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Abstract Since the paper of Box and Meyer who first considered the identification and esti-

mation of dispersion effects from unreplicated factorial experiments, various different methods

(both iterative and non-iterative) have been proposed for estimating dispersion effects. An

overview of various methods was given by Brenneman and Nair and they showed that the mod-

ified Harvey (MH) method is better than other methods. For a log-linear or multiplicative

model, a non-iterative estimation method of dispersion effects based on residuals averaging

from multiple location effect models is proposed in model selection stage, which has been

shown smaller Mean Square Errors (MSE) than the MH method in majority of simulated

models. And it can apply to the situations with zero or small absolute residuals, but the MH

method will be failure. The properties of this estimator are also considered. A real example

is used to illustrate the results.
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1. Introduction

As emphasized by [1], variation reduction is an important means for quality-improvement of

product or production process. Thus, analysis of dispersion effects has led to a renewed attention.

A common and popular approach is to conduct two-level (fractional) factorial experiments to

estimate dispersion effects and identify active factors by appropriate test methods, such as half-

normal plot, lenth method and so on. Then firstly, the levels of active dispersion factors are

adjusted to obtain the minimum variance; secondly, the factors with active location effects are

used to adjust product or process on target [2].

Traditional methods for identifying both location and dispersion effects typically require

replication. Then, sample mean and sample variance are modeled to active location and disper-

sion factors [3,4]. Excessive number of experimental runs and expensive cost may be impossible

in practical manufacturing process. Therefore, authors have proposed some methods for esti-

mating and identifying location and dispersion effects from unreplicated factorial experiments.

The problem of identifying location effects from unreplicated experiments has been given a re-

view of various methods by [5]. However, sample variance cannot be obtained from unreplicated

factorial experiments and cannot directly model to dispersion factors. A straightforward idea is
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to model based on residuals. Thus, several non-iterative methods have been proposed to study

dispersion effects in unreplicated factorial experiments under the assumption of effect sparsity

[6–17]. In particular, [8] systematically studied the properties of several commonly used meth-

ods, and showed that the modified Harvey (MH) method appears to perform better than other

methods under Mean Square Errors (MSE) criterion via simulated experiments. In an identified

model, two iterative methods (maximum likelihood estimation (MLE) and restricted maximum

likelihood (REML)) are also considered to estimate dispersion effects [6,8].

In this article, for a log-linear or multiplicative model, a non-iterative estimation method of

dispersion effects based on residuals averaging from multiple location effect models is proposed,

which has been shown smaller MSE than the MH method proposed by [8] in majority of simulated

experiments. We refer to this method as the residuals averaging method, denoted the RA

(residuals averaging) method, which can be suitable in situations with zero or small absolute

residuals, but the MH method will be failure. We also consider the properties of this estimator

in theory. A real example illustrates the results.

The article is organized as follows. Section 2 provides models and corresponding notations.

In Section 3, we introduce the RA method in detail and some properties of the RA estimator. In

Section 4, we reanalyze the welding experiment previously reported in [18]. The performances

of the RA and MH methods are studied through simulated experiments in Section 5.

2. Models and notations

Let y = (y1, y2, . . . , yn)
′ be a response vector, X be an n×m orthogonal design matrix with

the first column X1 of +1s and the remaining columns X2, . . . , Xm corresponding to a two-level

factorial or fractional factorial experiment. Xk (k > 1) is a vector of +1s and −1s corresponding

to the high and low levels of factor k. S(k+) (S(k−)) is a set of rows of the + (−) level of

factor k. The closure of a set S is denoted by S. Moreover, given a set S, define the set S−k by

S−k = S − {k}.
For k1, k2, k3 ∈ {1, 2, . . . , n}, we write k1 = k2 ◦ k3 if Xk1 can be obtained by elementwise

multiplication of Xk2 and Xk3 , for example, the interaction term AB = A ◦B.

Let the location model L = {I, l1, . . . , lp−1} and for k ∈ {2, . . . , n}, let Lk = {k, k◦l1, . . . , k◦
lp−1}. For effect k, let LE

k be the expanded location model, which is the union of the elements

of L, the factor k, and all the interactions between the factor k and the elements in L, i.e.,

LE
k = L

∪
Lk. I denotes the intercept.

