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Abstract The paper deals with growth estimates and approximation (not necessarily en-

tire) of solutions of certain elliptic partial differential equations. These solutions are called

generalized bi-axially symmetric potentials (GBASP’s). To obtain more refined measure of

growth, we have defined q-proximate order and obtained the characterization of generalized
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of approximation errors and ratio of these errors in sup norm.
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1. Introduction and preliminaries

Regular solutions of the elliptic partial differential equations
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+

∂2H

∂y2
+

2α+ 1

y

∂H
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+

2β + 1

x

∂H

∂x
= 0, α, β > −1

2
, (1.1)

which are even in x and y are known as generalized bi-axially symmetric potentials (GBASP’s)

[1]. A polynomial of degree n in x and y is said to be GBASP polynomial of degree n if it satisfies

(1.1). A GBASP H regular about origin can be expanded as

H ≡ H(x, y) = H(r cos θ, r sin θ) =

∞∑
n=0

anr
2nPn

(α,β)(cos 2θ), (1.2)

where Pn
(α,β)(t) are Jacobi polynomials.

Let DR = {(x, y) : x2 + y2 < R2}, 0 < R ≤ ∞ and DR be the closure of DR. A GBASP

H is said to be regular in DR if the series (1.2) converges uniformly on every compact subset of

DR. Let HR be the class of all GBASP’s H regular in DR, for every R′ ≤ R but for no R′ > R.

The functions in the class H∞ are called entire GBASP’s.

Fryant [2] studied the function theoretic approach to the study of ultraspherical expansions

and their conjugates of generalized axisymmetric potentials. Kumar [3] extended Fryant’s results
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for GBASP’s. McCoy [4] studied the fast growth of entire function solutions of the equation

(1.1) in terms of order and type using the concept of index k and obtained bounds on the

order and type of H that reflect their antecedents in the theory of analytic functions of a single

complex variable. Kumar [5,6] refined McCoy [4] results and obtained some bounds on the

growth parameters of entire function solutions of helmholtz equation in terms of coefficients and

Chebyshev approximation errors in sup norm. In [7] Kumar studied the Chebyshev polynomial

approximation of entire solutions of helmholtz equations in R2 in Banach spaces. His results

apply satisfactorily for slow growth.

McCoy [8] considered the approximation of an entire GBASP’s H by GBASP polynomials

and found the rate of decay of approximation errors

En(H, 1) = inf
g∈Πn

∥H − g∥1 = inf
g∈Πn

{ max
(x,y)∈D̄1

|H(x, y)− g(x, y)|},

in terms of growth parameters associated with the maximum modulus function

M(r,H) = max
θ

|H(r cos θ, r sin θ)|.

Also, McCoy [9] considered the approximation of pseudo-analytic functions on the disk. Pseudo-

analytic functions are constructed as complex combinations of real-valued analytic solutions to

the Stokes-Beltrami system. These solutions include GBASP’s. McCoy obtained some coeffi-

cients and Bernstein type growth theorems on the disk. In this paper our results are different

from all those of above results and generalize the results contained in [10–12].

A GBASP H is said to be regular on DR0 , 0 < R0 < ∞, the closure of DR0 , if it is regular in

DR′ , for some R′ → R0. Let HR0 be the class of all GBASP’s H regular on DR0 . For H ∈ HR0 ,

the uniform norm ∥H∥R0 of H on DR0 (i.e., the space HR0 is endowed with the uniform norm

∥.∥R0) is defined by

∥H∥R0 = max
(x,y)∈DR0

|H(x, y)|, (1.3)

and the approximation error En(H,R0) is defined as

En(H,R0) = inf
g∈Πn

∥H − g∥R0 , (1.4)

where Πn consists of all GBASP polynomials of degree at most 2n.

