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Abstract Let G be a graph with vertex set V (G) and edge set E(G). A labeling f : V (G) →
Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = f(x) + f(y), for each edge

xy ∈ E(G). For i ∈ Z2, let vf (i) = |{v ∈ V (G) : f(v) = i}| and ef (i) = |{e ∈ E(G) : f∗(e) =

i}|. A labeling f of a graph G is said to be friendly if |vf (0)− vf (1)| ≤ 1. The friendly index

set of the graph G, denoted FI(G), is defined as {|ef (0) − ef (1)|: the vertex labeling f is

friendly}. This is a generalization of graph cordiality. We investigate the friendly index sets

of cyclic silicates CS(n,m).
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arithmetic progression
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). Let A be an abelian group. A

labeling f : V (G) → A induces an edge labeling f∗ : E(G) → A defined by f∗(xy) = f(x)+f(y),

for each edge xy ∈ E(G). For i ∈ A, let vf (i) = |{v ∈ V (G) : f(v) = i}| and ef (i) = |{e ∈ E(G) :

f∗(e) = i}|. Let c(f) = {|ef (i)− ef (j)| : (i, j) ∈ A×A}. A labeling f of a graph G is said to be

A-friendly if |vf (i)− vf (j)| ≤ 1 for all (i, j) ∈ A×A. If c(f) is a set for some A-friendly labeling

f , then f is said to be A-cordial.

The notion of A-cordial labelings was first introduced by Hovey [1], who generalized the

concept of cordial graphs of Cahit [2]. Cahit considered A = Z2. For more details of known

results and open problems on cordial graphs, the reader can see relevant papers.

In this paper, we will exclusively focus on A = Z2, and drop the reference to the group. A

vertex v is called a k-vertex if f(v) = k, k ∈ {0, 1}, an edge e is called a k-edge if f∗(e) = k,

k ∈ {0, 1}. When the context is clear, we will drop the subscript f .

In [3] the following concept was introduced.

Definition 1.1 The friendly index set FI(G) of a graph G is defined as {|ef (0) − ef (1)|: the

vertex labeling f is friendly}.
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Note that if 0 or 1 is in FI(G), then G is cordial. Thus the concept of friendly index sets

could be viewed as a generalization of cordiality. Cairnie and Edwards [4] have determined

the computational complexity of cordial labeling and Zk-cordial labeling. They proved that

deciding whether a graph admits a cordial labeling is NP-complete. Even the restricted problem

of deciding whether a connected graph of diameter 2 has a cordial labeling is NP-complete. Thus,

in general, it is difficult to determine the friendly index sets of graphs.

Example 1.2 Figure 1 illustrates the friendly index set of the cycle C8 with two parallel chords.
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Figure 1 FI(PC(8, 2)) = {0, 2, 4, 6}

Example 1.3 Figure 2 illustrates the friendly index set of K3,3 and C3 ×K2.
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Figure 2 FI(K3,3) = {1, 9}, FI(C3 ×K2) = {1, 3, 5}

In [5–7], the friendly index sets of a few classes of graphs, including complete bipartite

graphs and cycles, are determined. In [8], the following results were established:

Theorem 1.4 For any graph G with q edges, the friendly index set FI(G) ⊆ {0, 2, 4, . . . , q} if q

is even, and FI(G) ⊆ {1, 3, . . . , q} if q is odd.

Theorem 1.5 The friendly indices of a cycle form an arithmetic sequence:

(i) FI(C2n) = {0, 4, 8, . . . , 2n} if n is even; FI(C2n) = {2, 6, 10, . . . , 2n} if n is odd.

(ii) FI(C2n+1) = {1, 3, 5, . . . , 2n− 1}.
For more details of known results and open problems on cordial graphs, the reader can see

[8–15].
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In this paper, we consider the friendly index sets of cyclic silicates, denoted CS(n,m) (n,m ≥
3), obtained from an n-cycle and n copies of Km by gluing to each edge of Cn an edge from one

copy of Km. The graph labeling f of CS(n,m) by G(a) in which |ef (1)− ef (0)| = a.

2. The friendly index sets of CS(n, 3)

When m = 3, CS(n, 3) is shown in Figure 3 with the K3 subgraphs given by vertices in

{u1, un, wn} and in {ui, ui+1, wi} for 1 ≤ i ≤ n− 1.
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Figure 3 Graph CS(n, 3)

Since each vertex of a K3 can be labeled with 0 or 1, it is easy to verify that e(0) is either

3 or 1. The following lemma then follows.

Lemma 2.1 In all possible (0, 1)-labelings of the vertices of a K3, we have e(0) − e(1) = 3 or

−1.

Lemma 2.2 For n ≥ 3, max{FI(CS(n, 3))} = max{n, 3n− 8}.

