = d* = 0, cdc = ¢, dcd = d).

As mentioned in [21, Section 2.4], cd, dc € (E(S)) = FE(S) and cdD%dc, while (cd, dc) ¢ DFEE));
therefore DEG) £ DS N ((E(S)) x (E(S))).

Naturally, it is worthwhile to study both (E(D)) and (F(D))) of S generated by all idem-
potents in some regular D-class D of S. We emphasize that even for S € E(CR), in general,
(E(D)) is not equal to (F(D))). This is demonstrated by the following example.

Example 2.3 Let F5 be defined in the variety £ by the presentation
Fy = {lc,d|cdc = ¢,ded = d, c? = T d? = d*T% FT9d = cd™ dTYe = dd Tk, 1 € 7).

The semigroup F» is a Bs-extension of a completely simple semigroup My(oo) (that is, an

ideal extension of M3 (00) by Ba), where Ma(00) ~ M([2, C1 0, 2; (£ 42

and -y is a generator of infinite cyclic group Ci ), and its egg-box picture can be presented in
Figure 1. Clearly, F» € E(CR), and for the D-class D containing the idempotent cd,

)] (e is the identity element

(E(D)) = {cd,dc,c*,d*", *td, d*"Tte,n € Z7}.

It is true that (E(D)) # (E(D))), since 2 ¢ (E(D)), while ¢2 € (E(D)).

de d

k4w Ck+wd — Cdk:er

koer — dcker dk+w

Figure 1 The egg-box picture of F»

Recall that for any a,b € S, (ab)*D(ba)® (see [1, Lemma 5]). As a corollary, we have

Lemma 2.4 Let aq,as,...,a, € S and a = ajas...a,. Then for i =1,2,...,n,

w w
(aiaiH ...apaiag ... ai_l) Da” .
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Lemma 2.5 IfS € E(CR), then

)= U @®won= U (ED).

DeReg(S/D) DeReg(S/D)
Proof Obviously, Upereg(s/p) (E(D)) S (E(S)), since (E(D)) € (E(S)). For the reverse
inclusion, take x = ejey...e,, ¢; € E(S),i =1,2,...,n. Analogous to the proof of Lemma II.6.2

n [22] (for the more general case concerning regular semigroups, see [20, Theorem 1.4.18], and

this technique appeared firstly in Fitz-Gerald [11]), set
fi = €i€i4+1 ...epTer B ) 1= 1,2,...,n.

Since by hypothesis x € Gr(.9), that is, zz* = x, it is routine to check that x = f1fs... f, and
fi € E(S). Also from Lemma 2.4, for i = 1,2,...,n, f;Df1; hence, € (E(D)), where D is a
regular D-class containing elements f;. Therefore (E(S)) € Upereg(s/p) (E(D)), as required.

For the second equality in this lemma, since (E(S)) = Upepeg(s/p) (E(D)) as we have just
proved in the preceding paragraph, and (E(D)) C (E(D))) for any D € Reg(S/D), we have
(E(S)) € UDeReg(S/D) (E(D)). Thus

(EGHCS  |J  (BOD)C(ES).
DeReg(S/D)

But (E(S)) = (E(S)) and so (E($)) = Upeneg(s/m (E(D))- O

Before stating and proving the next proposition using induction on the number of elementary
operations, let us first present a related definition. For any subset X C S, the depth of a term
over X is defined recursively as follows (due to Shevrin, for example, see [4, Subsection 1.2]):
the depth of any element of X is equal to 0; if u,v € (X)) are terms of depth m, n, respectively,
then the depth of uv is m +n + 1, and the depth of @ is m + 1.

Proposition 2.6 IfS € E(CR), then for an element e € E(S),

(B < |J (BD)),

feE(S)
f<e
and Ufef}i(s) <E(Df)> € CR.

Proof Let u € (E(D.))). Then u can be represented as a unary semigroup term over E(D,),
where operations are multiplication and taking pseudo-inverse. The proof is proceeded by in-
duction on the depth n > 0 of u. The base step n = 0 is obviously true, and so we proceed to
the inductive step. If n > 1, then the term u can be written possibly into the following cases:
either u = uyus for some “shorter” terms wi,us, or u = ¥ where v is of depth n — 1.