In unreplicated 2k−p designs, there are only n = 2k−p runs, while the total number of possible

location parameters is n. If all location effects are active, there are no degrees of freedom to

estimate dispersion effects. Thus, effect sparsity principle suggests that only a few location effects

are non-negligible. Therefore, we can use normal probability technique, half-normal probability

technique or lenth method to identify active location effects. Then, the remaining contrasts can

be pooled to estimate dispersion effects. Throughout, we assume that the true location model is

correctly fitted via suitable method. Otherwise, misidentifying location model has effect to the
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estimation of dispersion effects. This problem was considered by [19].

In detail, suppose that the data after a suitable transformation follows the following location-

dispersion models:

yi = x′
iβ + σ2

i εi, (2.1)

σ2
i = ez

′
iϕ, i = 1, . . . , n, (2.2)

where x′
i is the i-th row of n× p design matrix X in location model. β = (β1, β2, . . . , βp)

′ is the

p× 1 unknown parameter vector. βi is a measure of location effect, called the location effect of

factor i. z′i is the i-th row of n× n saturated design matrix Z = (X1, X2, . . . , Xn) in dispersion

model. ϕ = (ϕ1, ϕ2, . . . , ϕn)
′ is the n×1 unknown parameter vector. ϕi is a measure of dispersion

effect, called the dispersion effect of factor i. The identification of dispersion effects is to detect

the significant ones of all ϕi, i = 2, 3, . . . , n based on model (2.2). σ2
i is the variance of yi. εi is

i.i.d. random variable with standard normal distribution.

Note: In view of the nonnegativity of variance, the log-linear dispersion model (2.2) is

used most commonly for modeling variance. It does not require additional constraints on the

parameters to ensure that the estimate of variance is positive.

To identify active dispersion effects, effect sparsity principle is also assumed. Next, we

primarily consider the estimation of dispersion effects.

3. A residuals averaging method

For factor k, ϕk is the dispersion parameter, then by the properties of design matrix X and

model (2.2), we know that

ϕk =
1

n

( ∑
S(k+)

log(σ2
i )−

∑
S(k−)

log(σ2
i )
)

(3.1)

which shows that it only needs to estimate σ2
i when considering the estimation of dispersion

parameter ϕk.

[8] presented a non-iterative method for estimating dispersion effects in the above-mentioned

model, which is based on a set of residuals from the expanded location model. Specifical-

ly, if L = {I, l1, . . . , lp−1} denotes the location model, the expanded location model LE
k =

{I, l1, . . . , lp−1, k, k ◦ l1, . . . , k ◦ lp−1} for effect k ∈ {2, . . . , n}. For example, if the location model

L = {I,A,B,C}, the expanded location models LE
A = {I,A,B,C,AB,AC} for factor A and

LE
D = {I, A,B,C,D,AD,BD,CD} for factor D. X̃ denotes the design matrix of the expanded

location model LE
k , r̃i denotes the corresponding residual from fitted expanded location model,

namely r̃i = yi − x̃′
iβ̂, x̃

′
i is the i-th row of X̃. This leads to the MH estimator

DMH
k =

1

n

( ∑
S(k+)

log(r̃2i )−
∑

S(k−)

log(r̃2i )
)
. (3.2)

By comparing (3.1) and (3.2), we find that r̃2i is factly regarded as the estimation of σ2
i . But, it

is known that r̃2i is not unbiased estimation of σ2
i from the paper of [20]. Therefore, we need a

better estimation of σ2
i .
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Under the assumption of effect sparsity, even though the model is the expanded location

model, there are at least half of effects, which is not included in the location model. Then, we

consider these columns and all the interactions between these columns and the elements in the

expanded location model to be appended into the model. The details are as follows:

Let L be the set of active location effects. For each dispersion factor k, LE
k is the expanded

location model of factor k. Suppose the dimension of LE
k is p, then there are n − p nonactive

location effects, denoting T = {lp+1, . . . , ln}. L(j)
k denotes the union of LE

k , lj , and the interaction

between lj and the elements in LE
k for j = p + 1, . . . , n. Let q be the number of different L

(j)
k ,

r̃(j) be the residual vector obtained from fitted L
(j)
k . Thus, the mean of r̃2(j)s is considered as

the estimation of σ2
i , denoting

r2 =

∑p+q
j=p+1 r̃

2(j)

q

where r̃2(j) is the square of r̃(j). This leads to the statistic

DRA
k =

1

n

( ∑
S(k+)

log(r2i )−
∑

S(k−)

log(r2i )
)

(3.3)

where ri is the i-th element of r.

From (3.3), we know that r̃2(j) can be obtained by fitting different L
(j)
k , and it is clear that∑p+q

j=p+1 r̃
2(j) ̸= 0. Thus, the RA method can overcome the disadvantage of other methods such

as the MH method (not applicable to the situations of zero or small absolute residuals). Noting

that DRA
k has similar structure with the MH method, the following Proposition 3.1 characterizes

its unbiasedness under same conditions with the MH method. Proposition 3.2 provides a lower

bound of variance of the RA estimator. Proofs are given in the Appendix.

Proposition 3.1 Let D be the set of active dispersion effects. If k /∈ D−k, then DRA
k is

unbiased.

Proposition 3.2 The RA estimator has a lower bound of variance.

4. Illustrative example

Consider the welding experiment from National Railway Corporation of Japan first reported

by [18] and reanalyzed by several authors. The response is observed tensile strength of a weld.

The design matrix and data are given in Table 1 in the same manner as [6]. The effects of nine

factors (A to I) were studied in a 16-run 29−5 fractional factorial design.

[6] first reanalyzed the data and showed that active location effects are B and C and active

dispersion effects is only C via a normal probability plot. [7,8,19] also reanalyzed this data.

Their analysis all agreed that active location effects are B and C. Regarding active dispersion

effects, [19] also identified C, while [7] showed the presence of I and H in addition to C. [8]

pointed that the MH method identified C, I, and H.

Next, we reanalyze this data using the RA method based on active location model L =

{I,B,C}. Half-normal probability plot of the 15 effects in Figure 1 clearly indicates active
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dispersion effects in column 2, 13, and 15 (C, I, and H = CI).