Proof The graph CS(n, 3) has 2n vertices and 3n edges. By Lemma 2.1, we know max |e(0)−
e(1)| is attained if each K3 subgraph of CS(n, 3) contributes three or one 0-edge. If at most one

K3-subgraph contributes a 0-edge, such a labeling is not friendly. Therefore, at least two K3

subgraphs of CS(n, 3) contribute a 0-edge each. Hence, if exactly two K3 subgraphs of CS(n, 3)

contribute a 0-edge, then max |e(0) − e(1)| = 3(n − 2) − 2 = 3n − 8. If all K3 subgraphs of

CS(n, 3) contribute a 0-edge, then max |e(0)− e(1)| = n. It is easy to verify that a labeling with

|e(0)− e(1)| = 3n− 8 or n exists. Consequently, max |e(0)− e(1)| = max{n, 3n− 8}. �

Theorem 2.3 For n = 3, 4 and 5, FI(CS(3, 3)) = {1, 3}; FI(CS(4, 3)) = {0, 4}; FI(CS(5, 3)) =
{1, 3, 5, 7}.

Proof For n = 3, the labelings are illustrated in Figure 4.
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Figure 4 The friendly labelings of CS(3, 3)
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For n = 4, the labelings are illustrated in Figure 5. Note that Lemma 2.1 implies that

2 ̸∈ FI(CS(4, 3)).

|e(0)− e(1)| = 4|e(0)− e(1)| = 0
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Figure 5 The friendly labelings of CS(4, 3)

For n = 5, the labelings are illustrated in Figure 6.
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|e(0)− e(1)| = 5 |e(0)− e(1)| = 7
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Figure 6 The friendly labelings of CS(5, 3)

Theorem 2.4 In CSk(n, 3), if two vertex labels are exchanged, then we must get the labeling

CS|k+4t|(n, 3) for t ∈ {0,±1,±2,±3,±4}.

Proof In CSk(n, 3), if we exchange the labels of two vertices u and v, then by Lemma 2.1, it is

routine to verify that one of the follow cases must exist:

if u and v are adjacent, then e(0) changes by ±0,±2 or ±4;

if u and v are not adjacent, then e(0) changes by ±0,±2,±4,±6 or ±8.

Since e(1)− e(0) = q − 2e(0), the theorem holds. �

Theorem 2.5 For odd n ≥ 7, FI(CS(n, 3)) = {1, 3, . . . , n} ∪ {n+ 2, n+ 6, n+ 10, . . . , 3n− 8}.

Proof By Theorem 1.4 and Lemma 2.2, FI(CS(n, 3)) ⊆ {1, 3, 5, . . . , 3n − 8}. Theorem 2.4

then implies that the labelings with e(0) − e(1) = 3n − 10, 3n − 14, 3n − 18, . . . do not exist if

e(0)−e(1) > 0. Hence, it suffices to show that there exists labeling for e(0)−e(1) ∈ {3n−8, 3n−
12, 3n−16, . . . , 3,−1,−5, . . . ,−n} or e(0)−e(1) ∈ {3n−8, 3n−12, 3n−16, . . . , 1,−3,−7, . . . ,−n}.
Let Gk = {CS|3n−8k|(n, 3), CS|3n−8k−4|(n, 3)} (k = 1, 2, . . . , n−1

2 ). We define

f(ui) =

{
0, for i = 1, 2, . . . , n+1

2 ;

1, for i = n+1
2 + 1, n+1

2 + 2, . . . , n,
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and

f(wi) =

{
0, for i = 1, 2, . . . , n−1

2 ;

1, for i = n−1
2 + 1, n−1

2 + 2, . . . , n.

So, we get CS3n−8(n, 3) with e(0) = 3n− 4, e(1) = 4. We now exchange the labels of u1 and wn

in CS3n−8(n, 3) to decrease e(0) by 2. So, we get CS3n−12(n, 3). We have obtained G1. In the

following four cases, we obtain the labeling in Gk (2 ≤ k ≤ n−1
2 ) successively. This shows that

the graphs in Gk yield all the friendly indices of CS(n, 3).

Case 1 n ≡ 1 (mod 8). When 2 ≤ k ≤ 3n−11
8 , the above labeling process gives the CSa(n, 3)

for a = e(0)− e(1) ∈ {3n− 16, 3n− 20, 3n− 24, . . . , 7}. For k = 3n−3
8 , we get the CS3(n, 3) and

CS1(n, 3) with e(0)−e(1) = 3 and −1, respectively. Theorem 2.4 then implies that the CSa(n, 3)

with e(0)− e(1) = −3,−7,−11, . . . do not exist. So, when 3n+5
8 ≤ k ≤ n−1

2 , we get the CSa(n, 3)

for −a = e(0) − e(1) ∈ {−5,−9,−13, . . . , 4 − n,−n}. Hence, we have obtained all the possible

friendly indices.

Case 2 n ≡ 3 (mod 8). When 2 ≤ k ≤ 3n−9
8 , the above labeling process gives the CSa(n, 3)

for a = e(0)− e(1) ∈ {3n− 16, 3n− 20, 3n− 24, . . . , 9, 5}. For k = 3n−1
8 , we have the CS1(n, 3)

and CS3(n, 3) with e(0)− e(1) = 1 and −3, respectively. Theorem 2.4 implies that the CSa(n, 3)

with e(0)− e(1) = −1,−5,−9, . . . do not exist. So, when 3n+7
8 ≤ k ≤ n−1

2 , we get the CSa(n, 3)

for −a = e(0)− e(1) ∈ {−7,−11,−15, . . . , 4− n,−n}. Hence, we have obtained all the possible

friendly indices.