In the first case, by the inductive hypothesis, the terms u; (i = 1,2) may be written in the

forms

ur = fifo.. [k, U2 = Gk+1Gk+2 - - - Gms
where flaf27"'7fk € E(Df)’ Gk+159k+25---,9m € E(Dg)a fag < €, whence

uw= fifo... fkGrr19k+2 - Gm-
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Using Fitz-Gerald’s method, as we have already done for an element in the core in the proof of
Lemma 2.5, u can also be viewed as the product of the idempotents in the same D-class, that is,
w=hiha...hy,, where hy, ho,... hy, € E(Dp,) and

hi = fife... fkGk+19k+2 - - - gmTf1,

ha = fafs... fkGk+19k+2 - - Uf1f2,

hie = frgrs1 .- gmUfifa ... fr,

hit1 = Get19k+42 - - - ImBf1f2 - - frgrs1,

hm = gmUfifa - fe9k+19k+2 - - - Gm-
Notice that f;Df implies that there exist s,t in S such that f; = sft and f < e if and only if
ef = fe=f. Then
hi=h=(fife - fkGr+19k+2 - - gmTf1)" = (sftfa. .. fugrt19k42 - gmlf1)®

=(s-eftfo... fugrs19r+2- - gmUf1)“D(eftfo. .. frgrt19r42 - - - gmUf18)”

=(e-eftfa... fkGr+19k+2 - .- gmTf18) Dieftfa ... frgrr19k+2 - - - gmuf15€)%.
Ifweset (eftfa... fkGr+19k+2 - - - gmTUf15€)” = h, then obviously h € E(S),h <e, h1,ha,..., hy €
E(Dy,). Therefore, u € (E(Dy)) for some idempotent h < e.

For the second case, by the inductive hypothesis, there exists some f € E(S) with f <e
such that v € (E(Dy)), namely, v = fifo... fi, fi € E(Dys),i =1,2,...,k. Then from Lemma
2.1,

u=v=(fufe-. fu)(fuSfr- fo-1)(fo-1fo - fo—2)” - (fifo- - fu)¥,

and also from Lemma 2.4

(fifeo o f)Dfrfro fom1)D(fr—1fr - fo—2)“D...D(fafz... frf1)”.
Notice that f;Df implies that there exist s,t in S! such that f; = sft, and f < e if and only if
ef = fe=f. Then
(f1f2 [N fk,)w :(Sftfg o fk)w = (S . €ftf2 ‘e fk)‘”D(eftfg [N fks)“’
=(e-eftfa... fxs)*D(eftfs... frse)”.
If we set (eftfs... frse)” = g, then obviously g € E(S),g < e, u € (E(D,)).
Similar manipulation yields |Jrencs) (E(Dy)) is a subepigroup of (E(S)). Then by hypoth-
f<e
esis we have |Jsens) (E(Dy)) € CR. O
fF<e
To formulate the main result in this paper, we need a semigroup given by the following
V=lefle®=e f*=f fe=0);

and we end this section by giving a lemma which will be used in the next section to prove the

main result, and of course it is independently interesting.
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Lemma 2.7 ([5, Lemma 1.3]) Every semigroup S in which the product of any two idempotents

is completely regular is E-solid.

3. Epigroups whose cores are completely regular

Now we give the principal result in this paper presented in the following theorem which

gives some characterizations of epigroups whose cores are completely regular.

Theorem 3.1 The following conditions on an epigroup S are equivalent:
(i) SeE(CR);
(ii) There is no semigroup V among the epidivisors of S;
(iii) (E(S)) = U.ep(s)(E(De)) and UfefE<(eS) (E(Dy)) € CR for any e € E(S);
(iv) (E(S)) = Uperegs/p) (E(D))) and (E(D))) € CR for any regular D-class D of S;
(v) (B(S)) = Uoergs) (B(J(e))) and (E(J(e))) € CR for any ¢ € E(S);
(vi) S satisfies the identity (x¥y~)**! = z%y~.

