On Friendly Index Sets of Cyclic Silicates

Zhenbin GAO ${ }^{1}$, Sinmin LEE 2, Guangyi SUN ${ }^{1, *}$, Geechoon LAU ${ }^{3}$
1. College of Science, Harbin Engineering University, Heilongjiang 150001, P. R. China;
2. Deptartment of Computer Science, San Jose State University, San Jose CA95192, USA;
3. Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), Johor 85000, Malaysia

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A labeling $f: V(G) \rightarrow$ Z_{2} induces an edge labeling $f^{*}: E(G) \rightarrow Z_{2}$ defined by $f^{*}(x y)=f(x)+f(y)$, for each edge $x y \in E(G)$. For $i \in Z_{2}$, let $v_{f}(i)=|\{v \in V(G): f(v)=i\}|$ and $e_{f}(i)=\mid\left\{e \in E(G): f^{*}(e)=\right.$ $i\} \mid$. A labeling f of a graph G is said to be friendly if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$. The friendly index set of the graph G, denoted $\operatorname{FI}(G)$, is defined as $\left\{\left|e_{f}(0)-e_{f}(1)\right|\right.$: the vertex labeling f is friendly\}. This is a generalization of graph cordiality. We investigate the friendly index sets of cyclic silicates $\operatorname{CS}(n, m)$.

Keywords vertex labeling; friendly labeling; cordiality; friendly index set; cycle; $\mathrm{CS}(n, m)$; arithmetic progression
MR(2010) Subject Classification 05C78; 05C25

1. Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Let A be an abelian group. A labeling $f: V(G) \rightarrow A$ induces an edge labeling $f^{*}: E(G) \rightarrow A$ defined by $f^{*}(x y)=f(x)+f(y)$, for each edge $x y \in E(G)$. For $i \in A$, let $v_{f}(i)=|\{v \in V(G): f(v)=i\}|$ and $e_{f}(i)=\mid\{e \in E(G)$: $\left.f^{*}(e)=i\right\} \mid$. Let $c(f)=\left\{\left|e_{f}(i)-e_{f}(j)\right|:(i, j) \in A \times A\right\}$. A labeling f of a graph G is said to be A-friendly if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $(i, j) \in A \times A$. If $c(f)$ is a set for some A-friendly labeling f, then f is said to be A-cordial.

The notion of A-cordial labelings was first introduced by Hovey [1], who generalized the concept of cordial graphs of Cahit [2]. Cahit considered $A=Z_{2}$. For more details of known results and open problems on cordial graphs, the reader can see relevant papers.

In this paper, we will exclusively focus on $A=Z_{2}$, and drop the reference to the group. A vertex v is called a k-vertex if $f(v)=k, k \in\{0,1\}$, an edge e is called a k-edge if $f^{*}(e)=k$, $k \in\{0,1\}$. When the context is clear, we will drop the subscript f.

In [3] the following concept was introduced.
Definition 1.1 The friendly index set $\mathrm{FI}(G)$ of a graph G is defined as $\left\{\left|e_{f}(0)-e_{f}(1)\right|\right.$: the vertex labeling f is friendly\}.

Received October 16, 2014; Accepted July 8, 2015
Supported by the National Natural Science Foundation of China (Grant No. 11371109).

* Corresponding author

E-mail address: gaozhenbin@aliyun.com (Zhenbin GAO); Sunguangyi@hrbeu.edu.cn (Guangyi SUN)

Note that if 0 or 1 is in $\operatorname{FI}(G)$, then G is cordial. Thus the concept of friendly index sets could be viewed as a generalization of cordiality. Cairnie and Edwards [4] have determined the computational complexity of cordial labeling and Z_{k}-cordial labeling. They proved that deciding whether a graph admits a cordial labeling is NP-complete. Even the restricted problem of deciding whether a connected graph of diameter 2 has a cordial labeling is NP-complete. Thus, in general, it is difficult to determine the friendly index sets of graphs.

Example 1.2 Figure 1 illustrates the friendly index set of the cycle C_{8} with two parallel chords.

Figure $1 \operatorname{FI}(\operatorname{PC}(8,2))=\{0,2,4,6\}$
Example 1.3 Figure 2 illustrates the friendly index set of $K_{3,3}$ and $C_{3} \times K_{2}$.

Figure $2 \operatorname{FI}\left(K_{3,3}\right)=\{1,9\}, \operatorname{FI}\left(C_{3} \times K_{2}\right)=\{1,3,5\}$
In [5-7], the friendly index sets of a few classes of graphs, including complete bipartite graphs and cycles, are determined. In [8], the following results were established:

Theorem 1.4 For any graph G with q edges, the friendly index set $\operatorname{FI}(G) \subseteq\{0,2,4, \ldots, q\}$ if q is even, and $\mathrm{FI}(G) \subseteq\{1,3, \ldots, q\}$ if q is odd.

Theorem 1.5 The friendly indices of a cycle form an arithmetic sequence:
(i) $\operatorname{FI}\left(C_{2 n}\right)=\{0,4,8, \ldots, 2 n\}$ if n is even; $\operatorname{FI}\left(C_{2 n}\right)=\{2,6,10, \ldots, 2 n\}$ if n is odd.
(ii) $\operatorname{FI}\left(C_{2 n+1}\right)=\{1,3,5, \ldots, 2 n-1\}$.

For more details of known results and open problems on cordial graphs, the reader can see [8-15].

In this paper, we consider the friendly index sets of cyclic silicates, denoted $\operatorname{CS}(n, m)(n, m \geq$ 3), obtained from an n-cycle and n copies of K_{m} by gluing to each edge of C_{n} an edge from one copy of K_{m}. The graph labeling f of $\operatorname{CS}(n, m)$ by $G(a)$ in which $\left|e_{f}(1)-e_{f}(0)\right|=a$.

2. The friendly index sets of $\operatorname{CS}(n, 3)$

When $m=3, \operatorname{CS}(n, 3)$ is shown in Figure 3 with the K_{3} subgraphs given by vertices in $\left\{u_{1}, u_{n}, w_{n}\right\}$ and in $\left\{u_{i}, u_{i+1}, w_{i}\right\}$ for $1 \leq i \leq n-1$.

Figure 3 Graph $\mathrm{CS}(n, 3)$
Since each vertex of a K_{3} can be labeled with 0 or 1 , it is easy to verify that $e(0)$ is either 3 or 1 . The following lemma then follows.

Lemma 2.1 In all possible (0,1)-labelings of the vertices of a K_{3}, we have $e(0)-e(1)=3$ or -1 .