Case 3 n ≡ 5 (mod 8). When 2 ≤ k ≤ 3n−15
8 , the above labeling process gives the CSa(n, 3)

for a = e(0)−e(1) ∈ {3n−16, 3n−20, 3n−24, . . . , 7, 3}. Theorem 2.4 implies that the CSa(n, 3)

with e(0)− e(1) = −3,−7,−11, . . . do not exist. So, when 3n−7
8 ≤ k ≤ n−1

2 , we get the CSa(n, 3)

for −a = e(0) − e(1) ∈ {−1,−5,−9, . . . , 4 − n,−n}. Hence, we have obtained all the possible

friendly indices.

Case 4 n ≡ 7 (mod 8). When 2 ≤ k ≤ 3n−13
8 , the above labeling process gives the CSa(n, 3)

for a = e(0)−e(1) ∈ {3n−16, 3n−20, 3n−24, . . . , 5, 1}. Theorem 2.4 implies that the CSa(n, 3)

with e(0)− e(1) = −1,−5,−9, . . . do not exist. So, when 3n−5
8 ≤ k ≤ n−1

2 , we get the CSa(n, 3)

for −a = e(0) − e(1) ∈ {−3,−7,−11, . . . , 4 − n,−n}. Hence, we have obtained all the possible

friendly indices.

The proof is completed. �

Theorem 2.6 For n ≥ 8 and n ≡ 0 (mod 4), FI(CS(n, 3)) = {0, 4, 8, . . . , 3n− 8}.

Proof By Theorem 1.4 and Lemma 2.2, FI(CS(n, 3)) ⊆ {0, 2, 4, . . . , 3n − 8}. Theorem 2.4

implies that the labelings with e(0) − e(1) = 3n − 10, 3n − 14, 3n − 18, . . . , 2,−2,−6, . . . do not

exist. It suffices to show that the friendly indices listed in the theorem are attainable. Let
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Gk = {CS3n−8k(n, 3), CS3n−8k−4(n, 3)}. Define

f(ui) = f(wi) =

{
0, for i = 1, 2, . . . , n

2 ;

1, for i = n
2 + 1, n

2 + 2, . . . , n.

We get CS3n−8(n, 3) with e(0) = 3n− 4, e(1) = 4. We now exchange the labels of u1 and wn in

CS3n−8(n, 3) to decrease e(0) by 2. So we get CS3n−12(n, 3). We have obtained G1. We consider

two cases.

Case 1 n ≡ 0 (mod 8). To obtain Gk (2 ≤ k ≤ 3n
8 ), we exchange the labels of wk and wn−k+1

in Gk−1. This is attainable since e(0) decreases by 4 after each exchange so that e(0) − e(1)

decreases by 8 successively. When 2 ≤ k ≤ 3n
8 − 1, the above labeling process gives the graphs

CSa(n, 3) for a = e(0)− e(1) ∈ {3n− 16, 3n− 20, 3n− 24, . . . , 4}. For k = 3n
8 , we have CS0(n, 3)

and CS4(n, 3) with e(0)−e(1) = 0 and −4, respectively. Hence, we have obtained all the possible

friendly indices.

Case 2 n ≡ 4 (mod 8). To obtain Gk (2 ≤ k ≤ 3n−4
8 ), we exchange the labels of wk and wn−k+1

in Gk−1. As in Case 1, e(0)− e(1) decreases by 8 successively. The above labeling process gives

the CSa(n, 3) for a = e(0)− e(1) ∈ {3n− 16, 3n− 20, 3n− 24, . . . , 0}. Hence, we have obtained

all the possible friendly indices.

The proof is completed. �

Theorem 2.7 For n ≥ 6 and n ≡ 2 (mod 4), FI(CS(n, 3)) = {2, 6, 10, . . . , 3n− 8}.

Proof By Theorem 1.4 and Lemma 2.2, FI(CS(n, 3)) ⊆ {0, 2, 4, . . . , 3n−8}. Theorem 2.4 implies

that the labelings with e(0) − e(1) = 3n − 10, 3n − 14, 3n − 18, . . . , 4, 0,−4, . . . do not exist. It

suffices to show that the values are attainable. Let Gk = {CS3n−8k(n, 3), CS3n−8k−4(n, 3)}.
Define

f(ui) = f(wi) =

{
0, for i = 1, 2, . . . , n

2 ;

1, for i = n
2 + 1, n

2 + 2, . . . , n.

We get CS3n−8(n, 3) with e(0) = 3n− 4, e(1) = 4. We now exchange the labels of u1 and wn in

CS3n−8(n, 3) to decrease e(0) by 2. So we get CS3n−12(n, 3). We consider two cases.

Case 1 n ≡ 2 (mod 8). To obtain Gk (2 ≤ k ≤ 3n−6
8 ), we exchange the labels of wk and wn−k+1

in Gk−1. This is attainable since e(0) decreases by 4 after each exchange so that e(0) − e(1)

decreases by 8 successively. The above labeling process gives the CSa(n, 3) for a = e(0)− e(1) ∈
{3n− 16, 3n− 20, 3n− 24, . . . , 2}. Hence, we have obtained all the possible friendly indices.