Proof The equivalence of (i) and (ii) is a corollary of Proposition 1.2 in [5].
(i)=(iii). This follows from Lemma 2.5 and Proposition 2.6.
(ili)=(iv). We show first that .c p(s)(E(De)) = Ueep(s) (U reB®) (E(Dy))). Clearly

URE U(U D).

ecE(S) eEE(S FeBs)

since <E(De)> g Ufef}é(es) <E(Df)> Also

U ( U @) c U ED),

e€B(S)  FEEW) e€E(S)

since Ufef}i(s) (E(Dy)) € Ueens) (E(De)> Thus

ES) = U Eo)= U (U ®ED)).

c€E(S) e€E(S)  fEE®)

Then by hypothesis every element in (E(S)) is completely regular, which, by Lemma 2.2, implies
S € E(CR). Furthermore, from Lemma 2.5, (E(S)) = Upepeg(s/p) (E(D))); and (E(D))) €
CR follows immediately, since a subepigroup of a completely regular (sub)semigroup must be
completely regular.

(iv)=>(v). It is clear that (iv) implies (i) and then S € E(CR). Clearly, U, cps)(E(J(€))) C
(E(S)) and the reverse inclusion follows by Lemma 2.5, since for any e € E(S), D. C J(e). It is
also easy to check that (E(J(e))) € CR by Lemma 2.2.

(v)=(vi). For any z,y € S, z¥y* € (E(S)), then the assumption in (v) means that z“y* €
Gr(9), that is, (z@y~ )t = gwy~.

(vi)=(i). Let a € (E(S)). Notice that (E(S)) = J,—, E". Then a € E™ for some n € N.

n=1

Once we prove that a € Gr(S5), then, by Lemma 2.2, the proof will be completed. We prove it
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by induction on n > 1. The base step n = 1 is trivially true and by the assumption in (vi) the
step n = 2 is also true.
For the step n = 3, write a = efg, where e, f, g € E(S). By the hypothesis that the product

of two arbitrary idempotents is a group element, we have

efg=e(f9)”-fg=ef (ef)g,
e(f9)* =efg-fg, (ef)g=ef-efqg,
(e)*(f9)* =ef -ef(f9)* =ef -e(f9)” = (ef)“g - fg.
e(f9)” =ef(fg)” =ef-(ef)*(f9)*, (ef)*g = (ef)*(f9)* - [y,
so that
efgRe(fg)“L(ef)*(f9) R(ef) gLefg.
Thus efg,e(fg)?, (ef)¥g and (ef)“(fg)“ are located in the egg-box picture of D,y as indicated

in Figure 2.

efg e(fg)” =ef(fg)”

(ef)?g = (ef)*fg (ef)*(f9)*

Figure 2 The locations of efg, e(f9)*, (ef)*g and (ef) (fg)* in Des,y

Since, by the hypothesis in (vi), (ef)“g,e(fg)“, (ef)“(fg)* are all completely regular, say,

(ef)“gH((ef)*9)”,e(fg)*H(e(fg)*), (ef)*(f9)*H((ef)*(fg)*)".
Thus the locations of efg, ((ef)“g)“, (e(fg)*)* and ((ef)“(fg)¥)* in the egg-box picture of

D,y  are as indicated in Figure 3.
Now from Lemma 2.7 there exists an idempotent in H, ¢, and then Hcy, is a subgroup of S
(see [21, Corollary 2.2.6]), so that efg € Gr(S), as required.

efyg (e(fg)“)*

((ef)<g)* ((ef)“(f9))”

Figure 3 The locations of efg, (e(fg)*)*, ((ef)*g)* and ((ef)*(fg)*)” in Deyq

For the inductive step, suppose that n > 4. Then a = ejes .. .e, for some e; € E(S). Since
esey...e, € E"2 by the inductive hypothesis, we get ezes...e, = (ezeq...en)%ezeq. .. en.

Then a = ejeg - e3...e, = erea(eses...en)” - ezeq...e,. While

w .
erea(esey...en)” =ejeg-e€364...€, €364 ... €, = A C3€4-..Cp;



Epigroups in which the idempotent-generated subsemigroups are completely regular 537

therefore a R ejes(esey ... e,)Y. On the other hand,
eres(eses...en)” =ejeq - (e1e3)*(ezeq ... )",
(e1e2)”(eseyq...e,)” =€1€3 - e1ea(ezeq ... e,)”,
so that ejes(esey...e,)% L(e1e2)¥(eseq ... e,)%.
As above, considering the element (eje3)“esey ... e, in a similar way, we have
a=ejey-e3€q...6, =e1ey- (e162)”e3eq. .. €p,
(ere2)¥ezeyq ..., =€1€3 - €162 ...€, = €1€3 - a,
(e1e2)¥eseq...en = (e1€2)¥(es€q...€,)" - €364 ... €p,
(e1e2)“(e3eyq...€,)" = (€1€2)%e3€y ... €, - €364 - En,
so that

al (ere2)¥eseq...en, R(e1e2)*(eseq ... €n) .