Lemma 2.2 For $n \geq 3$, $\max \{\operatorname{FI}(\mathrm{CS}(n, 3))\}=\max \{n, 3 n-8\}$.
Proof The graph $\operatorname{CS}(n, 3)$ has $2 n$ vertices and $3 n$ edges. By Lemma 2.1, we know max $\mid e(0)-$ $e(1) \mid$ is attained if each K_{3} subgraph of $\operatorname{CS}(n, 3)$ contributes three or one 0-edge. If at most one K_{3}-subgraph contributes a 0-edge, such a labeling is not friendly. Therefore, at least two K_{3} subgraphs of $\mathrm{CS}(n, 3)$ contribute a 0 -edge each. Hence, if exactly two K_{3} subgraphs of $\mathrm{CS}(n, 3)$ contribute a 0 -edge, then $\max |e(0)-e(1)|=3(n-2)-2=3 n-8$. If all K_{3} subgraphs of $\mathrm{CS}(n, 3)$ contribute a 0 -edge, then $\max |e(0)-e(1)|=n$. It is easy to verify that a labeling with $|e(0)-e(1)|=3 n-8$ or n exists. Consequently, $\max |e(0)-e(1)|=\max \{n, 3 n-8\}$.

Theorem 2.3 For $n=3,4$ and $5, \operatorname{FI}(\mathrm{CS}(3,3))=\{1,3\} ; \operatorname{FI}(\mathrm{CS}(4,3))=\{0,4\} ; \operatorname{FI}(\mathrm{CS}(5,3))=$ $\{1,3,5,7\}$.

Proof For $n=3$, the labelings are illustrated in Figure 4.

Figure 4 The friendly labelings of $\operatorname{CS}(3,3)$

For $n=4$, the labelings are illustrated in Figure 5. Note that Lemma 2.1 implies that $2 \notin \mathrm{FI}(\mathrm{CS}(4,3))$.

Figure 5 The friendly labelings of $\mathrm{CS}(4,3)$

For $n=5$, the labelings are illustrated in Figure 6 .

Figure 6 The friendly labelings of $\operatorname{CS}(5,3)$

Theorem 2.4 In $\mathrm{CS}_{k}(n, 3)$, if two vertex labels are exchanged, then we must get the labeling $\mathrm{CS}_{|k+4 t|}(n, 3)$ for $t \in\{0, \pm 1, \pm 2, \pm 3, \pm 4\}$.

Proof $\operatorname{In} \mathrm{CS}_{k}(n, 3)$, if we exchange the labels of two vertices u and v, then by Lemma 2.1, it is routine to verify that one of the follow cases must exist:
if u and v are adjacent, then $e(0)$ changes by $\pm 0, \pm 2$ or ± 4;
if u and v are not adjacent, then $e(0)$ changes by $\pm 0, \pm 2, \pm 4, \pm 6$ or ± 8.
Since $e(1)-e(0)=q-2 e(0)$, the theorem holds.
Theorem 2.5 For odd $n \geq 7, \operatorname{FI}(\operatorname{CS}(n, 3))=\{1,3, \ldots, n\} \cup\{n+2, n+6, n+10, \ldots, 3 n-8\}$.
Proof By Theorem 1.4 and Lemma 2.2, $\operatorname{FI}(\operatorname{CS}(n, 3)) \subseteq\{1,3,5, \ldots, 3 n-8\}$. Theorem 2.4 then implies that the labelings with $e(0)-e(1)=3 n-10,3 n-14,3 n-18, \ldots$ do not exist if $e(0)-e(1)>0$. Hence, it suffices to show that there exists labeling for $e(0)-e(1) \in\{3 n-8,3 n-$ $12,3 n-16, \ldots, 3,-1,-5, \ldots,-n\}$ or $e(0)-e(1) \in\{3 n-8,3 n-12,3 n-16, \ldots, 1,-3,-7, \ldots,-n\}$. Let $G_{k}=\left\{\operatorname{CS}_{|3 n-8 k|}(n, 3), \mathrm{CS}_{|3 n-8 k-4|}(n, 3)\right\}\left(k=1,2, \ldots, \frac{n-1}{2}\right)$. We define

$$
f\left(u_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n+1}{2} \\ 1, & \text { for } i=\frac{n+1}{2}+1, \frac{n+1}{2}+2, \ldots, n\end{cases}
$$

and

$$
f\left(w_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n-1}{2} \\ 1, & \text { for } i=\frac{n-1}{2}+1, \frac{n-1}{2}+2, \ldots, n\end{cases}
$$

So, we get $\operatorname{CS}_{3 n-8}(n, 3)$ with $e(0)=3 n-4, e(1)=4$. We now exchange the labels of u_{1} and w_{n} in $\mathrm{CS}_{3 n-8}(n, 3)$ to decrease $e(0)$ by 2 . So, we get $\mathrm{CS}_{3 n-12}(n, 3)$. We have obtained G_{1}. In the following four cases, we obtain the labeling in $G_{k}\left(2 \leq k \leq \frac{n-1}{2}\right)$ successively. This shows that the graphs in G_{k} yield all the friendly indices of $\operatorname{CS}(n, 3)$.

Case $1 n \equiv 1(\bmod 8)$. When $2 \leq k \leq \frac{3 n-11}{8}$, the above labeling process gives the $\mathrm{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 7\}$. For $k=\frac{3 n-3}{8}$, we get the $\operatorname{CS}_{3}(n, 3)$ and $\mathrm{CS}_{1}(n, 3)$ with $e(0)-e(1)=3$ and -1 , respectively. Theorem 2.4 then implies that the $\mathrm{CS}_{a}(n, 3)$ with $e(0)-e(1)=-3,-7,-11, \ldots$ do not exist. So, when $\frac{3 n+5}{8} \leq k \leq \frac{n-1}{2}$, we get the $\mathrm{CS}_{a}(n, 3)$ for $-a=e(0)-e(1) \in\{-5,-9,-13, \ldots, 4-n,-n\}$. Hence, we have obtained all the possible friendly indices.

Case $2 n \equiv 3(\bmod 8)$. When $2 \leq k \leq \frac{3 n-9}{8}$, the above labeling process gives the $\operatorname{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 9,5\}$. For $k=\frac{3 n-1}{8}$, we have the $\operatorname{CS}_{1}(n, 3)$ and $\operatorname{CS}_{3}(n, 3)$ with $e(0)-e(1)=1$ and -3 , respectively. Theorem 2.4 implies that the $\operatorname{CS}_{a}(n, 3)$ with $e(0)-e(1)=-1,-5,-9, \ldots$ do not exist. So, when $\frac{3 n+7}{8} \leq k \leq \frac{n-1}{2}$, we get the $\mathrm{CS}_{a}(n, 3)$ for $-a=e(0)-e(1) \in\{-7,-11,-15, \ldots, 4-n,-n\}$. Hence, we have obtained all the possible friendly indices.