Case 2 n ≡ 6 (mod 8). To obtain Gk (2 ≤ k ≤ 3n−2
8 ), we exchange the labels of wk and

wn−k+1 in Gk−1. As in Case 1, e(0)−e(1) decreases by 8 successively. When 2 ≤ k ≤ 3n−10
8 , the

above labeling process gives the CSa(n, 3) for a = e(0)−e(1) ∈ {3n−16, 3n−20, 3n−24, . . . , 6}.
For k = 3n−2

8 , we have the CSa(n, 3) with e(0)− e(1) = 2 and −2, respectively. Hence, we have

obtained all the possible friendly indices.

The proof is completed. �
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Corollary 2.8 The graph CS(n, 3) is cordial if and only if n is odd or n ≡ 0 (mod 4). Moreover,

the friendly indices form an arithmetic sequence if and only if n is even.

3. The friendly index sets of CS(n, 4)

When m = 4, CS(n, 4) is shown in Figure 7 with the K4 subgraphs given by vertices in

{u1, un, vn, wn} and in {ui, ui+1, vi, wi} for 1 ≤ i ≤ n− 1.
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Figure 7 Graph CS(n, 4)

Each vertex of a K4 can be labeled with 0 or 1, it is easy to verify that e(0) is either 6, 3

or 2. The following lemma then follows.

Lemma 3.1 In all possible (0, 1)-labelings of the vertices of a K4, we have e(0)− e(1) = 6, 0 or

−2.

Lemma 3.2 For n ≥ 3, max{FI(CS(n, 4))} ≤ 6(n− 2).

Proof The graph CS(n, 4) has 3n vertices and 6n edges. We first show that max |e(1)− e(0)| ≤
6(n− 2). By Lemma 3.1, we know max |e(0)− e(1)| is attained if each K4 subgraph of CS(n, 4)

contributes six or three 0-edges. If at most one K4-subgraph contributes three 0-edges, such a

labeling is not friendly. Hence, at least two K4 subgraphs of CS(n, 4) contribute three 0-edges.

Therefore, max |e(0)− e(1)| ≤ 6(n− 2). �
A K4 subgraph is of Type 1 (respectively, Types 2 and 3) if it has six (respectively, three

and two) 0-edges.

Lemma 3.3 For odd n > 3 (respectively even n ≥ 4), the CS6(n−2)−4(n, 4) (respectively

CS6(n−2)−2(n, 4)) does not exist.

Proof Consider the CS6(n−2)−2t(n, 4), t = 1, 2. Suppose the number of Types 1 and 3 subgraphs

are y and z, respectively, and all other K4 subgraphs are of Type 2. Note that 0 ≤ y ≤ n−2 and

0 ≤ z ≤ n. Hence, we must have |6y−2z| = 6(n−2)−2t. We first consider 6y−2z = 6(n−2)−2t.

Case 1 n > 3 is odd. Suppose t = 2, then 6y − 2z = 6(n− 2)− 4 or 3(n− 2− y) = 2− z ≥ 0.

Hence, z = 2 and y = n − 2. Moreover, there exist no Type 2 subgraphs. Clearly, the two

Type 3 subgraphs do not have any common vertex. Hence, we may assume f(ui) = f(vi) = x

(1 ≤ i ≤ (n+ 1)/2) and f(wn) = f(wi) = x (1 ≤ i ≤ (n− 1)/2) whereas the remaining vertices
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are labeled with 1− x. However, this labeling is not friendly, a contradiction.

Case 2 n ≥ 4 is even. Suppose t = 1, then 6y − 2z = 6(n− 2)− 2 or 3(n− 2− y) = 1− z ≥ 0.

Hence, z = 1 and y = n − 2. Since n is even, so is y. So, the CS6(n−2)−2(n, 4) has exactly one

Type 2 subgraph. Clearly, the Type 2 and the Type 3 subgraph do not have any common vertex.

Hence, we may assume f(wn) = f(ui) = f(vi) = f(wi) = x (1 ≤ i ≤ n/2) and the remaining

vertices are labeled with 1− x. However, the labeling is not friendly, a contradiction.

We now consider 2z − 6y = 6(n − 2) − 2t. If n > 3 is odd, we have 6(n − 2) − 4 > 2n ≥
2z ≥ 2z − 6y, a contradiction. If n ≥ 4 is even, we have 6(n− 2)− 2 > 2n ≥ 2z ≥ 2z − 6y, also

a contradiction. �

Theorem 3.4 For n = 3 and 4, FI(CS(3, 4)) = {0, 2, 4, 6}; FI(CS(4, 4)) = {0, 2, 4, 6, 8, 12}.

Proof For n = 3, the labelings are illustrated in Figure 8.
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Figure 8 The friendly labelings of CS(3,4)

For n = 4, the labelings are illustrated in Figure 9.
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Figure 9 The friendly labelings of CS(4,4)

Theorem 3.5 For odd n ≥ 5, FI(CS(n, 4)) = {0, 2, 4, . . . , 6(n−2)−6}∪{6(n−2)−2, 6(n−2)}.