The concepts of index q and the q-order ρR(q) are introduced by Bajpai et al. [13] in order

to obtain a measure of growth of the maximum modulus, when it is rapidly increasing. Thus,

let M(r,H) → ∞ as r → R and for q = 2, 3, . . . , set

ρR(q,H) = lim
r→R

sup
log[q] M(r,H)

log( R
(R−r) )

,

where log[0] M(r,H) = M(r,H) and log[q−1] M(r,H) = log log[q−2] M(r,H). The GBASP H ∈
HR is said to have the index q if ρR(q,H) < ∞ and ρR(q − 1,H) = ∞. If q is the index of H,

then ρR(q,H) is called the q-order of H.

To obtain a more refined measure of growth of GBASP H ∈ HR, we consider a real-valued

function ρR(q,H, r) (0 < r < R) having the following properties:
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(i) ρR(q,H, r) is positive, continuous and piecewise differentiable in 0 ≤ r0 < r < R;

(ii) limr→R− ρR(q,H, r) → ρR(q,H), (0 < ρR(q,H) < ∞);

(iii) limr→R− −ρ′R(q,H, r)△[q−1](
R−r
R ) → 0, where

△[q−1](
R− r

R
) =

q−1∏
i=0

log[i](
R− r

R
)

and ρ′R(q,H, r) denotes the derivative of ρR(q,H, r).

A function ρR(q,H, r) satisfying above properties is said to be a q-proximate order. For a

GBASP H ∈ HR having non-zero finite q-order ρR(q,H), i.e., ρR(q,H) < ∞, and ρR(q−1, H) =

∞, let

T ∗
R(q,H) = lim

r→R
sup

log[q−1] M(r,H)

(R/(R− r))ρR(q,H,r)
,

t∗R(q,H) = lim
r→R

inf
log[q−1] M(r,H)

(R/(R− r))ρR(q,H,r)
, (1.5)

0 < t∗R(q,H) ≤ T ∗
R(q,H) < ∞.

The quantities T ∗
R(q,H) and t∗R(q,H) are known as generalized q-type and generalized lower

q-type of a GBASP H with respect to q-proximate order ρR(q,H, r). If these quantities are

different from zero and infinity, then ρR(q,H, r) is said to be q-proximate order of a given

GBASP H with index q.

Since (R/(R−r))ρR(q,H,r) is monotonically increasing, we can define the function ϕ(x), x >

x0 to be the unique solution of the equation

x = (R/(R− r))ρR(q,H,r)+A(q,H) ⇔ R/(R− r) = ϕ(x),

where A(q,H) = 1 if q = 2 and A(q,H) = 0 if q = 3, 4, . . ..

The growth of GBASP H ∈ HR has been studied in terms of q-orders and q-types by Kasana

and Kumar [12]. However, these parameters are inadequate for comparing the growth of those

GBASP H ∈ HR which are of same q-orders but of infinite q-type. To refine this scale, we have

used here the concept of q-proximate order for GBASP H with index q. Moreover, we obtain the

characterization of generalized q-type and generalized lower q-type with respect to q-proximate

order of a GBASP H ∈ HR in terms of approximation errors in supnorm defined by (1.4). Some

results are also obtained in terms of the ratio of these approximation errors.

2. Auxiliary results

Now we shall prove some auxiliary results which shall be used in proving the main theorems.

Lemma 2.1 Let H ∈ HR0 . Then for n ≥ 1, we have

|an|R2n
0 ≤ 2

(
(2n+ α+ β + 1)P (α, β)P (n, α, β)

)1/2
En−1(H,R0), (2.1)

where

P (n, α, β) =
Γ(n+ 1)Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)
, P (α, β) =

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
. (2.2)
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Proof The proof follows from [10].

Lemma 2.2 Let H ∈ HR, 0 < R < ∞ and R > R0. Then,

M(r,H) ≤ |a0|+
2
√
P (α, β)

Γ(η + 1)
m(r, h), η = max(α, β), (2.3)

where m(r, h) denotes the maximum term of h defined by

h(u) =
∞∑

n=1

(
(2n+ α+ β + 1)P (n, α, β)

)1/2Γ(n+ η + 1)

Γ(n+ 1)
En−1(H,R0)(u/R0)

2n (2.4)

and P (n, α, β), P (α, β) are given in (2.2).