Factor

D H G A −F −E I B −C

Run 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 y

1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 43.7

2 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 40.2

3 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 42.4

4 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 44.7

5 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 42.4

6 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 45.9

7 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 42.2

8 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 40.6

9 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 42.4

10 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 45.5

11 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 43.6

12 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 40.6

13 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 44.0

14 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 40.2

15 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 42.5

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 46.5

Table 1 Design matrix and response

Figure 1 Half-normal plot of dispersion effects

5. Simulated comparison

Effect True MH method RA method Effect True MH method RA method

value Mean Std MSE Mean Std MSE value Mean Std MSE Mean Std MSE

D={I,A,B,AB} D={I,B,C,D}
A 2.0 3.33 0.73 2.30 3.49 0.49 2.47 A 0 0.01 1.07 1.14 0.00 0.94 0.89

B 2.0 2.01 0.58 0.34 2.01 0.48 0.23 B 2.0 2.01 0.88 0.78 2.01 0.78 0.61

AB 2.0 2.01 0.59 0.35 2.01 0.48 0.23 AB 0 0.01 0.89 0.79 0.01 0.79 0.62

C 0 0.00 0.67 0.45 0.00 0.58 0.34 C 2.0 2.00 0.88 0.78 2.00 0.79 0.62

AC 0 0.00 0.68 0.46 0.00 0.58 0.34 AC 0 0.00 0.89 0.79 0.00 0.79 0.62

BC 0 0.00 0.67 0.45 0.00 0.58 0.33 BC 0 1.52 0.82 2.99 1.40 0.74 2.52

ABC 0 0.01 0.67 0.45 0.00 0.58 0.34 ABC 0 0.00 0.83 0.69 0.00 0.75 0.56

D 0 -0.02 0.66 0.43 -0.01 0.56 0.32 D 2.0 1.99 0.88 0.77 2.00 0.78 0.61

AD 0 -0.02 0.66 0.44 -0.02 0.56 0.32 AD 0 0.00 0.88 0.77 0.00 0.78 0.61

BD 0 -0.02 0.66 0.43 -0.01 0.56 0.32 BD 0 1.52 0.82 2.99 1.40 0.74 2.52

ABD 0 -0.02 0.67 0.44 -0.01 0.56 0.31 ABD 0 0.00 0.83 0.69 0.00 0.74 0.55

CD 0 0.00 0.66 0.44 0.00 0.57 0.33 CD 0 1.52 0.84 3.03 1.40 0.75 2.53

ACD 0 0.00 0.66 0.44 0.00 0.58 0.33 ACD 0 0.01 0.84 0.70 0.00 0.75 0.57

BCD 0 0.00 0.66 0.44 0.00 0.57 0.33 BCD 0 1.24 0.87 2.29 1.04 0.80 1.73

ABCD 0 0.00 0.67 0.44 0.00 0.57 0.33 ABCD 0 0.00 0.86 0.75 0.00 0.80 0.64

Table 2 Simulation of the estimation of dispersion effects under the location model L = {I, A} for

various dispersion models
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In this section, we compare the RA and MH methods by simulated experiments in the initial

dispersion effects estimation step. The simulation is designed to cover a few different location

and dispersion model combinations. The true value of each active dispersion effect is 2 and the

size is 5000.

Tables 2–5 present the results of simulation, including Mean, Standard deviation (Std) and

MSE, which all suggest that the RA method reduces Std well in majority of simulated models.

An example is the situation in which L = {I, A}, D = {I,A,B,AB}. In this case, both the RA

and MH methods are approximately unbiased for factor B (bias = 0.01), however, the Std reduces

from 0.58 to 0.48 for the RA method. But in situations with L = {I,A,B,C}, D = {I,A,B,C}
and L = {I, A,B,C,D}, D = {I,A,B,C}, the Stds of the RA method are larger than the MH

method for factors D,AD,BD,ABD,CD,ACD,BCD and ABCD. This implies that the RA

method may be short of robustness for these factors to some extent. The work is underway to

explore the reasons.