Case $3 n \equiv 5(\bmod 8)$. When $2 \leq k \leq \frac{3 n-15}{8}$, the above labeling process gives the $\operatorname{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 7,3\}$. Theorem 2.4 implies that the $\mathrm{CS}_{a}(n, 3)$ with $e(0)-e(1)=-3,-7,-11, \ldots$ do not exist. So, when $\frac{3 n-7}{8} \leq k \leq \frac{n-1}{2}$, we get the $\mathrm{CS}_{a}(n, 3)$ for $-a=e(0)-e(1) \in\{-1,-5,-9, \ldots, 4-n,-n\}$. Hence, we have obtained all the possible friendly indices.

Case $4 n \equiv 7(\bmod 8)$. When $2 \leq k \leq \frac{3 n-13}{8}$, the above labeling process gives the $\mathrm{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 5,1\}$. Theorem 2.4 implies that the $\mathrm{CS}_{a}(n, 3)$ with $e(0)-e(1)=-1,-5,-9, \ldots$ do not exist. So, when $\frac{3 n-5}{8} \leq k \leq \frac{n-1}{2}$, we get the $\mathrm{CS}_{a}(n, 3)$ for $-a=e(0)-e(1) \in\{-3,-7,-11, \ldots, 4-n,-n\}$. Hence, we have obtained all the possible friendly indices.

The proof is completed.
Theorem 2.6 For $n \geq 8$ and $n \equiv 0(\bmod 4), \operatorname{FI}(\operatorname{CS}(n, 3))=\{0,4,8, \ldots, 3 n-8\}$.
Proof By Theorem 1.4 and Lemma 2.2, $\operatorname{FI}(\operatorname{CS}(n, 3)) \subseteq\{0,2,4, \ldots, 3 n-8\}$. Theorem 2.4 implies that the labelings with $e(0)-e(1)=3 n-10,3 n-14,3 n-18, \ldots, 2,-2,-6, \ldots$ do not exist. It suffices to show that the friendly indices listed in the theorem are attainable. Let
$G_{k}=\left\{\operatorname{CS}_{3 n-8 k}(n, 3), \mathrm{CS}_{3 n-8 k-4}(n, 3)\right\}$. Define

$$
f\left(u_{i}\right)=f\left(w_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n}{2} \\ 1, & \text { for } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\end{cases}
$$

We get $\mathrm{CS}_{3 n-8}(n, 3)$ with $e(0)=3 n-4, e(1)=4$. We now exchange the labels of u_{1} and w_{n} in $\mathrm{CS}_{3 n-8}(n, 3)$ to decrease $e(0)$ by 2 . So we get $\mathrm{CS}_{3 n-12}(n, 3)$. We have obtained G_{1}. We consider two cases.

Case $1 n \equiv 0(\bmod 8)$. To obtain $G_{k}\left(2 \leq k \leq \frac{3 n}{8}\right)$, we exchange the labels of w_{k} and w_{n-k+1} in G_{k-1}. This is attainable since $e(0)$ decreases by 4 after each exchange so that $e(0)-e(1)$ decreases by 8 successively. When $2 \leq k \leq \frac{3 n}{8}-1$, the above labeling process gives the graphs $\mathrm{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 4\}$. For $k=\frac{3 n}{8}$, we have $\mathrm{CS}_{0}(n, 3)$ and $\mathrm{CS}_{4}(n, 3)$ with $e(0)-e(1)=0$ and -4 , respectively. Hence, we have obtained all the possible friendly indices.

Case $2 n \equiv 4(\bmod 8)$. To obtain $G_{k}\left(2 \leq k \leq \frac{3 n-4}{8}\right)$, we exchange the labels of w_{k} and w_{n-k+1} in G_{k-1}. As in Case 1, $e(0)-e(1)$ decreases by 8 successively. The above labeling process gives the $\mathrm{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 0\}$. Hence, we have obtained all the possible friendly indices.

The proof is completed.
Theorem 2.7 For $n \geq 6$ and $n \equiv 2(\bmod 4), \operatorname{FI}(\operatorname{CS}(n, 3))=\{2,6,10, \ldots, 3 n-8\}$.
Proof By Theorem 1.4 and Lemma 2.2, $\operatorname{FI}(\operatorname{CS}(n, 3)) \subseteq\{0,2,4, \ldots, 3 n-8\}$. Theorem 2.4 implies that the labelings with $e(0)-e(1)=3 n-10,3 n-14,3 n-18, \ldots, 4,0,-4, \ldots$ do not exist. It suffices to show that the values are attainable. Let $G_{k}=\left\{\mathrm{CS}_{3 n-8 k}(n, 3), \mathrm{CS}_{3 n-8 k-4}(n, 3)\right\}$. Define

$$
f\left(u_{i}\right)=f\left(w_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n}{2} \\ 1, & \text { for } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\end{cases}
$$

We get $\operatorname{CS}_{3 n-8}(n, 3)$ with $e(0)=3 n-4, e(1)=4$. We now exchange the labels of u_{1} and w_{n} in $\mathrm{CS}_{3 n-8}(n, 3)$ to decrease $e(0)$ by 2 . So we get $\mathrm{CS}_{3 n-12}(n, 3)$. We consider two cases.

Case $1 n \equiv 2(\bmod 8)$. To obtain $G_{k}\left(2 \leq k \leq \frac{3 n-6}{8}\right)$, we exchange the labels of w_{k} and w_{n-k+1} in G_{k-1}. This is attainable since $e(0)$ decreases by 4 after each exchange so that $e(0)-e(1)$ decreases by 8 successively. The above labeling process gives the $\mathrm{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in$ $\{3 n-16,3 n-20,3 n-24, \ldots, 2\}$. Hence, we have obtained all the possible friendly indices.

Case $2 n \equiv 6(\bmod 8)$. To obtain $G_{k}\left(2 \leq k \leq \frac{3 n-2}{8}\right)$, we exchange the labels of w_{k} and w_{n-k+1} in G_{k-1}. As in Case 1, $e(0)-e(1)$ decreases by 8 successively. When $2 \leq k \leq \frac{3 n-10}{8}$, the above labeling process gives the $\mathrm{CS}_{a}(n, 3)$ for $a=e(0)-e(1) \in\{3 n-16,3 n-20,3 n-24, \ldots, 6\}$. For $k=\frac{3 n-2}{8}$, we have the $\operatorname{CS}_{a}(n, 3)$ with $e(0)-e(1)=2$ and -2 , respectively. Hence, we have obtained all the possible friendly indices.

The proof is completed.

Corollary 2.8 The graph $\operatorname{CS}(n, 3)$ is cordial if and only if n is odd or $n \equiv 0(\bmod 4)$. Moreover, the friendly indices form an arithmetic sequence if and only if n is even.