Thus a, (e1e2)¥esey ... en,e162(e384 ... €,)% and (e1e2)?(esey ... e,)* are located in the egg-box

picture of D, as indicated in Figure 4.

a 6162(6364 cee €n)w

(e1e2)¥eszey ... ey (e1e2)¥(eseq ... en)"

Figure 4 The locations of a, (e1e2)“eses ... en,e1e2(e3€4...65)" and (e1e2)¥(eses...€,)" in Dy

Since (e1e2)“ezey...e, € E" L eres(eszes...e,)” € E3 (e1e0)¥(ezeq...€,)° € E?, from
the facts we have proved and the inductive hypothesis, these elements are all completely regular.
Similar to the proof for the step n = 3, the locations of a, ((e1e2)“eses ... en)Y, (e1e2(esey . .. €,)%)Y
and ((e1ez)¥(egeq . ..e,)Y)* in the egg-box picture of D, are as indicated in Figure 5. Then a-
gain from Lemma 2.7, there exists an idempotent in H, and then H, is a subgroup of .S, and so
a € Gr(S), as required. O

a (erea(egeyq...en)¥)

((ere2)eseq ...en)* ((ere2)¥(eseyq ...en)*)

Figure 5 The locations of a, ((e1e2)”eszes...en)", (e1e2(ezes ... e5)")"
and ((ere2)®(eses...en)”)? in Dow

Remark 3.2 The equivalence of (i) and (vi) in Theorem 3.1 for a finite semigroup is known (for
example, see [17, Exercise 5.2.17]). For an epigroup S, besides the direct proof of “(vi)=(i)” in

our proof, we can check it from the point of view of properties of regularity. From Result 2 in [23],
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for an arbitrary semigroup U, (E(U)) is the regular subsemigroup of U if and only if the product
of two arbitrary idempotents in U is regular. Thus for the given S, the identity in (vi) in Theorem
3.1 implies that (E(S)) is the regular subepigrop of S (recall that (E(S)) = (E(S))) mentioned
early) and is inherited by (E(S)) (that is, (F(S)) satisfies the identity (z¥y~)*T1 = z¥y«).
Now we may consider solely the regular subepigroup T' = (E(S)) instead of S, since we only
investigate the behaving of (E(S)) and nothing else. Trivially T is a semiband (recall that a
semiband is a regular semigroup generated by its idempotent). From Lemma 2.7, T is E-solid
and thus T is completely regular, as required, in view of Theorem 3 in [13] (which says that for a
regular semigroup U, (E(U)) is completely regular if and only if U is E-solid). We remark that
here the check showing that any element a in (E(S)) is completely regular relys on the regularity
(for example, the proof of [13, Theorem 3] utilizes the inverse of a, while our proof mainly takes
advantage of the unary operation of taking pseudo-inverse since we deal with epigroups viewed
as unary semigroups). In fact, by using the technique of biordered sets, as in the proof of [20,
Theorem 3.4.11], it was also shown that a semiband is completely regular if and only if the

semiband is E-solid.

4. Some restrictions

In this section we consider some special subclasses of the class of epigroups whose cores are
completely regular and begin by determining whether a completely 0-simple semigroup has this
property.

In general, the core of a completely O-simple semgiroup is not completely regular. For

example, the completely 0-simple semgiroup As given by a presentation
Ay =(c,d | ® =0,d* = d,cdc = ¢,dcd = d)

is idempotent-generated, so the core of As is As itself and is not completely regular. We remark
that A, has an epidivisor consisting precisely of elements 0, ¢, cd and dc, which is isomorphic to
V (here e = cd, f = dc).