Proof By Theorem 1.4 and Lemmas 3.2 and 3.3, it suffices to show that all the friendly indices

listed in the theorem are attainable. Define

f(ui) =

{
1, for i = 1, 3, . . . , n;

0, for i = 2, 4, . . . , n− 1,

f(vi) = f(wi) =

{
1, for i = 1, 3, . . . , n− 2;

0, for i = 2, 4, . . . , n− 1,
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and f(vn) = 1, f(wn) = 0. We have v(1)− v(0) = 1 and each K4 subgraph is of Type 2. Hence,

we get CS0(n, 4). Now, exchanging the labels of u2 and v1 to decrease e(0) by 1. Hence, we get

the CS2(n, 4) with e(1)− e(0) = 2.

Next, we divide the vertices v1 to vn−1 into (n − 1)/2 pairs of vertices vi, vi+1 for i =

1, 3, 5, . . . , n− 2. Beginning with CS0(n, 4), we now exchange the labels of v1 and v2 to decrease

e(0) by 2. Hence, we get CS4(n, 4) with e(1) − e(0) = 4. Using CS4(n, 4), we exchange the

labels of v3 and v4 to decrease e(0) by 2 again. Hence, we get CS8(n, 4). Repeating the same

process for each pair vi, vi+1, i = 5, 7, . . . , n − 2. After exchanging the labels of vi and vi+1,

i ∈ {5, 7, . . . , n − 2}, we get CS2(i+1)(n, 4) with e(1) − e(0) = 2(i + 1). In this process, we

obtained CSa(n, 4) for a ∈ {4, 8, 12, . . . , 2(n− 1)}. Finally, we change the vertex label of vn to 0

to get CS2n(n, 4).

We now begin with CS2(n, 4). We divide the vertices v3 to vn−1 into (n−3)/2 pairs of vertices

vivi+1. Repeating the same process as above will decrease e(0) by 2. Hence, after exchanging the

labels of vi and vi+1, i = 3, 5, . . . , n− 2, we get CS2i(n, 4) with e(1)− e(0) = 2i. In this process,

we obtain CSa(n, 4) for a ∈ {6, 10, 14, . . . , 2n− 4}. Hence, {0, 2, 4, . . . , 2n} ⊆FI(CS(n, 4)).

We now give the labeling graphs CSa(n, 4), a ∈ {2n+ 2, 2n+ 4, . . . , 6(n− 2)− 6} ∪ {6(n−
2)− 2, 6(n− 2)}. We define

f(ui) =

{
0, for i = 1, 2, . . . , n+1

2 ;

1, for i = n+1
2 + 1, n+1

2 + 2, . . . , n,

and

f(vi) = f(wi) =

{
0, for i = 1, 2, . . . , n−1

2 ;

1, for i = n+1
2 , n+1

2 + 1, . . . , n.

So, v(0) = n+1
2 + n − 1, v(1) = n+1

2 + n, e(0) − e(1) = 6(n − 2). Now exchange the label of vn

in CS6(n−2)(n, 4) to 0 to get CS6(n−2)−2(n, 4) with v(0) − v(1) = 1. To complete the proof, we

need the six labeling graphs CSa(n, 4), a = 6(n − 2) − 6, 6(n − 2) − 8, . . . , 6(n − 2) − 16. They

can be obtained as follows:

(1) In CS6(n−2)(n, 4), exchange the labels of u1 and vn so that e(1) increases by 3 and e(0)

decreases by 3. We get CS6(n−2)−6(n, 4).

(2) In CS6(n−2)−2(n, 4), exchange the labels of u1 and wn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−8(n, 4).

(3) In CS6(n−2)−6(n, 4), exchange the labels of w1 and wn so that e(1) increases by 2 and

e(0) decreases by 2. We get CS6(n−2)−10(n, 4).

(4) In CS6(n−2)−6(n, 4), exchange the labels of un and vn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−12(n, 4).

(5) In CS6(n−2)−8(n, 4), exchange the labels of un and wn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−14(n).

(6) In CS6(n−2)−10(n, 4), exchange the labels of un and vn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−16(n).

We have now obtained CS6(n−2)−6(n, 4), CS6(n−2)−8(n, 4), . . . , CS6(n−2)−16(n, 4). Note that



600 Zhenbin GAO, Sinmin LEE, Guangyi SUN and et al.

the above labelings can give us the friendly index sets for n = 5, 7. We now assume n ≥ 9.

Observe that in (1) to (6) above, only the labels of u1, un, vn, w1 or wn are changed so that each

labeling obtained has at least n−3
2 Type 1 subgraphs with all vertices labeled with 0, and at

least n−5
2 Type 1 subgraph with all vertices labeled with 1. Moreover, the number of former

subgraphs is more than the number of latter subgraphs.

Let Gk = {CS6(n−2)−6k(n, 4), CS6(n−2)−2−6k(n, 4), . . . , CS6(n−2)−10−6k(n, 4)}, where k ≥ 1

is odd. To obtain the Gk (3 ≤ k ≤ n−5
2 is odd), we change the labels of vk and v(n−1)/2+k in

Gk−2. This is attainable since e(0) decreases by 6 after each change so that e(0)− e(1) decreases

by 12 successively.