3. The friendly index sets of $\operatorname{CS}(n, 4)$

When $m=4, \mathrm{CS}(n, 4)$ is shown in Figure 7 with the K_{4} subgraphs given by vertices in $\left\{u_{1}, u_{n}, v_{n}, w_{n}\right\}$ and in $\left\{u_{i}, u_{i+1}, v_{i}, w_{i}\right\}$ for $1 \leq i \leq n-1$.

Figure 7 Graph CS($n, 4$)
Each vertex of a K_{4} can be labeled with 0 or 1 , it is easy to verify that $e(0)$ is either 6,3 or 2 . The following lemma then follows.

Lemma 3.1 In all possible (0,1)-labelings of the vertices of a K_{4}, we have $e(0)-e(1)=6,0$ or -2 .

Lemma 3.2 For $n \geq 3$, $\max \{\operatorname{FI}(\operatorname{CS}(n, 4))\} \leq 6(n-2)$.
Proof The graph $\mathrm{CS}(n, 4)$ has $3 n$ vertices and $6 n$ edges. We first show that max $|e(1)-e(0)| \leq$ $6(n-2)$. By Lemma 3.1, we know max $|e(0)-e(1)|$ is attained if each $K_{4} \operatorname{subgraph}$ of $\operatorname{CS}(n, 4)$ contributes six or three 0 -edges. If at most one K_{4}-subgraph contributes three 0 -edges, such a labeling is not friendly. Hence, at least two K_{4} subgraphs of $\operatorname{CS}(n, 4)$ contribute three 0-edges. Therefore, $\max |e(0)-e(1)| \leq 6(n-2)$.

A K_{4} subgraph is of Type 1 (respectively, Types 2 and 3) if it has six (respectively, three and two) 0-edges.

Lemma 3.3 For odd $n>3$ (respectively even $n \geq 4$), the $\mathrm{CS}_{6(n-2)-4}(n, 4)$ (respectively $\left.\mathrm{CS}_{6(n-2)-2}(n, 4)\right)$ does not exist.

Proof Consider the $\mathrm{CS}_{6(n-2)-2 t}(n, 4), t=1,2$. Suppose the number of Types 1 and 3 subgraphs are y and z, respectively, and all other K_{4} subgraphs are of Type 2 . Note that $0 \leq y \leq n-2$ and $0 \leq z \leq n$. Hence, we must have $|6 y-2 z|=6(n-2)-2 t$. We first consider $6 y-2 z=6(n-2)-2 t$.

Case $1 n>3$ is odd. Suppose $t=2$, then $6 y-2 z=6(n-2)-4$ or $3(n-2-y)=2-z \geq 0$. Hence, $z=2$ and $y=n-2$. Moreover, there exist no Type 2 subgraphs. Clearly, the two Type 3 subgraphs do not have any common vertex. Hence, we may assume $f\left(u_{i}\right)=f\left(v_{i}\right)=x$ $(1 \leq i \leq(n+1) / 2)$ and $f\left(w_{n}\right)=f\left(w_{i}\right)=x(1 \leq i \leq(n-1) / 2)$ whereas the remaining vertices
are labeled with $1-x$. However, this labeling is not friendly, a contradiction.
Case $2 n \geq 4$ is even. Suppose $t=1$, then $6 y-2 z=6(n-2)-2$ or $3(n-2-y)=1-z \geq 0$. Hence, $z=1$ and $y=n-2$. Since n is even, so is y. So, the $\mathrm{CS}_{6(n-2)-2}(n, 4)$ has exactly one Type 2 subgraph. Clearly, the Type 2 and the Type 3 subgraph do not have any common vertex. Hence, we may assume $f\left(w_{n}\right)=f\left(u_{i}\right)=f\left(v_{i}\right)=f\left(w_{i}\right)=x(1 \leq i \leq n / 2)$ and the remaining vertices are labeled with $1-x$. However, the labeling is not friendly, a contradiction.

We now consider $2 z-6 y=6(n-2)-2 t$. If $n>3$ is odd, we have $6(n-2)-4>2 n \geq$ $2 z \geq 2 z-6 y$, a contradiction. If $n \geq 4$ is even, we have $6(n-2)-2>2 n \geq 2 z \geq 2 z-6 y$, also a contradiction.

Theorem 3.4 For $n=3$ and $4, \operatorname{FI}(\operatorname{CS}(3,4))=\{0,2,4,6\} ; \operatorname{FI}(\operatorname{CS}(4,4))=\{0,2,4,6,8,12\}$.
Proof For $n=3$, the labelings are illustrated in Figure 8.

Figure 8 The friendly labelings of $\operatorname{CS}(3,4)$
For $n=4$, the labelings are illustrated in Figure 9.

Figure 9 The friendly labelings of $\operatorname{CS}(4,4)$
Theorem 3.5 For odd $n \geq 5, \operatorname{FI}(\operatorname{CS}(n, 4))=\{0,2,4, \ldots, 6(n-2)-6\} \cup\{6(n-2)-2,6(n-2)\}$.
Proof By Theorem 1.4 and Lemmas 3.2 and 3.3, it suffices to show that all the friendly indices listed in the theorem are attainable. Define

$$
\begin{gathered}
f\left(u_{i}\right)= \begin{cases}1, & \text { for } i=1,3, \ldots, n \\
0, & \text { for } i=2,4, \ldots, n-1\end{cases} \\
f\left(v_{i}\right)=f\left(w_{i}\right)= \begin{cases}1, & \text { for } i=1,3, \ldots, n-2 \\
0, & \text { for } i=2,4, \ldots, n-1\end{cases}
\end{gathered}
$$

and $f\left(v_{n}\right)=1, f\left(w_{n}\right)=0$. We have $v(1)-v(0)=1$ and each K_{4} subgraph is of Type 2. Hence, we get $\mathrm{CS}_{0}(n, 4)$. Now, exchanging the labels of u_{2} and v_{1} to decrease $e(0)$ by 1 . Hence, we get the $\mathrm{CS}_{2}(n, 4)$ with $e(1)-e(0)=2$.