Proof It is given in [14, p.168] that

max
−1≤t≤1

|P (α,β)
k (t)| = Γ(k + η + 1)

Γ(k + 1)Γ(η + 1)
.

So we have

|
∞∑

n=0

anr
2nP (α,β)

n (cos 2θ)| ≤|a0|+
∞∑

n=1

|an|r2n
Γ(n+ η + 1)

Γ(n+ 1)Γ(η + 1)

≤|a0|+
2
√
P (α, β)

Γ(η + 1)

∞∑
n=0

En−1(H,R0)(r/R0)
2n×

(
(2n+ α+ β + 1)P (n, α, β)

)1/2Γ(η + n+ 1)

Γ(n+ 1)
(using Lemma 2.1)

or,

M(r,H) ≤ |a0|+
2
√
P (α, β)

Γ(η + 1)
m(r, h),

where

h(u) =
∞∑

n=1

(
(2n+ α+ β + 1)P (n, α, β)

)1/2Γ(η + n+ 1)

Γ(n+ 1)
En−1(H,R0)(u/R0)

2n.

Lemma 2.3 Let f(z) =
∑∞

n=0 anz
n be analytic in |z| < R (0 < R < ∞) with q-order

ρR(q) (ρR(q) > 0) and a q-proximate order ρR(q, r). If φ(n) = log+ |an/an+1| forms a non-

decreasing function of n for all large n, then the generalized q-type T ∗
R(q) of f(z) with respect

to a q-proximate order ρR(q, r) is given by

lim sup
n→∞

[
ϕ(log[q−2] n) log+ |an/an+1|R

]ρR(q)+A(q)
= T ∗

R(q)BR(q), (2.5)

where

BR(q) =

{
(ρR(q)+1)(ρR(q)+1)

(ρR(q))(ρR(q)) , if q = 2

1, if q = 3, 4, . . . ,

ρR(q) > 0, q = 2, 3, . . ..

A(q) =

{
1, if q = 2

0, if q = 3, 4, . . . .

Proof Let

lim sup
n→∞

[
ϕ(log[q−2] n) log+ |an/an+1|R

]ρ′
R(q)

= Q,
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where ρ′R(q) = ρR(q) + A(q). We first assume that 0 ≤ Q < ∞. Then for ϵ > 0 and sufficiently

large n > n(ϵ), we have

log |an/an−1|R <
[
(Q+ ϵ)/ϕ(log[q−2] n)

]1/ρ′
R(q)

.

Writing the above inequality for n = N + 1, N + 2, . . . , k and adding them, we obtain

log |ak/aN |Rk−N <

k∑
n=N+1

[
(Q+ ϵ)/ϕ(log[q−2] n)

]1/ρ′
R(q)

< (k −N)
[
(Q+ ϵ)/ϕ(log[q−2] k)

]1/ρ′
R(q)

.

Hence for all large k, we get

log+ |ak|Rk < O(1) + (1 + o(1))k
[
(Q+ ϵ)/ϕ(log[q−2] k)

]1/ρ′
R(q)

,[ log+ |ak|Rk

k

]ρ′
R(q)

<
[
(Q+ ϵ)/ϕ(log[q−2] k)

]
+ o(1),

lim sup
k→∞

{
ϕ(log[q−2] k)

[ log+ |ak|Rk

k

]}ρ′
R(q)

< Q+ ϵ. (2.6)

Using [15, Thm. 2.1], we get T ∗
R(q)BR(q) ≤ Q. The inequality (2.6) holds if Q = ∞. To prove the

reverse inequality, let us put the left hand side of (2.6) equal to SR(q) and let 0 ≤ SR(q) < ∞.