Effect True MH method RA method Effect True MH method RA method

value Mean Std MSE Mean Std MSE value Mean Std MSE Mean Std MSE

D={I,A,B,C} D={I,C,D}
A 2.0 1.98 0.67 0.45 1.99 0.60 0.37 A 0 0.00 0.89 0.79 -0.01 0.79 0.63

B 2.0 2.02 0.67 0.44 2.01 0.60 0.36 B 0 0.01 0.88 0.78 0.01 0.78 0.61

AB 0 0.02 0.68 0.46 0.01 0.60 0.36 AB 0 0.01 0.89 0.79 0.01 0.79 0.62

C 2.0 2.01 0.94 0.89 2.00 0.82 0.66 C 2.0 2.01 0.67 0.45 2.00 0.60 0.36

AC 0 1.46 0.92 2.98 1.53 0.76 2.91 AC 0 0.00 0.91 0.82 0.00 0.81 0.66

BC 0 1.48 0.94 3.06 1.54 0.78 2.98 BC 0 0.00 0.90 0.80 0.00 0.80 0.63

ABC 0 1.12 0.97 2.20 1.25 0.77 2.16 ABC 0 0.01 0.91 0.82 0.00 0.80 0.64

D 0 0.00 1.12 1.25 -0.01 1.01 1.02 D 2.0 2.00 0.65 0.42 2.00 0.58 0.33

AD 0 -0.01 1.13 1.27 -0.01 1.01 1.02 AD 0 0.00 0.90 0.81 0.00 0.80 0.64

BD 0 0.00 1.13 1.27 -0.01 1.01 1.02 BD 0 0.00 0.89 0.79 0.00 0.81 0.65

ABD 0 -0.01 1.12 1.25 0.00 1.01 1.01 ABD 0 0.00 0.89 0.79 0.00 0.80 0.63

CD 0 -0.01 1.13 1.27 0.00 1.01 1.03 CD 0 1.60 0.64 2.97 1.61 0.55 2.88

ACD 0 0.00 1.13 1.27 0.00 1.02 1.04 ACD 0 0.01 0.86 0.74 0.00 0.79 0.63

BCD 0 0.00 1.14 1.30 0.00 1.02 1.04 BCD 0 -0.01 0.84 0.70 0.00 0.78 0.61

ABCD 0 0.01 1.13 1.29 0.00 1.02 1.04 ABCD 0 0.00 0.84 0.71 0.00 0.78 0.61

Table 3 Simulation of the estimation of dispersion effects under the location model L = {I, A,B} for

various dispersion models

Effect True MH method RA method Effect True MH method RA method

value Mean Std MSE Mean Std MSE value Mean Std MSE Mean Std MSE

D={I,A,B} D={I,A,B,C}
A 2.0 2.00 0.76 0.58 2.01 0.64 0.41 A 2.0 2.00 0.92 0.85 2.00 0.80 0.64

B 2.0 2.02 0.77 0.59 2.02 0.64 0.41 B 2.0 2.04 0.91 0.83 2.02 0.80 0.65

AB 0 1.41 0.77 2.59 1.56 0.59 2.78 AB 0 1.47 0.92 3.02 1.54 0.76 2.94

C 0 0.01 0.94 0.89 0.00 0.82 0.66 C 2.0 2.01 0.94 0.89 2.00 0.82 0.66

AC 0 0.01 0.93 0.87 0.00 0.81 0.66 AC 0 1.16 0.92 2.98 1.53 0.76 2.91

BC 0 0.00 0.94 0.88 0.00 0.82 0.67 BC 0 1.48 0.94 3.06 1.54 0.78 2.98

ABC 0 0.00 0.78 0.61 0.00 0.78 0.61 ABC 0 0.00 0.78 0.61 0.00 0.78 0.61

D 0 -0.02 0.87 0.77 -0.02 0.81 0.65 D 0 -0.01 0.91 0.83 -0.01 1.03 1.06

AD 0 -0.01 0.88 0.78 -0.01 0.81 0.65 AD 0 0.00 0.91 0.84 -0.01 1.03 1.06

BD 0 -0.01 0.87 0.76 -0.02 0.80 0.64 BD 0 0.00 0.91 0.83 -0.01 1.03 1.06

ABD 0 0.00 0.87 0.76 -0.02 0.80 0.63 ABD 0 0.00 0.91 0.82 0.00 1.02 1.05

CD 0 0.00 0.93 0.86 0.00 0.84 0.70 CD 0 0.00 0.92 0.86 0.00 1.03 1.07

ACD 0 0.00 0.93 0.86 0.00 0.84 0.71 ACD 0 0.00 0.93 0.86 0.00 1.04 1.08

BCD 0 0.00 0.92 0.85 0.00 0.84 0.71 BCD 0 0.00 0.93 0.86 0.00 1.04 1.07

ABCD 0 -0.01 0.93 0.87 -0.01 0.85 0.72 ABCD 0 0.00 0.92 0.85 0.00 1.04 1.08

Table 4 Simulation of the estimation of dispersion effects under the location model L = {I, A,B,C} for

various dispersion models

MSE is a master criterion measuring estimation. If we only consider MSE, the RA method

is almost all better than the MH method for active factors. For example, in Table 4 for the case
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in which L = {I,A,B,C}, D = {I,A,B,C}, the MSEs of the MH method for factor A,B, and C

are 0.85, 0.83, and 0.89, but for the RA method are 0.64, 0.65, and 0.66, respectively. It is not as

good as the MH method for the case with L = {I,A}, D = {I,A,B,AB}. This also can be seen

from Proposition 1 of this paper and Proposition 3 in [8]. Because A,B, and AB are included

in the closure of D, the unbiasedness cannot be guaranteed. Thus, we first fit a location model

including A,B, and AB, then estimate dispersion effects using H method [21]. Table 6 gives

the results. It is obvious that A,B, and AB are all approximately unbiased, i.e., it corrects the

biasedness of the RA and MH methods.