Next, we divide the vertices v_{1} to v_{n-1} into $(n-1) / 2$ pairs of vertices v_{i}, v_{i+1} for $i=$ $1,3,5, \ldots, n-2$. Beginning with $\mathrm{CS}_{0}(n, 4)$, we now exchange the labels of v_{1} and v_{2} to decrease $e(0)$ by 2 . Hence, we get $\mathrm{CS}_{4}(n, 4)$ with $e(1)-e(0)=4$. Using $\mathrm{CS}_{4}(n, 4)$, we exchange the labels of v_{3} and v_{4} to decrease $e(0)$ by 2 again. Hence, we get $\mathrm{CS}_{8}(n, 4)$. Repeating the same process for each pair $v_{i}, v_{i+1}, i=5,7, \ldots, n-2$. After exchanging the labels of v_{i} and v_{i+1}, $i \in\{5,7, \ldots, n-2\}$, we get $\operatorname{CS}_{2(i+1)}(n, 4)$ with $e(1)-e(0)=2(i+1)$. In this process, we obtained $\mathrm{CS}_{a}(n, 4)$ for $a \in\{4,8,12, \ldots, 2(n-1)\}$. Finally, we change the vertex label of v_{n} to 0 to get $\mathrm{CS}_{2 n}(n, 4)$.

We now begin with $\mathrm{CS}_{2}(n, 4)$. We divide the vertices v_{3} to v_{n-1} into $(n-3) / 2$ pairs of vertices $v_{i} v_{i+1}$. Repeating the same process as above will decrease $e(0)$ by 2 . Hence, after exchanging the labels of v_{i} and $v_{i+1}, i=3,5, \ldots, n-2$, we get $\mathrm{CS}_{2 i}(n, 4)$ with $e(1)-e(0)=2 i$. In this process, we obtain $\operatorname{CS}_{a}(n, 4)$ for $a \in\{6,10,14, \ldots, 2 n-4\}$. Hence, $\{0,2,4, \ldots, 2 n\} \subseteq \operatorname{FI}(\operatorname{CS}(n, 4))$.

We now give the labeling graphs $\mathrm{CS}_{a}(n, 4), a \in\{2 n+2,2 n+4, \ldots, 6(n-2)-6\} \cup\{6(n-$ $2)-2,6(n-2)\}$. We define

$$
f\left(u_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n+1}{2} \\ 1, & \text { for } i=\frac{n+1}{2}+1, \frac{n+1}{2}+2, \ldots, n\end{cases}
$$

and

$$
f\left(v_{i}\right)=f\left(w_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n-1}{2} \\ 1, & \text { for } i=\frac{n+1}{2}, \frac{n+1}{2}+1, \ldots, n\end{cases}
$$

So, $v(0)=\frac{n+1}{2}+n-1, v(1)=\frac{n+1}{2}+n, e(0)-e(1)=6(n-2)$. Now exchange the label of v_{n} in $\mathrm{CS}_{6(n-2)}(n, 4)$ to 0 to get $\mathrm{CS}_{6(n-2)-2}(n, 4)$ with $v(0)-v(1)=1$. To complete the proof, we need the six labeling graphs $\operatorname{CS}_{a}(n, 4), a=6(n-2)-6,6(n-2)-8, \ldots, 6(n-2)-16$. They can be obtained as follows:
(1) $\operatorname{In} \mathrm{CS}_{6(n-2)}(n, 4)$, exchange the labels of u_{1} and v_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-6}(n, 4)$.
(2) In $\mathrm{CS}_{6(n-2)-2}(n, 4)$, exchange the labels of u_{1} and w_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-8}(n, 4)$.
(3) In $\mathrm{CS}_{6(n-2)-6}(n, 4)$, exchange the labels of w_{1} and w_{n} so that $e(1)$ increases by 2 and $e(0)$ decreases by 2 . We get $\mathrm{CS}_{6(n-2)-10}(n, 4)$.
(4) In $\mathrm{CS}_{6(n-2)-6}(n, 4)$, exchange the labels of u_{n} and v_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-12}(n, 4)$.
(5) In $\mathrm{CS}_{6(n-2)-8}(n, 4)$, exchange the labels of u_{n} and w_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-14}(n)$.
(6) In $\mathrm{CS}_{6(n-2)-10}(n, 4)$, exchange the labels of u_{n} and v_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-16}(n)$.

We have now obtained $\mathrm{CS}_{6(n-2)-6}(n, 4), \mathrm{CS}_{6(n-2)-8}(n, 4), \ldots, \mathrm{CS}_{6(n-2)-16}(n, 4)$. Note that
the above labelings can give us the friendly index sets for $n=5,7$. We now assume $n \geq 9$. Observe that in (1) to (6) above, only the labels of $u_{1}, u_{n}, v_{n}, w_{1}$ or w_{n} are changed so that each labeling obtained has at least $\frac{n-3}{2}$ Type 1 subgraphs with all vertices labeled with 0 , and at least $\frac{n-5}{2}$ Type 1 subgraph with all vertices labeled with 1 . Moreover, the number of former subgraphs is more than the number of latter subgraphs.

Let $G_{k}=\left\{\operatorname{CS}_{6(n-2)-6 k}(n, 4), \mathrm{CS}_{6(n-2)-2-6 k}(n, 4), \ldots, \mathrm{CS}_{6(n-2)-10-6 k}(n, 4)\right\}$, where $k \geq 1$ is odd. To obtain the $G_{k}\left(3 \leq k \leq \frac{n-5}{2}\right.$ is odd), we change the labels of v_{k} and $v_{(n-1) / 2+k}$ in G_{k-2}. This is attainable since $e(0)$ decreases by 6 after each change so that $e(0)-e(1)$ decreases by 12 successively.

Note that there are $2 n-9$ even numbers from $2 n+2$ to $6(n-2)-18$ inclusive. We divide them into $\left\lfloor\frac{2 n-9}{6}\right\rfloor$ groups of six successive even numbers. Since $6\left(\frac{n-5}{2}\right)>\left\lceil\frac{2 n-9}{6}\right\rceil$, we must eventually obtain the $\mathrm{CS}_{2 n+2}(n, 4)$. Therefore, $\operatorname{FI}(\operatorname{CS}(n, 4))=\{0,2,4, \ldots, 6(n-2)-6\} \cup\{6(n-$ $2)-2,6(n-2)\}$.

Theorem 3.6 When $n \geq 6$ is even, $\operatorname{FI}(\operatorname{CS}(n, 4))=\{0,2,4, \ldots, 6(n-2)-4\} \cup\{6(n-2)\}$.
Proof By Theorem 1.4 and Lemmas 3.2 and 3.3, it suffices to show that all the values are attainable. First, let

$$
f\left(u_{i}\right)= \begin{cases}1, & \text { for } i=1,3, \ldots, n-1 \\ 0, & \text { for } i=2,4, \ldots, n\end{cases}
$$

and

$$
f\left(v_{i}\right)=f\left(w_{i}\right)= \begin{cases}1, & \text { for } i=1,3, \ldots, n-1 \\ 0, & \text { for } i=2,4, \ldots, n\end{cases}
$$

Then we have $v(1)=v(0)$ and each K_{4} subgraph is of Type 2. Hence, we get $\mathrm{CS}_{0}(n, 4)$. Now, exchanging the labels of u_{2} and v_{1} to decrease $e(0)$ by 1 . Hence, we get the $\mathrm{CS}_{2}(n, 4)$ with $e(1)-e(0)=2$.