Then for arbitrary small ϵ > 0, we have for all large value of n > N(ϵ),

log+ |an|Rn < n
[
(SR(q) + ϵ)1/ρ

′
R(q)/ϕ(log[q−2] n)

]
. (2.7)

Next we assume φ(n) = log |an/an+1| is nondecreasing function of n. Then for large n,

log |aN/an| = log |aN/aN+1|+ · · ·+ log |an−1/an|,

log |aN/an| = (n−N)φ(n− 1),

log+ |an|Rn > log |aN |+ (n−N) log+ |an/an−1|+ n logR. (2.8)

In view of (2.7) and (2.8), we obtain[
log+ |an/an−1|R(1− o(1))

]ρ′
R(q)

< (SR(q) + ϵ)/[ϕ((log[q−2](n))]ρ
′
R(q), n > N,

Q = lim sup
n→∞

[ϕ((log[q−2](n)) log+ |an/an−1|R]ρ
′
R(q) ≤ SR(q), (2.9)

which obviously holds if SR(q) = ∞. Combining (2.6) and (2.9), we get

lim sup
n→∞

[
ϕ(log[q−2](n))

( log+ |an|Rn

n

)]ρR(q)+A(q)

= lim sup
n→∞

[
ϕ(log[q−2](n))(log+ |an/an−1|R)

]ρR(q)+A(q)
.

Now the proof follows in view of [15, Thm. 2.1].

3. Main results

Now we shall prove our main results.

Theorem 3.1 Let H ∈ HR, 0 < R < ∞, have q-order ρR(q,H) (> 0) and a q-proximate order
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ρR(q,H, r). Then the generalized q-type T ∗
R(q,H) of H with respect to a q-proximate order

ρR(q,H, r) is given by

T ∗
R(q,H) = BR(q,H)VR(q,H), (3.1)

where

VR(q,H) = lim sup
n→∞

[ϕ(log[q−2] n) log+ En(H,R0)(R/R0)
2n

n

]ρR(q,H)+A(q,H)
(3.2)

and

BR(q,H) =

{
(ρR(q,H)/2)ρR(q,H)

(ρR(q,H)+1)ρR(q,H)+1 , if q = 2

1, if q = 3, 4, . . . ,

ρR(q,H) > 0, q = 2, 3, . . . . A(q,H) = 1 if q = 2 and A(q,H) = 0 if q = 3, 4, . . . . If VR(q,H) = 0

or ∞, H ∈ HR is respectively of growth (ρR(q,H), 0) or of growth (ρR(q,H),∞).

Proof Let 0 < T ∗
R(q,H) < ∞ and H have q-order ρR(q,H). Then for arbitrary ϵ > 0, equality

(1.5) gives that there exists r0 = r0(ϵ) such that

logM(r,H) ≤ exp[q−2]
{
(T ∗

R(q,H) + ϵ)(R/(R− r))ρR(q,H,r)
}

(3.3)

for r0 < r < R. Using [15, Lemma 1] and (3.3), we get

log+ En(H,R0)(R/R0)
2n ≤ exp[q−2]

{
(T ∗

R(q,H) + ϵ)(R/(R− r))ρR(q,H,r)
}
+

2n log(R/r) + (η + 1/2) log(n+ 1) + log+ K (3.4)

for all r sufficiently near to R and all sufficiently large values of n.

For q = 2, let r be given by the equation(
R/(R− r)

)
= ϕ

( 2n

ρR(2,H)(T ∗
R(2,H) + ϵ)

)
. (3.5)

From (3.3), using R/(R− r) ∼ logR/r for sufficiently large r near to R, we obtain

log+ En(H,R0)(R/R0)
2n ≤ (T ∗

R(2,H) + ϵ)(R/(R− r))ρR(2,H,r) + 2n(R− r)/R+

(η + 1/2) log(n+ 1) + log+ K

≤ 2n

ρR(2,H)R/(R− r)
+ 2n(R− r)/R+ (η + 1/2) log(n+ 1) + log+ K

or,

1

n
log+ En(H,R0)(R/R0)

2n < 2(R− r)/R
[
1 +

1

ρR(2,H)
+O(1)

]
=

2

ϕ
(

2n
ρR(2,H)(T∗

R(2,H)+ϵ)

)[ρR(2, H) + 1

ρR(2, H)
+O(1)