Effect True MH method RA method Effect True MH method RA method

value Mean Std MSE Mean Std MSE value Mean Std MSE Mean Std MSE

D={I,A,B} D={I,A,B,C}
A 2.0 2.01 0.74 0.55 2.01 0.66 0.44 A 2.0 2.01 0.90 0.81 2.01 0.82 0.67

B 2.0 2.01 0.75 0.56 2.02 0.67 0.45 B 2.0 2.01 0.92 0.85 2.02 0.82 0.68

AB 0 1.60 0.72 3.07 1.63 0.63 3.04 AB 0 1.59 0.86 3.27 1.56 0.78 3.03

C 0 0.00 0.94 0.88 0.00 0.85 0.72 C 2.0 2.00 0.94 0.88 2.00 0.85 0.72

AC 0 0.00 0.94 0.87 0.00 0.84 0.71 AC 0 1.58 0.87 3.27 1.55 0.78 3.01

BC 0 0.00 0.94 0.89 0.01 0.86 0.73 BC 0 1.59 0.89 3.33 1.56 0.80 3.08

ABC 0 0.00 1.25 1.57 0.00 1.25 1.57 ABC 0 1.26 1.23 3.09 1.26 1.23 3.09

D 0 -0.02 0.87 0.77 -0.02 0.81 0.65 D 0 -0.01 0.91 0.83 -0.01 1.03 1.06

AD 0 -0.01 0.88 0.78 -0.01 0.81 0.65 AD 0 0.00 0.91 0.84 -0.01 1.03 1.06

BD 0 -0.01 0.87 0.76 -0.02 0.80 0.64 BD 0 0.00 0.91 0.83 -0.01 1.03 1.06

ABD 0 -0.03 1.22 1.49 -0.03 1.22 1.49 ABD 0 0.00 1.24 1.55 0.00 1.24 1.55

CD 0 0.00 0.93 0.86 0.00 0.84 0.70 CD 0 0.00 0.92 0.86 0.00 1.03 1.07

ACD 0 -0.01 0.97 0.95 -0.01 0.97 0.95 ACD 0 0.00 1.25 1.56 0.00 1.25 1.56

BCD 0 0.01 0.97 0.95 0.01 0.97 0.95 BCD 0 0.00 1.23 1.51 0.00 1.23 1.51

ABCD 0 0.00 0.96 0.91 -0.01 0.85 0.73 ABCD 0 0.00 1.18 1.40 0.00 1.05 1.09

Table 5 Simulation of the estimation of dispersion effects under the location model L = {I, A,B,C,D}
for various dispersion models

Dispersion True H method

Effects value Mean Std MSE

A 2.0 2.00 0.59 0.35

B 2.0 2.01 0.58 0.34

AB 2.0 2.01 0.59 0.35

Table 6 Simulation under same location and dispersion model L = {I,A,B,AB}

Note: In some situations, the RA method has the same results as the MH method. For

example, in Table 4 for the case in which L = {I, A,B,C} and D = {I, A,B,C}, both the RA

and MH methods are unbiased for factor ABC, and the same Std is 0.78. This result comes from

the fact that the expanded location model LE
ABC is a closed set with dimLE

ABC = N/2, and the

model based on the RA method is a full model.

6. Appendix

Lemma 6.1 Let L
(j)
k be the union of LE

k , lj , and the interaction between lj and the elements

in LE
k for j = p+1, . . . , n. Then the residuals resulting from L

(j)
k with design matrix X̃(j) are of

the form

r̃
(j)
i =

{ ∑
m∈S(k+) h̃

(j)
imym i ∈ S(k+)∑

m∈S(k−) h̃
(j)
imym i ∈ S(k−)
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where H̃(j) = I −H = I − 1
nX̃

(j)X̃
′(j) = (h̃

(j)
im)i,m=1,...,n, r̃

(j)
i is the i-th element of r̃(j).

The proof is the same as the Lemma 2 in [8] and is omitted.