Next, we divide the vertices v_{1} to v_{n} into $n / 2$ pairs of vertices v_{i}, v_{i+1} for $i=1,3,5, \ldots, n-1$. Beginning with $\mathrm{CS}_{0}(n, 4)$, we now exchange the labels of v_{1} and v_{2} to decrease $e(0)$ by 2 . Hence, we get $\mathrm{CS}_{4}(n, 4)$ with $e(1)-e(0)=4$. Using $\mathrm{CS}_{4}(n, 4)$, we exchange the labels of v_{3} and v_{4} to decrease $e(0)$ by 2 again. Hence, we get $\mathrm{CS}_{8}(n, 4)$. Repeating the same process for each pair $v_{i}, v_{i+1}, i=5,7, \ldots, n-1$. After exchanging the labels of v_{i} and $v_{i+1}, i \in\{5,7, \ldots, n-1\}$, we get $\mathrm{CS}_{2(i+1)}(n, 4)$ with $e(1)-e(0)=2(i+1)$. In this process, we obtain $\mathrm{CS}_{a}(n, 4)$ for $a \in\{4,8,12, \ldots, 2 n\}$.

We now begin with $\mathrm{CS}_{2}(n, 4)$. We divide the vertices v_{3} to v_{n} into $(n-2) / 2$ pairs of vertices v_{i}, v_{i+1}. Repeating the same process as above will decrease $e(0)$ by 2 . Hence, after exchanging the labels of v_{i} and $v_{i+1}, i=3,5, \ldots, n-1$, we get $\mathrm{CS}_{2 i}(n, 4)$ with $e(1)-e(0)=2 i$. In this process, we obtain $\operatorname{CS}_{a}(n, 4)$ for $a \in\{6,10,14, \ldots, 2 n-2\}$. Hence, $\{0,2,4, \ldots, 2 n\} \subseteq \operatorname{FI}(\operatorname{CS}(n, 4))$.

We now give the labeling $\mathrm{CS}_{a}(n, 4), a \in\{2 n+2,2 n+4, \ldots, 6(n-2)-4\} \cup\{6(n-2)\}$. Define

$$
f\left(u_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n}{2} \\ 1, & \text { for } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\end{cases}
$$

and

$$
f\left(v_{i}\right)=f\left(w_{i}\right)= \begin{cases}0, & \text { for } i=1,2, \ldots, \frac{n}{2} \\ 1, & \text { for } i=\frac{n}{2}+1, \frac{n}{2}+2, \ldots, n\end{cases}
$$

So $v(0)=v(1)=\frac{n}{2}+n, e(0)-e(1)=6(n-2)$, in $\operatorname{CS}_{6(n-2)}(n, 4)$. Now exchange the label of $v_{\frac{n}{2}}, v_{n}$ in $\mathrm{CS}_{6(n-2)}(n, 4)$ to get $\mathrm{CS}_{6(n-2)-4}(n, 4)$. To complete the proof, we shall need the 5 labeling graphs $\mathrm{CS}_{a}(n, 4), a=6(n-2)-6,6(n-2)-8, \ldots, 6(n-2)-14$ that can be obtained as follows:
(1) In $\mathrm{CS}_{6(n-2)}(n, 4)$, exchange the labels of u_{1} and v_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-6}(n, 4)$.
(2) In $\mathrm{CS}_{6(n-2)-4}(n, 4)$, exchange the labels of v_{1} and $v_{\frac{n}{2}}$ so that $e(1)$ increases by 2 and $e(0)$ decreases by 2 . We get $\mathrm{CS}_{6(n-2)-8}(n, 4)$.
(3) In $\mathrm{CS}_{6(n-2)-4}(n, 4)$, exchange the labels of u_{1} and w_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-10}(n)$.
(4) In $\mathrm{CS}_{6(n-2)-6}(n, 4)$, exchange the labels of u_{n} and v_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-12}(n, 4)$.
(5) In $\mathrm{CS}_{6(n-2)-8}(n, 4)$, exchange the labels of u_{n} and v_{n} so that $e(1)$ increases by 3 and $e(0)$ decreases by 3 . We get $\mathrm{CS}_{6(n-2)-14}(n, 4)$.

We have now obtained the labeling graphs $\mathrm{CS}_{6(n-2)-4}(n, 4), \mathrm{CS}_{6(n-2)-6}(n, 4), \mathrm{CS}_{6(n-2)-8}(n, 4)$, $\ldots, \mathrm{CS}_{6(n-2)-14}(n, 4)$. Note that the above labelings can give us the friendly index sets for $n=6$. We now assume $n \geq 8$. Observe that in $\mathrm{CS}_{6(n-2)-4}(n, 4)$ and (1) to (5) above, only the labels of $u_{1}, u_{n}, v_{\frac{n}{2}}, v_{n}, w_{n}$ are changed so that each labeling graph obtained has at least $\frac{n-4}{2}$ Type 1 subgraphs with all vertices labeled with 0 , and at least $\frac{n-4}{2}$ Type 1 subgraph with all vertices labeled with 1.

Let $G_{k}=\left\{\operatorname{CS}_{6(n-2)+2-6 k}(n, 4), \operatorname{CS}_{6(n-2)-6 k}(n, 4), \ldots, \operatorname{CS}_{6(n-2)-8-6 k}(n, 4)\right\}$, where $k \geq 1$ is odd. To obtain the labeling graphs in $G_{k}\left(3 \leq k \leq \frac{n-4}{2}\right.$ is odd), we change the labels of v_{k} and $v_{n / 2+k}$ in G_{k-2}. This is attainable since $e(0)$ decreases by 6 after each change so that $e(0)-e(1)$ decreases by 12 successively.

Note that there are $2 n-8$ even numbers from $2 n+2$ to $6(n-2)-16$ inclusive. We divide them into $\left\lfloor\frac{2 n-8}{6}\right\rfloor$ groups of six successive even numbers. Since $6\left(\frac{n-4}{2}\right)>\left\lceil\frac{2 n-8}{6}\right\rceil$, we must eventually obtain the labeling graphs $\operatorname{CS}_{2 n+2}(n, 4)$. Therefore, $\operatorname{FI}(\operatorname{CS}(n, 4))=\{0,2,4, \ldots, 6(n-$ $2)-4\} \cup\{6(n-2)\}$.

Corollary 3.7 The graph $\operatorname{CS}(n, 4)$ is cordial for all $n \geq 3$. Moreover, the friendly indices form an arithmetic sequence if and only if $n=3$.