]
=

2
(
ρR(2,H)(T ∗

R(2,H) + ϵ)
)1/ρR(2,H)+1

ϕ(2n)

[ρR(2,H) + 1

ρR(2,H)
+O(1)

]
or, [ϕ(2n) log+ En(H,R0)(R/R0)

2n

n

]ρR(2,H)+1

≤ 2(ρR(2,H)+1) (ρR(2,H) + 1)ρR(2,H)+1

(ρR(2,H))ρR(2,H)
.(T ∗

R(2,H) + ϵ) + o(1)
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or, [ϕ(n) log+ En(H,R0)(R/R0)
2n

n

]ρR(2,H)+1

≤
( 2

ρR(2,H)

)ρR(2,H)
(ρR(2,H) + 1)

(ρR(2,H)+1)
T ∗
R(2, H). (3.6)

Now consider the case q = 3, 4, . . . . Choose r such that

R/(R− r) = ϕ
( log[q−2](n/ρR(q,H))

T ∗
R(q,H) + ϵ

)
as n → ∞.

For n > n0 and q = 3, 4, . . . , (3.4) becomes

log+ En(H,R0)(R/R0)
2n ≤ exp[q−2]{log[q−2](n/ρR(q,H))}+ n log(R/r)+

(η + 1/2) log(n+ 1) + log+ K

=
n

ρR(q,H)
+ n(R− r)/R+ (η + 1/2) log(n+ 1) + log+ K

or,

1

n
log+ En(H,R0)(R/R0)

2n

≤ 1

ρR(q,H)
+ (R− r)/R+O(1) for sufficiently large values of n

≤ 1

ρR(q,H)
+

1

ϕ
( log[q−2](n/ρR(q,H))

T∗
R(q,H)+ϵ

) +O(1)

=
(T ∗

R(q,H) + ϵ)1/ρR(q,H)

ϕ
(
log[q−2](n/ρR(q,H))

)[1 + ϕ
(
log[q−2](n/ρR(q,H))

)
(T ∗

R(q,H) + ϵ)1/ρR(q,H)
.ρR(q,H) +O(1)

]
or, [ϕ(log[q−2] n) log+ En(H,R0)(R/R0)

2n

n

]ρR(q,H) ≤ (T ∗
R(q,H) + ϵ)[1 + o(1)]. (3.7)

Proceeding to limits in the inequalities (3.6), (3.7) and combining, we get

lim sup
n→∞

[ϕ(log[q−2] n) log+ En(H,R0)(R/R0)
2n

n

]ρR(q,H)+A(q,H)

≤ T ∗
R(q,H)/BR(q,H). (3.8)

To prove the reverse inequality in (3.8), we use Lemma 2.2 and apply [15, Thm. 2.1] to the

function h(u) defined by (2.4) with simple manipulation.

If VR(q,H) = 0, then GBASP H is of q-order at most ρR(q,H) and equality (3.1) gives if

GBASP H is of q-order ρR(q,H), then its q-type is zero. If VR(q,H) = 0, then GBASP H has

the growth (ρR(q,H), 0).

Similarly, if VR(q,H) = ∞, then a GBASP H is of q-order at least ρR(q,H) and (3.8)

implies that if H is of q-order ρR(q,H), then T ∗
R(q,H) = ∞. Thus if VR(q,H) = ∞, GBASP H

is of growth not less than (ρR(q,H),∞). Hence the proof follows.

Remark 3.2 Theorem 3.1 generalizes the Theorem 3.1 of [11].

It is known that a theorem analogous to Theorem 3.1 does not always hold for the generalized

lower q-type of a GBASP H ∈ HR. Hence we shall prove some results on generalized lower q-type
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of a GBASP H ∈ HR, in terms of approximation error defined by (1.4).