Note that there are 2n− 9 even numbers from 2n+ 2 to 6(n− 2)− 18 inclusive. We divide

them into ⌊ 2n−9
6 ⌋ groups of six successive even numbers. Since 6(n−5

2 ) > ⌈ 2n−9
6 ⌉, we must

eventually obtain the CS2n+2(n, 4). Therefore, FI(CS(n, 4)) = {0, 2, 4, . . . , 6(n− 2)− 6}∪{6(n−
2)− 2, 6(n− 2)}. �

Theorem 3.6 When n ≥ 6 is even, FI(CS(n, 4)) = {0, 2, 4, . . . , 6(n− 2)− 4} ∪ {6(n− 2)}.

Proof By Theorem 1.4 and Lemmas 3.2 and 3.3, it suffices to show that all the values are

attainable. First, let

f(ui) =

{
1, for i = 1, 3, . . . , n− 1;

0, for i = 2, 4, . . . , n,

and

f(vi) = f(wi) =

{
1, for i = 1, 3, . . . , n− 1;

0, for i = 2, 4, . . . , n.

Then we have v(1) = v(0) and each K4 subgraph is of Type 2. Hence, we get CS0(n, 4). Now,

exchanging the labels of u2 and v1 to decrease e(0) by 1. Hence, we get the CS2(n, 4) with

e(1)− e(0) = 2.

Next, we divide the vertices v1 to vn into n/2 pairs of vertices vi, vi+1 for i = 1, 3, 5, . . . , n−1.

Beginning with CS0(n, 4), we now exchange the labels of v1 and v2 to decrease e(0) by 2. Hence,

we get CS4(n, 4) with e(1) − e(0) = 4. Using CS4(n, 4), we exchange the labels of v3 and v4 to

decrease e(0) by 2 again. Hence, we get CS8(n, 4). Repeating the same process for each pair

vi, vi+1, i = 5, 7, . . . , n − 1. After exchanging the labels of vi and vi+1, i ∈ {5, 7, . . . , n − 1},
we get CS2(i+1)(n, 4) with e(1) − e(0) = 2(i + 1). In this process, we obtain CSa(n, 4) for

a ∈ {4, 8, 12, . . . , 2n}.
We now begin with CS2(n, 4). We divide the vertices v3 to vn into (n−2)/2 pairs of vertices

vi, vi+1. Repeating the same process as above will decrease e(0) by 2. Hence, after exchanging the

labels of vi and vi+1, i = 3, 5, . . . , n− 1, we get CS2i(n, 4) with e(1)− e(0) = 2i. In this process,

we obtain CSa(n, 4) for a ∈ {6, 10, 14, . . . , 2n− 2}. Hence, {0, 2, 4, . . . , 2n} ⊆ FI(CS(n, 4)).

We now give the labeling CSa(n, 4), a ∈ {2n + 2, 2n + 4, . . . , 6(n − 2) − 4} ∪ {6(n − 2)}.
Define

f(ui) =

{
0, for i = 1, 2, . . . , n

2 ;

1, for i = n
2 + 1, n

2 + 2, . . . , n,
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and

f(vi) = f(wi) =

{
0, for i = 1, 2, . . . , n

2 ;

1, for i = n
2 + 1, n

2 + 2, . . . , n.

So v(0) = v(1) = n
2 + n, e(0) − e(1) = 6(n − 2), in CS6(n−2)(n, 4). Now exchange the label

of vn
2
, vn in CS6(n−2)(n, 4) to get CS6(n−2)−4(n, 4). To complete the proof, we shall need the 5

labeling graphs CSa(n, 4), a = 6(n− 2)− 6, 6(n− 2)− 8, . . . , 6(n− 2)− 14 that can be obtained

as follows:

(1) In CS6(n−2)(n, 4), exchange the labels of u1 and vn so that e(1) increases by 3 and e(0)

decreases by 3. We get CS6(n−2)−6(n, 4).

(2) In CS6(n−2)−4(n, 4), exchange the labels of v1 and vn
2
so that e(1) increases by 2 and

e(0) decreases by 2. We get CS6(n−2)−8(n, 4).

(3) In CS6(n−2)−4(n, 4), exchange the labels of u1 and wn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−10(n).

(4) In CS6(n−2)−6(n, 4), exchange the labels of un and vn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−12(n, 4).

(5) In CS6(n−2)−8(n, 4), exchange the labels of un and vn so that e(1) increases by 3 and

e(0) decreases by 3. We get CS6(n−2)−14(n, 4).

We have now obtained the labeling graphs CS6(n−2)−4(n, 4),CS6(n−2)−6(n, 4),CS6(n−2)−8(n, 4),

. . . ,CS6(n−2)−14(n, 4). Note that the above labelings can give us the friendly index sets for n = 6.

We now assume n ≥ 8. Observe that in CS6(n−2)−4(n, 4) and (1) to (5) above, only the labels

of u1, un, vn
2
, vn, wn are changed so that each labeling graph obtained has at least n−4

2 Type 1

subgraphs with all vertices labeled with 0, and at least n−4
2 Type 1 subgraph with all vertices

labeled with 1.

Let Gk = {CS6(n−2)+2−6k(n, 4),CS6(n−2)−6k(n, 4), . . . ,CS6(n−2)−8−6k(n, 4)}, where k ≥ 1

is odd. To obtain the labeling graphs in Gk (3 ≤ k ≤ n−4
2 is odd), we change the labels of vk and

vn/2+k in Gk−2. This is attainable since e(0) decreases by 6 after each change so that e(0)− e(1)

decreases by 12 successively.