4. Discussion on the friendly index sets of $\operatorname{CS}(n, m)(m \geq 5)$

Theorem 4.1 In all possible (0,1)-labelings of the vertices of a K_{m}, we have $|e(0)-e(1)| \leq$ $\frac{m(m-1)}{2}$.

Proof In a K_{m}, assume that there are i vertices labeled with x and $m-i$ vertices labeled with
$1-x(x \in\{0,1\})$, then $e(0)=\frac{i(i-1)}{2}+\frac{(m-i)(m-i-1)}{2}=\frac{m(m-1)}{2}-i(m-i)$ and $e(1)=i(m-i)$. So, $e(0)-e(1)=\frac{m(m-1)}{2}+2 i(i-m)$. We consider two cases.
Case 1 When $i=0$ or $m, e(0)=\frac{m(m-1)}{2}, e(1)=0$ so $e(0)-e(1)=\frac{m(m-1)}{2}$;
Case 2 When $1 \leq i \leq m-1, m-1 \leq e(1) \leq \frac{m^{2}}{4}$ for even m, and $m-1 \leq e(1) \leq \frac{m^{2}-1}{4}$ for odd m. We consider 2 subcases.

Subcase (1). When $i=1$ or $m-1, e(0)-e(1)=\frac{m(m-1)}{2}-2(m-1)=\frac{m^{2}-5 m+4}{2}$;
Subcase (2). When $i=\frac{m}{2}$ for even $m, e(1)-e(0)=\frac{m}{2}$. When $i=\frac{m-1}{2}$ or $i=\frac{m+1}{2}$ for odd $m, e(1)-e(0)=\frac{m-1}{2}$.

So, $|e(0)-e(1)| \leq \frac{m(m-1)}{2}$.
Theorem 4.2 For $m \geq 5$, $\max \{\operatorname{FI}(\operatorname{CS}(n, m))\}$ equals
(1) $\frac{m(m-1)(n-2)}{2}+m^{2}-5 m+4$ if n is even;
(2) $\frac{m(m-1)(n-3)}{2}+\frac{2 m^{2}-7 m+5}{2}$ if n, m are odd;
(3) $\frac{m(m-1)(n-3)}{2}+\frac{2 m^{2}-7 m+8}{2}$ if n is odd and m is even.

Proof By Theorem 4.1, we know $|e(0)-e(1)|$ is maximum when the number of subgraphs K_{m} that contain only 0 -edges is $n-2$. Let the n subgraphs K_{m} be denoted by $K_{m}^{t}(t=1,2, \ldots, n)$.

Case $1 n \geq 4$ is even. Let the vertices in $K_{m}^{t}(t=1,2, \ldots,(n-2) / 2)$ be labeled with 0 and the vertices in $K_{m}^{t}(t=(n+2) / 2,(n+4) / 2, \ldots, n-1)$ be labeled with 1 . Now, label all the $(m-2)$ unlabeled vertices in $K_{m}^{n / 2}$ with 0 and all the $m-2$ unlabeled vertices in K_{m}^{n} with 1 . We then get a friendly labeling with $\max |e(0)-e(1)|=\frac{n m(m-1)}{2}-4(m-1)=\frac{m(m-1)(n-2)}{2}+m^{2}-5 m+4$.

Case 2 Let $n=3$. We consider two subcases.
Subcase (1). $m \geq 5$ is odd. Label all the vertices in K_{m}^{1} with x. Recall that u_{3} is the common vertex of K_{m}^{2} and K_{m}^{3}. For the remaining $m-1$ vertices in K_{m}^{2} and in K_{m}^{3}, let the number of vertices labeled with $1-x$ be i and j, respectively, such that $i \leq j$ satisfying:

$$
\begin{equation*}
i=(m-1) / 2, j=m-1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(m+1) / 2 \leq i \leq j \leq m-2, \quad i+j=3(m-1) / 2 . \tag{1.2}
\end{equation*}
$$

Since the labeling is friendly, all the i and j vertices are distinct.
In (1.1), we get $e(0)-e(1)=\frac{2 m^{2}-7 m+5}{2}$. In (1.2), we consider three cases:
(I). Vertex u_{3} is labeled with x. We have $e(1)=i(m-i)+j(m-j)$. So, $e(0)-e(1)=$ $3 m(m-1) / 2-2 e(1)=3 m(m-1) / 2+2[i(i-m)+j(j-m)]=2\left(i^{2}+j^{2}\right)-3 m(m-1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-11 m+17}{2}$ when $i=(m+1) / 2, j=m-2$.
(II). u_{3} is one of the i vertices labeled with $1-x$. We have $e(1)=i(m-i)+(j+1)(m-j-1)$. So, $e(0)-e(1)=3 m(m-1) / 2+2[i(i-m)+(j+1)(j+1-m)]=2\left[i^{2}+(j+1)^{2}\right]-m(3 m+1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-7 m+5}{2}$ when $i=(m+1) / 2, j=m-2$ as in (1.1) above.
(III). Vertex u_{3} is one of the j vertices labeled with $1-x$. We have $e(1)=(i+1)(m-i-$

1) $+j(m-j)$. So, $e(0)-e(1)=3 m(m-1) / 2+2[(i+1)(i+1-m)+j(j-m)]=2\left[(i+1)^{2}+\right.$ $\left.j^{2}\right]-m(3 m+1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-11 m+25}{2}$ when $i=(m+1) / 2, j=m-2$.

Therefore, for odd $m \geq 5, \max \{e(0)-e(1)\}=\frac{2 m^{2}-7 m+5}{2}$.
Subcase (2). $m \geq 6$ is even. We label the vertices as in Subcase (1) above satisfying:

$$
\begin{align*}
& i=m / 2, j=m-1 \text { or } i=(m-2) / 2, j=m-1 \tag{2.1}\\
& (m+2) / 2 \leq i \leq j \leq m-2, \quad i+j=(3 m-2) / 2 \tag{2.2}
\end{align*}
$$

or

$$
\begin{equation*}
m / 2 \leq i \leq j \leq m-2, \quad i+j=(3 m-4) / 2 . \tag{2.3}
\end{equation*}
$$

Recall that all the i and j vertices are distinct.
In (2.1), we get $e(0)-e(1)=\frac{2 m^{2}-7 m+4}{2}$ or $\frac{2 m^{2}-7 m+8}{2}$. In (2.2), we consider three cases:
(IV). Vertex u_{3} is labeled with x. We have $e(1)=i(m-i)+j(m-j)$. So, $e(0)-e(1)=$ $2\left(i^{2}+j^{2}\right)-m(3 m-1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-11 m+20}{2}$ when $i=(m+2) / 2, j=m-2$.
(V). Vertex u_{3} is one of the i vertices labeled with $1-x$. We have $e(1)=i(m-i)+(j+1)(m-$ $j-1)$. So, $e(0)-e(1)=3 m(m-1) / 2+2[i(i-m)+(j+1)(j+1-m)]=2\left[i^{2}+(j+1)^{2}\right]-3 m(m+1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-7 m+8}{2}$ when $i=(m+2) / 2, j=m-2$.
(VI). Vertex u_{3} is one of the j vertices labeled with $1-x$. We have $e(1)=(i+1)(m-$ $i-1)+j(m-j)$. So, $e(0)-e(1)=3 m(m-1) / 2+2[(i+1)(i+1-m)+j(j-m)]=$ $2\left[(i+1)^{2}+j^{2}\right]-3 m(m+1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-11 m+32}{2}$ when $i=(m+2) / 2$, $j=m-2$.