Theorem 3.3 Let H ∈ HR, 0 < R < ∞, have q-order ρR(q,H) (> 0) and a q-proximate order

ρR(q,H, r). Let nk be an increasing sequence of natural numbers. Then the generalized lower

q-type t∗R(q,H) of a GBASP H with respect to a q-proximate order ρR(q,H, r) is given by

BR(q,H)t∗R(q,H)

≥ lim inf
k→∞

{
ϕ(log[q−2] nk−1)

( log+ Enk
(H,R0)(R/R0)

2nk

nk

)}ρR(q,H)+A(q,H)
. (3.9)

Proof Let us assume that

β∗(q,H) ≡ β∗({nk,H})

= lim inf
k→∞

{
ϕ
( log[q−2] nk−1

BR(q,H)

)( log+ Enk
(H,R0)(R/R0)

2nk

nk

)}ρR(q,H)+A(q,H)
.

If β∗(q,H) = 0, then t∗R(q,H) ≥ β∗(q,H) is obvious. So β∗(q,H) > ϵ > 0. Then for sufficiently

large k > k0 = k0(ϵ), we have

nk

[
(β∗(q,H)− ϵ)BR(q,H)

] 1
(ρR(q,H)+A(q,H))

ϕ(log[q−2] nk−1)
< log+ Enk

(H,R0)(R/R0)
2nk . (3.10)

In view of [11, Lemma2.1] with (3.10) we get

logM(r,H) ≥nk

[
(β∗(q,H)− ϵ)BR(q,H)

] 1
(ρR(q,H)+A(q,H))

ϕ(log[q−2] nk−1)
+

2nk log(R0/R)− (η + 1/2) log(nk + 1)+

(2nk + 2) log(r/R0)− log+ K

or,

logM(r,H) ≥ nk

ϕ(log[q−2] nk−1)

[
(β∗(q,H)− ϵ)BR(q,H)

] 1
(ρR(q,H)+A(q,H))−

2nk(
R− r

R
)− 2 log(r/R0)− (η + 1/2) log(nk + 1)− log+ K.

Let us choose a sequence {rnk
} such that

rnk
/R = exp

{
− 1

2

[((β∗(q)− ϵ)C(q,H)
) 1

(ρR(q,H)+A(q,H))

ϕ(log[q−2] nk−1)

]}
, k = 1, 2, . . . , (3.11)

where

C(q,H) = ρR(2,H) if q = 2 and C(q,H) = C, 0 < C < 1 if q = 3, 4, . . . .

If k > k0 and rk ≤ r ≤ rk+1, then

logM(r,H) ≥ log+ Enk
(H,R0) + 2nk log(rnk

/R)− 2 log(r/R0)+

(η + 1/2) log(nk + 1)− log+ K

= log+ Enk
(H,R0)− 2nk

(R− rnk
)

R
− 2 log(r/R0)−

(η + 1/2) log(nk + 1)− log+ K
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>nk

[[(β∗(q,H)− ϵ)
] 1

(ρR(q,H)+A(q,H))

ϕ(log[q−2] nk−1)

]
·[{

(BR(q,H))
1

(ρR(q,H)+A(q,H)) − (C(q,H))
1

(ρR(q,H)+A(q,H))
}
−O(1)

]
.

Using (3.11) in above inequality, we get for k > k0,

logM(r,H) >
exp[q−2]{(β∗(q,H)− ϵ)C(q,H)2(

R−rnk−1

R )}−ρR(q,H)−A(q,H)

(C(q,H))
1

(ρR(q,H)+A(q,H))
(
2(

R−rnk

R )
)−1

×

{
(BR(q,H))

1
(ρR(q,H)+A(q,H)) − (C(q,H))

1
(ρR(q,H)+A(q,H)) −O(1)

}
>
exp[q−2]{(β∗(q,H)− ϵ)C(q,H)2(

R−rnk−1

R )}−ρR(q,H)−A(q,H)(
2(

R−rnk

R )
)−1

×

[(BR(q,H)

C(q,H)

) 1
ρR(q,H)+A(q,H) − 1− o(1)

]
.