Lemma 6.2 The means of the residual squares resulting from the RA method are of the form

r2i = ẽ′k+(Σ
1/2
k+Σp+q

j=p+1H
(j)
1 AiH

(j)
1 Σ

1/2
k+ )ẽk+, i ∈ S(k+)

r2i = ẽ′k−(Σ
1/2
k−Σp+q

j=p+1H
(j)
1 AiH

(j)
1 Σ

1/2
k− )ẽk−, i ∈ S(k−)

where ẽk+ = Σ
−1/2
k+ ek+, Σk+ = Var(ek+) = diag(σ2

1 , . . . , σ
2
n/2), ẽk− = Σ

−1/2
k− ek−, Σk− = Var(ek−) =

diag(σ2
n/2+1, . . . , σ

2
n), e = (e′k+, e

′
k−)

′ = y − X̃β, Ai =
δiδ

′
i

q , H̃(j) =

[
H

(j)
1 0

0 H
(j)
1

]
, δi is an

n/2× 1 vector with the i-th element of 1 and the others of 0.

Proof First, the design matrix X̃(j) can be rearranged to satisfy the following condition:

S(k+) = {1, . . . , n/2} and S(k−) = {n/2 + 1, . . . , n}.
By Lemma 6.1, we know that h̃

(j)
ml = 0 for m ∈ S(k+), l ∈ S(k−) or m ∈ S(k−), l ∈ S(k+).

And the rearranged H̃(j) can be decomposed as

H̃(j) =

[
H

(j)
1 H

(j)
2

H
(j)
2 H

(j)
1

]

where H
(j)
1 and H

(j)
2 are n/2× n/2 matrices. This leads to

H̃(j) =

[
H

(j)
1 0

0 H
(j)
1

]

r̃(j) =

[
H

(j)
1 0

0 H
(j)
1

]
y =

[
H

(j)
1 0

0 H
(j)
1

](
ek+

ek−

)
=

(
H

(j)
1 ek+

H
(j)
1 ek−

)

where e = (e′k+, e
′
k−)

′ = y − X̃β. For i ∈ S(k+), r̃
(j)
i = δ′iH

(j)
1 ek+, i = 1, . . . , n/2; r̃

(j)
i =

δ′iH
(j)
1 ek−, i = n/2 + 1, . . . , n, for i ∈ S(k−), δi is an n/2 × 1 vector with the i-th element of 1

and the others of 0.

Thus, for i ∈ S(k+),

r2i =

∑p+q
j=p+1 r̃

2(j)
i

q
=

∑p+q
j=p+1(e

′
k+H

(j)
1 δiδ

′
iH

(j)
1 ek+)

q
=

e′k+(
∑p+q

j=p+1 H
(j)
1 δiδ

′
iH

(j)
1 )ek+

q

=e′k+(Σ
p+q
j=p+1H

(j)
1 AiH

(j)
1 )ek+ = (Σ

1/2
k+Σ

−1/2
k+ ek+)

′(Σp+q
j=p+1H

(j)
1 AiH

(j)
1 )(Σ

1/2
k+Σ

−1/2
k+ ek+)

=ẽ′k+(Σ
1/2
k+Σp+q

j=p+1H
(j)
1 AiH

(j)
1 Σ

1/2
k+ )ẽk+

where ẽk+ = Σ
−1/2
k+ ek+ ∼ N(0, I), Σk+ = Var(ek+) = diag(σ2

1 , . . . , σ
2
n/2), Ai =

δiδ
′
i

q .

A similar argument shows that r2i = ẽ′k−(Σ
1/2
k−Σp+q

j=p+1H
(j)
1 AiH

(j)
1 Σ

1/2
k− )ẽk− for i ∈ S(k−),

where ẽk− = Σ
−1/2
k− ek− ∼ N(0, I), Σk− = Var(ek−) = diag(σ2

n/2+1, . . . , σ
2
n).