Note that there are 2n− 8 even numbers from 2n+ 2 to 6(n− 2)− 16 inclusive. We divide

them into ⌊ 2n−8
6 ⌋ groups of six successive even numbers. Since 6(n−4

2 ) > ⌈ 2n−8
6 ⌉, we must

eventually obtain the labeling graphs CS2n+2(n, 4). Therefore, FI(CS(n, 4)) = {0, 2, 4, . . . , 6(n−
2)− 4} ∪ {6(n− 2)}. �

Corollary 3.7 The graph CS(n, 4) is cordial for all n ≥ 3. Moreover, the friendly indices form

an arithmetic sequence if and only if n = 3.

4. Discussion on the friendly index sets of CS(n,m) (m ≥ 5)

Theorem 4.1 In all possible (0, 1)-labelings of the vertices of a Km, we have |e(0) − e(1)| ≤
m(m−1)

2 .

Proof In a Km, assume that there are i vertices labeled with x and m− i vertices labeled with
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1− x (x ∈ {0, 1}), then e(0) = i(i−1)
2 + (m−i)(m−i−1)

2 = m(m−1)
2 − i(m− i) and e(1) = i(m− i).

So, e(0)− e(1) = m(m−1)
2 + 2i(i−m). We consider two cases.

Case 1 When i = 0 or m, e(0) = m(m−1)
2 , e(1) = 0 so e(0)− e(1) = m(m−1)

2 ;

Case 2 When 1 ≤ i ≤ m− 1, m− 1 ≤ e(1) ≤ m2

4 for even m, and m− 1 ≤ e(1) ≤ m2−1
4 for odd

m. We consider 2 subcases.

Subcase (1). When i = 1 or m− 1, e(0)− e(1) = m(m−1)
2 − 2(m− 1) = m2−5m+4

2 ;

Subcase (2). When i = m
2 for even m, e(1)− e(0) = m

2 . When i = m−1
2 or i = m+1

2 for odd

m, e(1)− e(0) = m−1
2 .

So, |e(0)− e(1)| ≤ m(m−1)
2 . �

Theorem 4.2 For m ≥ 5, max{FI(CS(n,m))} equals

(1) m(m−1)(n−2)
2 +m2 − 5m+ 4 if n is even;

(2) m(m−1)(n−3)
2 + 2m2−7m+5

2 if n,m are odd;

(3) m(m−1)(n−3)
2 + 2m2−7m+8

2 if n is odd and m is even.

Proof By Theorem 4.1, we know |e(0)− e(1)| is maximum when the number of subgraphs Km

that contain only 0-edges is n− 2. Let the n subgraphs Km be denoted by Kt
m (t = 1, 2, . . . , n).

Case 1 n ≥ 4 is even. Let the vertices in Kt
m (t = 1, 2, . . . , (n− 2)/2) be labeled with 0 and the

vertices in Kt
m (t = (n+2)/2, (n+4)/2, . . . , n− 1) be labeled with 1. Now, label all the (m− 2)

unlabeled vertices in K
n/2
m with 0 and all the m−2 unlabeled vertices in Kn

m with 1. We then get

a friendly labeling with max |e(0)− e(1)| = nm(m−1)
2 − 4(m− 1) = m(m−1)(n−2)

2 +m2 − 5m+ 4.

Case 2 Let n = 3. We consider two subcases.

Subcase (1). m ≥ 5 is odd. Label all the vertices in K1
m with x. Recall that u3 is the

common vertex of K2
m and K3

m. For the remaining m − 1 vertices in K2
m and in K3

m, let the

number of vertices labeled with 1− x be i and j, respectively, such that i ≤ j satisfying:

i = (m− 1)/2, j = m− 1; (1.1)

and

(m+ 1)/2 ≤ i ≤ j ≤ m− 2, i+ j = 3(m− 1)/2. (1.2)

Since the labeling is friendly, all the i and j vertices are distinct.

In (1.1), we get e(0)− e(1) = 2m2−7m+5
2 . In (1.2), we consider three cases:

(I). Vertex u3 is labeled with x. We have e(1) = i(m − i) + j(m − j). So, e(0) − e(1) =

3m(m−1)/2−2e(1) = 3m(m−1)/2+2[i(i−m)+ j(j−m)] = 2(i2+ j2)−3m(m−1)/2. Hence,

max{e(0)− e(1)} = 2m2−11m+17
2 when i = (m+ 1)/2, j = m− 2.

(II). u3 is one of the i vertices labeled with 1−x. We have e(1) = i(m−i)+(j+1)(m−j−1).

So, e(0)− e(1) = 3m(m−1)/2+2[i(i−m)+ (j+1)(j+1−m)] = 2[i2+(j+1)2]−m(3m+1)/2.

Hence, max{e(0)− e(1)} = 2m2−7m+5
2 when i = (m+ 1)/2, j = m− 2 as in (1.1) above.