For the case q = 2, it follows by the lower estimate at logM(r,H) that

t∗R(2,H) = lim inf
r→R

logM(r,H)(
(R− r)/R

)−ρR(2,H,r)
≥ β∗(2,H)

and for q = 3, 4, . . ., we get

t∗R(q,H) = lim inf
r→R

log[q−1] M(r,H)(
(R− r)/R

)−ρR(q,H,r)
≥ β∗(q,H)C.

The above inequality holds for every C such that 0 < C < 1. Making C tend to 1, we have

t∗R(q,H) ≥ β∗(q,H) for q = 3, 4, . . . .

If β∗(q,H) = 0, the equality (3.9) follows trivially. If β∗(q,H) = ∞, the above arguments

with an arbitrary large number in place of (β∗(q,H)− ϵ) would give t∗R(q,H) = ∞.

Remark 3.4 Theorem 3.3 generalizes the Theorem 3.3 of [11].

Theorem 3.5 Let H ∈ HR, 0 < R < ∞, have q-order ρR(q,H) and q-proximate order

ρR(q,H, r). If φ(n) =
[ En(H,R0)(R/R0)

2n

En+1(H,R0)(R/R0)2(n+1)

]
forms a non-decreasing sequence of n for n > n0,

then

BR(q,H)t∗R(q,H) ≤ lim inf
n→∞

{
ϕ(log[q−2] n)

(2 log+ En(H,R0)(R/R0)
2n

n

)}ρR(q,H)+A(q,H)
.

Proof The proof follows by using Lemma 2.2 and applying [15, Thm. 2.3] to the function h(u)

defined by (2.4). In view of Theorems 3.3 and 3.5, we obtain the following result on generalized

lower q-type for a subclass of GBASP H ∈ HR in terms of approximation error defined by (1.4).

Theorem 3.6 Let H ∈ HR, 0 < R < ∞, have q-order ρR(q,H) and generalized lower q-type

t∗R(q,H). Let φ(k) =
[
Enk

(H,R0)/Enk+1
(H,R0)(R/R0)

2
]
form a non-decreasing function of k

for k > k0 and log[q−2] nk ∼ log[q−2] nk+1 as k → ∞. Then

BR(q,H)t∗R(q,H)

= lim inf
k→∞

{
ϕ(log[q−2] nk−1)

( log+ Enk
(H,R0)(R/R0)

2nk

nk

)}ρR(q,H)+A(q,H)
. (3.12)
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Remark 3.7 Using ϕ(x) = x
1

ρR(q,H)+A(q,H) in (3.12), we get Theorem 3.6 of [11].

4. Growth of GBASP H ∈ HR in terms of the ratio of approximation
errors

In this section we shall study some results related to generalized type and generalized lower

type of GBASP H ∈ HR in terms of the ratio of approximation errors defined by (1.4).

Theorem 4.1 Let H ∈ HR, 0 < R < ∞ (R0 < R), have q-order ρR(q,H) and a q-proximate

order ρR(q,H, r). If φ(n) = log+
{
(En(H,R0)/En+1(H,R0)(R0/R)2

}
forms a non-decreasing

function of n for all large n, then the generalized q-type T ∗
R(q,H) of H with respect to a q-

proximate order ρR(q,H, r) is given by

G∗
R(q,H) = BR(q,H)T ∗

R(q,H),

where

G∗
R(q,H) = lim sup

n→∞

[
ϕ(log[q−2] n)

(
log+

En(H,R0)(R/R0)
2n

En−1(H,R0)

)]ρR(q,H)+A(q,H)
. (4.1)

Proof Let the right hand side of (4.1) be denoted by S∗. Following the lines of Lemma 2.3, we

obtain

lim sup
k→∞

[
ϕ(log[q−2] k)

( log+ En(H,R0)(R/R0)
2k

k

)]ρR(q,H)+A(q,H) ≤ S∗. (4.2)

Using Theorem 3.1, we get

T ∗
R(q,H)BR(q,H) ≤ S∗. (4.3)

The inequality (4.3) obviously holds if S∗ = ∞. To prove the reverse inequality, we use Lemma

2.2 and apply Lemma 2.3 to the function h(u) given by (2.4). Hence the theorem follows.