Proof of Proposition 3.1 By Lemmas 6.1 and 6.2,

E[DRA
k ] =

1

n
E
( ∑

S(k+)

log(r2i )−
∑

S(k−)

log(r2i )
)
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=
1

n
E
( ∑

S(k+)

log(ẽ′k+(Σ
1/2
k+BiΣ

1/2
k+ )ẽk+)−

∑
S(k−)

log(ẽ′k−(Σ
1/2
k−BiΣ

1/2
k− )ẽk−)

)
where Bi = Σp+q

j=p+1H
(j)
1 AiH

(j)
1 .

Let ci be the i-th row of C = [X̃d̄1
| · · · |X̃d̄r

], where d̄j ∈ D−k, let ϕC = (ϕd̄1
, . . . , ϕd̄r

)′.

Since k /∈ D−k, the preceding expectation can be rewritten as

E[DRA
k ] =

1

n
E
( ∑

S(k+)

log(exp(ϕ1 + ϕk)ẽ
′
k+(Σ̃

1/2
k+BiΣ̃

1/2
k+ )ẽk+)−

∑
S(k−)

log(exp(ϕ1 − ϕk)ẽ
′
k−(Σ̃

1/2
k−BiΣ̃

1/2
k− )ẽk−)

)
=ϕk +

1

n
E
( ∑

S(k+)

log(ẽ′k+(Σ̃
1/2
k+BiΣ̃

1/2
k+ )ẽk+)−

∑
S(k−)

log(ẽ′k−(Σ̃
1/2
k−BiΣ̃

1/2
k− )ẽk−)

)
where

Σ̃k+ =


ec

′
1ϕC 0 · · · 0

0 ec
′
2ϕC · · · 0

· · · · · · · · · · · ·
0 0 · · · ec

′
n/2ϕC


1/2

, Σ̃k− =


ec

′
n/2+1ϕC 0 · · · 0

0 ec
′
n/2+2ϕC · · · 0

· · · · · · · · · · · ·
0 0 · · · ec

′
nϕC


1/2

.

According to the results of P404 in [8], ci = ci+n/2 for i = 1, . . . , n/2, then Σ̃k+ = Σ̃k−. It is

clear that for each i ∈ S(k+), there exists an i′ ∈ S(k−) such that ẽ′k+(Σ̃
1/2
k+BiΣ̃

1/2
k+ )ẽk+ and

ẽ′k−(Σ̃
1/2
k−Bi′Σ̃

1/2
k− )ẽk− have the same distribution from the standard normality of ẽk+ and ẽk−.

Namely, E[DRA
k ] = ϕk. This completes the proof. �

Lemma 6.3 The means of the residual squares resulting from the RA method are such that r2m

is independent of r2m′ whenever m ∈ S(k+) and m′ ∈ S(k−).

The proof of the Lemma 6.3 is easily obtained from the Corollary 1 in [8] and is omitted.

Proof of Proposition 3.2 By Lemmas 6.2, 6.3 and Proposition 3.1, the variance of the RA

estimator can be given by

Var(DRA
k ) =

1

n2

[
Var
( ∑

S(k+)

log(ẽ′k+(Σ̃
1/2
k+BiΣ̃

1/2
k+ )ẽk+)

)
+Var

( ∑
S(k−)

log(ẽ′k−(Σ̃
1/2
k−BiΣ̃

1/2
k− )ẽk−)

]
=

2

n2
Var
( ∑

S(k+)

log(ẽ′k+(Σ̃
1/2
k+BiΣ̃

1/2
k+ )ẽk+)

)
=

2

n2

∑
S(k+)

Var
(
log(ẽ′k+(Σ̃

1/2
k+BiΣ̃

1/2
k+ )ẽk+)

)
+

4

n2

∑
m,n∈S(k+)

Cov
(
log(ẽ′k+(Σ̃

1/2
k+BmΣ̃

1/2
k+ )ẽk+), log(ẽ

′
k+(Σ̃

1/2
k+BnΣ̃

1/2
k+ )ẽk+)

)
≥ 2

n2

∑
S(k+)

Var
(
log(ẽ′k+(Σ̃

1/2
k+BiΣ̃

1/2
k+ )ẽk+)

)
.
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