(III). Vertex u3 is one of the j vertices labeled with 1− x. We have e(1) = (i+ 1)(m− i−
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1) + j(m− j). So, e(0)− e(1) = 3m(m− 1)/2 + 2[(i+ 1)(i+ 1−m) + j(j −m)] = 2[(i+ 1)2 +

j2]−m(3m+ 1)/2. Hence, max{e(0)− e(1)} = 2m2−11m+25
2 when i = (m+ 1)/2, j = m− 2.

Therefore, for odd m ≥ 5, max{e(0)− e(1)} = 2m2−7m+5
2 .

Subcase (2). m ≥ 6 is even. We label the vertices as in Subcase (1) above satisfying:

i = m/2, j = m− 1 or i = (m− 2)/2, j = m− 1, (2.1)

(m+ 2)/2 ≤ i ≤ j ≤ m− 2, i+ j = (3m− 2)/2; (2.2)

or

m/2 ≤ i ≤ j ≤ m− 2, i+ j = (3m− 4)/2. (2.3)

Recall that all the i and j vertices are distinct.

In (2.1), we get e(0)− e(1) = 2m2−7m+4
2 or 2m2−7m+8

2 . In (2.2), we consider three cases:

(IV). Vertex u3 is labeled with x. We have e(1) = i(m − i) + j(m − j). So, e(0) − e(1) =

2(i2+j2)−m(3m−1)/2. Hence, max{e(0)−e(1)} = 2m2−11m+20
2 when i = (m+2)/2, j = m−2.

(V). Vertex u3 is one of the i vertices labeled with 1−x. We have e(1) = i(m−i)+(j+1)(m−
j−1). So, e(0)−e(1) = 3m(m−1)/2+2[i(i−m)+(j+1)(j+1−m)] = 2[i2+(j+1)2]−3m(m+1)/2.

Hence, max{e(0)− e(1)} = 2m2−7m+8
2 when i = (m+ 2)/2, j = m− 2.

(VI). Vertex u3 is one of the j vertices labeled with 1 − x. We have e(1) = (i + 1)(m −
i − 1) + j(m − j). So, e(0) − e(1) = 3m(m − 1)/2 + 2[(i + 1)(i + 1 − m) + j(j − m)] =

2[(i + 1)2 + j2] − 3m(m + 1)/2. Hence, max{e(0) − e(1)} = 2m2−11m+32
2 when i = (m + 2)/2,

j = m− 2.

In (2.3), we also consider three cases.

(VII). Vertex u3 is labeled with x. We have e(1) = i(m − i) + j(m− j). So, e(0) − e(1) =

2(i2 + j2)−m(3m− 5)/2. Hence, max{e(0)− e(1)} = 2m2−11m+16
2 when i = m/2, j = m− 2.

(VIII). Vertex u3 is one of the i vertices labeled with 1 − x. We have e(1) = i(m − i) +

(j + 1)(m − j − 1). So, e(0) − e(1) = 3m(m − 1)/2 + 2[i(i − m) + (j + 1)(j + 1 − m)] =

2[i2 + (j +1)2]−m(3m− 1)/2. Hence, max{e(0)− e(1)} = 2m2−7m+4
2 when i = m/2, j = m− 2.

(IX). Vertex u3 is one of the j vertices labeled with 1 − x. We have e(1) = (i + 1)(m −
i − 1) + j(m − j). So, e(0) − e(1) = 3m(m − 1)/2 + 2[(i + 1)(i + 1 − m) + j(j − m)] =

2[(i+1)2+j2]−m(3m−1)/2. Hence, max{e(0)−e(1)} = 2m2−11m+20
2 when i = m/2, j = m−2.

Therefore, for even n ≥ 6, max{e(0)− e(1)} = 2m2−7m+8
2 .

Case 3 n ≥ 5 is odd. We consider two subcases.

Subcase (3). m ≥ 5 is odd. By Theorem 4.1, we seek to maximize the number of subgraph

Km with all 0-edges only. Without loss of generality, we label the vertices of Kt
m by x for

2 ≤ t ≤ (n+ 1)/2, and by 1− x for (n+ 5)/2 ≤ t ≤ n. We then label all the remaining (m− 1)

vertices in K1
m by 1− x. For K

(n+3)/2
m , we label (m− 1)/2 of the unlabeled vertices by (1− x)

and the rest by x. We now have a friendly labeling with maximum 0-edges. By Subcase (1), we

can get the maximum of |e(0)− e(1)| is m(m−1)(n−3)
2 + 2m2−7m+5

2 .
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Subcase (4). m ≥ 6 is even. Similarly to Subcase (3) above, by Theorem 4,1 and Subcase

(2), we can get the maximum of |e(0)− e(1)| is m(m−1)(n−3)
2 + 2m2−7m+8

2 . �

Theorem 4.3 If n ≡ 0 (mod 4) and m = k2 (k an integer), then CS(n,m) is cordial.

Proof Suppose CS(n,m) is cordial, then e(0) − e(1) = 0. Assume every subgraph Km has i

1-vertices and i(m− i) 1-edges. By the given condition, we have m(m−1)
2 − i(m− i) = i(m− i) so

that i = m±
√
m

2 . Define a friendly labeling such that the number of subgraphs Km having m±
√
m

2

0-vertices and the number of subgraphs having m±
√
m

2 1-vertices are equal. Now, CS(n,m) is

cordial since the labeling is attainable. �
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