We recall that every completely 0-simple semigroup S is isomorphic to some Rees matrix
semigroup M°(I, G, A; P) over the 0-group G° with the regular sandwich matrix P = (py;) (see
[21, Theorem 3.2.3]). It is easy to identify that for S = M°(I, G, A; P),

E(S) ={(i,pxi,A) € S | i€ I,A€ Apy # 0} U{0},
Gr(S) ={(i,g,\) € S[ie A€ A, g € G,px # 0} U{0}.

We refer to Howie [24] for an investigation of the core of a completely 0-simple semgiroup.
The following proposition indicates that for a completely 0-simple semgiroup S = M%(I, G, A; P),

the condition S € E(CR) is involved solely with an arrangement of non-zero entries of P.

Proposition 4.1 Let S = M%(I,G, A; P) be a Rees matrix semigroup. Then S € E(CR) if and
only if for all i,j € I, \,u € A,

Pxi 7 0,005 # 0,04 # 0 = pui # 0.
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Proof Suppose that px; # 0,px; # 0,p,; # 0. Then (i,px;, A), (J, D> 1) € E(S), so that by
Theorem 3.1

(i, Pxi, M) (4, Drag» 1) = (&, PxipasPpg» 1) € Gr(9),
which gives p,; # 0, since by hypothesis (¢, Dxipx;Pp;, 1) 7# O.

For the converse, by Theorem 3.1, it suffices to prove that for any e, f € E(S), ef € GrS.
Ife=0o0r f =0, obviously ef € GrS. It remains to show the case e # 0, f £ 0. In this case, let
e=(4,Dxi, A\), f = (J, Dy, 1) with ¢,5 € I, A\, o € A such that py, # 0,p,; # 0. Now

ef = (i,Dxi> A) (4, Pugs 1) = (4 DXiPAj Puj 14)-
If pyj = 0, clearly ef = 0 € Gr(S); if px; # 0, then by hypothesis p,; # 0, which also gives
ef € Gr(5). O
As we have mentioned earlier (see Example 2.3), if S € E(CR), we cannot obtain (E(D)) =

(E(D))) for every regular D-class D of S. We now ask what else is necessary to conclude that
(E(D)) = (E(D))) for some regular D-class D of S.

Proposition 4.2 Let S € E(CR) and D be a regular D-class of S. Then for any two idempotents
e, f € (E(D)), (ef) € (E(D)) if and only if {(E(D))) = (E(D)). In this case, (E(D)) is a

completely regular subsemigroup of S.

Proof If {E(D)) = (E(D)), then for any e, f € (E(D)), ef,ef € (E(D)), so that (ef)* €
(E(D)). The fact that (E(D)) is a completely regular subsemigroup of S is clear.

Conversely, to show that (E(D))) = (E(D)), we need to show that for any a € (E(D)),
a € (E(D)). Write a =ejea...en, e; € D, i=1,2,...,n. Then from Lemma 2.1

a=(erea...e5)%(ene1...en—1)?(en—16n...€n—2)"...(e162...n)".

If we can show that elements (e;e;j41...epe1€2...€;-1)” (i =1,2,...,n) are all in (E(D)), then
a € (E(D)), and this will complete the proof. The fact that these elements are all in (E(D)) is
guaranteed by the following Lemma. [

Lemma 4.3 Let S € E(CR) and D be a regular D-class of S. If for any two idempotents
e, f € (E(D)), (ef)“ € (E(D)), then for any a € (E(D)), a* € (E(D)).

Proof Let a=-ejes...en, ¢, € D,i=1,2,...,n. We show that a* € (E(D)). The proof is by
induction on n > 1, The base step n = 1 is trivially true. By hypothesis the step n = 2 is also
true.

For the step n = 3, analogous to the proof of “(vi)=-(i)” in Theorem 3.1, the locations
of a“, ((e1e2)¥e3)”, (e1(e2e3)®)* and ((e1e2)?(e2e3)®)” in the egg-box picture of D, are as
indicated in Figure 6; then a® = ((e1(e2e3)<)* - ((eleg)weg)“’)w. By hypothesis it is easy to check
that a¥ € (E(D)).