In (2.3), we also consider three cases.
(VII). Vertex u_{3} is labeled with x. We have $e(1)=i(m-i)+j(m-j)$. So, $e(0)-e(1)=$ $2\left(i^{2}+j^{2}\right)-m(3 m-5) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-11 m+16}{2}$ when $i=m / 2, j=m-2$.
(VIII). Vertex u_{3} is one of the i vertices labeled with $1-x$. We have $e(1)=i(m-i)+$ $(j+1)(m-j-1)$. So, $e(0)-e(1)=3 m(m-1) / 2+2[i(i-m)+(j+1)(j+1-m)]=$ $2\left[i^{2}+(j+1)^{2}\right]-m(3 m-1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-7 m+4}{2}$ when $i=m / 2, j=m-2$.
(IX). Vertex u_{3} is one of the j vertices labeled with $1-x$. We have $e(1)=(i+1)(m-$ $i-1)+j(m-j)$. So, $e(0)-e(1)=3 m(m-1) / 2+2[(i+1)(i+1-m)+j(j-m)]=$ $2\left[(i+1)^{2}+j^{2}\right]-m(3 m-1) / 2$. Hence, $\max \{e(0)-e(1)\}=\frac{2 m^{2}-11 m+20}{2}$ when $i=m / 2, j=m-2$.

Therefore, for even $n \geq 6, \max \{e(0)-e(1)\}=\frac{2 m^{2}-7 m+8}{2}$.
Case $3 n \geq 5$ is odd. We consider two subcases.
Subcase (3). $m \geq 5$ is odd. By Theorem 4.1, we seek to maximize the number of subgraph K_{m} with all 0-edges only. Without loss of generality, we label the vertices of K_{m}^{t} by x for $2 \leq t \leq(n+1) / 2$, and by $1-x$ for $(n+5) / 2 \leq t \leq n$. We then label all the remaining $(m-1)$ vertices in K_{m}^{1} by $1-x$. For $K_{m}^{(n+3) / 2}$, we label $(m-1) / 2$ of the unlabeled vertices by $(1-x)$ and the rest by x. We now have a friendly labeling with maximum 0-edges. By Subcase (1), we can get the maximum of $|e(0)-e(1)|$ is $\frac{m(m-1)(n-3)}{2}+\frac{2 m^{2}-7 m+5}{2}$.

Subcase (4). $m \geq 6$ is even. Similarly to Subcase (3) above, by Theorem 4, 1 and Subcase (2), we can get the maximum of $|e(0)-e(1)|$ is $\frac{m(m-1)(n-3)}{2}+\frac{2 m^{2}-7 m+8}{2}$.

Theorem 4.3 If $n \equiv 0(\bmod 4)$ and $m=k^{2}(k$ an integer $)$, then $\operatorname{CS}(n, m)$ is cordial.
Proof Suppose $\mathrm{CS}(n, m)$ is cordial, then $e(0)-e(1)=0$. Assume every subgraph K_{m} has i 1 -vertices and $i(m-i) 1$-edges. By the given condition, we have $\frac{m(m-1)}{2}-i(m-i)=i(m-i)$ so that $i=\frac{m \pm \sqrt{m}}{2}$. Define a friendly labeling such that the number of subgraphs K_{m} having $\frac{m \pm \sqrt{m}}{2}$ 0 -vertices and the number of subgraphs having $\frac{m \pm \sqrt{m}}{2} 1$-vertices are equal. Now, $\operatorname{CS}(n, m)$ is cordial since the labeling is attainable.

Acknowledgements We thank the referees for their time and comments.

References

[1] M. HOVEY. A-cordial graphs. Discrete Math., 1991, 93(2-3): 183-194.
[2] I. CAHIT. Cordial graphs: a weaker version of graceful and harmonious graphs. Ars Combin., 1987, 23: 201-207.
[3] G. CHARTRAND, S. M. LEE, P. ZHANG. Uniformly cordial graphs. Discrete Math., 2006, 306(8-9): 726-737.
[4] N. CAIRNIE, K. EDWARDS. The computational complexity of cordial and equitable labeling. Discrete Math., 2000, 216: 29-34.
[5] H. KWONG, S. M. LEE. On friendly index sets of generalized books. J. Combin. Math. Combin. Comput., 2008, 66: 43-58.
[6] H. KWONG, S. M. LEE, H. K. NG. On friendly index sets of 2-regular graphs. Discrete Math., 2008, 308(23): 5522-5532.
[7] H. KWONG, S. M. LEE, H. K. NG. On product-cordial index sets and friendly index sets of 2-regular graphs and generalized wheels. Acta Math. Sin. (Engl. Ser.), 2012, 28(4): 661-674.
[8] S. M. LEE, H. K. NG. On friendly index sets of bipartite graphs. Ars Combin., 2008, 86: 257-271
[9] Y. S. HO, S. M. LEE, H. K. NG. On friendly index sets of root-unions of stars by cycles. J. Combin. Math. Combin. Comput., 2007, 62: 97-120.
[10] H. KKWONG, S. M. LEE, Y. C. WANG. On friendly index sets of ($p, p+1$)-graphs. J. Combin. Math. Combin. Comput., 2011, 78: 3-14.
[11] S. M. LEE, H. K. NG. On friendly index sets of total graphs of trees. Util. Math., 2007, 73: 81-95.
[12] S. M. LEE, H. K. NG. On friendly index sets of cycles with parallel chords. Ars Combin., Ser. A, 2010, 97 : 253-267.
[13] S. M. LEE, H. K. NG, G. C. LAU. On friendly index sets of spiders. Malays. J. Math. Sci., 2014, 8(1): 47-68.
[14] S. M. LEE, H. K. NG, S. M. TONG. On friendly index sets of broken wheels with three spokes. J. Combin. Math. Combin. Comput., 2010, 74: 13-31.
[15] E. SALEHI, S. M. LEE. Friendly index sets of trees. Congr. Numer., 2006, 178: 173-183.