For the inductive step, suppose that n > 4. Analogous to the proof of “(vi)=-(i)” in Theorem
3.1, the locations of a, ((e1e2)¥ezes ... €,)%, (e1€2(e3€4 ... €)¥) and ((e1e2)“(ezeq ... €5)*)% in

D, are as indicated in Figure 7. Since by the hypothesis that (F(S)) is completely regular,
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it is easy to obtain that a® = ((ejea(ezeq...e,)?)* - ((e1e2)eseq ... e,)*) . By the (inductive)
hypothesis, it is now routine to check a* € (E(D)). O

a® (e1(eze3)”)

((ere2)”es)” ((e1€2)* (e2e3)”)

Figure 6 The locations of a“, ((e1e2)”e3)?, (e1(e2e3))® and ((eire2)®(e2e3)”)” in Daw

Someone might take for granted that in Proposition 4.2 if S € E(CR), then (E(D))) is a
completely simple subsemigroup of S. But this is not true in general; for example, the subepi-
group (F(D.q))) of By generated by E(D.q4) is not completely simple.

(erea(eseq...en)? )

((ere2)¥eszeyq ... en)” ((ere2)“(eseyq . ..en)* )

Figure 7 The locations of a“, ((e1e2)“eses...e,)", (e1€2(e3€4 ... 5)%)”

and ((e1e2)®(eses...en)”)” in Dow

Recall that a semigroup is called periodic if the monogenic subsemigroup generated by
its each element is finite. Since each element in a periodic semigroup has a power which is

idempotent, by Proposition 4.2, we get

Corollary 4.4 Let S be a periodic semigroup. If S € E(CR), then for any regular D-class D
of S, (E(D))) = (E(D)). In this case, (E(D)) is a completely regular subsemigroup of S.

We now turn to epigroups decomposable into semilattices of archimedean epigroups. For
the characterizations of these epigroups from different points of view, we refer to Theorem 3 in [1]
(or Theorem 3.16 in [3]), and especially it says that an epigroup S decomposes into a semilattice
of archimedean epigroups if and only if each regular D-class in S forms a (completely simple)
subsemigroup. Now let S € E(CR). Comparing with periodic semigroups, if S is a semilattice of
archimedean epigroups, then for any regular D-class of S, we also get (E(D))) = (E(D)); while
here (E(D)) is completely simple subsemigroup of S and this is not the same with a periodic

semigroup. These facts will be reflected in the following proposition.

Proposition 4.5 The following conditions on an epigroup S are equivalent:

(i) S is a semilattice of archimedean epigroups, and (E(S)) is a completely regular sub-
semigroup of S;

(i) (E(S)) = Upereg(s/p)(E(D)), and for any regular D-class D of S, (E(D)) is a com-
pletely simple subsemigroup of S;

(iii) There are no semigroups By, V among the epidivisors of S;
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(iv) S satisfies the identities ((zy)* (yz)* (zy)*)~ = (zy)*, (a¥y*)* Tt = zy~.

Proof The equivalence of (iii) and (iv) is clear by virtue of Theorem 3 in [1] and Theorem 3.1
in the paper.

(i) < (iii). From Theorem 3 in [1], S is a semilattice of archimedean epigroups if and only
if there are no semigroups As, Bo among the epidivisors of S. This together with Theorem 3.1
implies that the condition in (i) is equivalent to saying that there are no semigroups As, By, V
among the epidivisors of S. As mentioned in the 2nd paragraph in this section, V' is among the
epidivisors of As, so that the equivalence of (i) and (iii) holds.

(i) = (ii). Suppose that (i) holds. On the one hand, by Theorem 3.1,

ES)y= U (ED),

De€Reg(S/D)

where (F(D))) is a completely regular subsemigroup of S for any regular D-class D of S; on the
other hand, by Theorem 3 in [1], each regular D-class D is a completely simple subsemigroup,
and then ((E(D))) is a completely simple subsemigroup of S (since its class forms a variety).
Also from Proposition 4.2 (E(D))) = (E(D)), and this completes the proof of this implication.

(ii) = (iv). Clearly the conditions in (ii) imply that S € E(CR), then from Theorem 3.1
the second identity holds. For the first identity, let z,y € S. Then, from Lemma 5 in [1], there
exists some regular D-class D of S such that (zy)“, (yx)* € (E(D)) and so by the hypothesis
that (E(D)) is completely simple, we obtain ((zy)* (yx)“(zy)*)* = (zy)~. O
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