Remark 4.2 Theorem 4.1 is the generalization of the Theorem 3.1 contained in [12].

Theorem 4.3 Let H ∈ HR, 0 < R < ∞ (R0 < R), have q-order ρR(q,H) and a q-proximate

order ρR(q,H, r) and generalized lower q-type t∗R(q,H). Let {nk} be the increasing sequence of

natural numbers. Then

BR(q,H)t∗R(q,H) ≥ lim inf
k→∞

[
ϕ(log[q−2] nk−1)

( log+ En(H,R0)(R/R0)
2nk

Enk−1
(H,R0)

2nk−1

(nk − nk−1)

)ρ′
R(q,H)]

, (4.4)

where ρ′R(q,H) = ρR(q,H) +A(q,H).

Proof Let

lim inf
k→∞

[
ϕ(log[q−2] nk−1)

( log+ (
Enk

(H,R0)/Enk−1
(H,R0)

)
(R/R0)

2(nk−nk−1)

nk − nk−1

)]ρ′
R(q,H)

= C.

The inequality in (4.4) obviously holds if C = 0. Hence we assume that 0 < C < ∞. Then for

ϵ > 0 and for all sufficiently large values of k, we have

log+
{(

Enk
(H,R0)/Enk−1

(H,R0)
)
(R/R0)

2(nk−nk−1)
}
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> (nk − nk−1)
[
(C − ϵ)1/ρ

′
R(q,H)/ϕ(log[q−2] nk−1)

]
. (4.5)

Substituting k = N + 1, N + 2, . . . , j in above inequality and adding them, we get

log+
{(

Enj (H,R0)/EnN
(H,R0)

)
(R/R0)

2(nj−nN )
}

>

j∑
k=N+1

[
(C − ϵ)1/ρ

′
R(q,H)/ϕ(log[q−2] nk−1)

]
. (4.6)

To find the maximum value of right hand side, we put n(t) = nj for nj−1 < t ≤ nj and

F (t) =
[
(C − ϵ)1/ρ

′
R(q,H)/ϕ(log[q−2] t)

]
.

Hence right hand side of (4.6) can be written as

j∑
k=N+1

F (nk−1)(nk − nk−1)

= (nN+1 − nN )F (nN ) + (nN − nN−1)F (nN−1) + · · ·+ (nj − nj−1)F (nj−1)

= njF (nj−1)− nj−1{F (nj−1)− F (nj−2)}−

nN+1{F (nN+1)− F (nN )} − nNF (nN )

= njF (nj−1)−
j∑

k=N+1

nk−1{F (nk−1)− F (nk−2)} − nNF (nN )

= njF (nj−1)−
∫ nj−1

nN

n(t)dF (t)− nNF (nN )

= njF (nj−1) +
1

ρ′R(q,H)

∫ nj−1

nN

n(t)
dF (t)

t
∏q−2

m=1 log
[m] t

+O(1).

Since n(t)
t ≥ 1, we have by substituting the above expression in (4.6),

log+ Enj (H,R0)(R/R0)
2(nj−nN )

> njF (nj−1) +
(nj−1 − nN )F (nj−1)

ρ′R(q,H)
∏q−2

m=1 log
[m] nj−1

−O(1)

=
(C − ϵ)1/ρ

′
R(q,H)

ϕ(log[q−2] nj−1)
nj+

nj
(C − ϵ)1/ρ

′
R(q,H)(nj−1 − nN)

ρ′R(q,H)ϕ(log[q−2] nj−1)
∏q−2

m=1 log
[m] nj−1 −O(1)

=
(C − ϵ)1/ρ

′
R(q,H)

ϕ(log[q−2] nj−1

nj)
[
1 +

nj−1(1−O(1))

ρ′R(q,H)nj

∏q−2
m=1 log

[m] nj−1

]
−O(1)

=
(C − ϵ)1/ρ

′
R(q,H)

ϕ(log[q−2] nj−1

nj(1 + o(1)− o(1)), for large j.

Since nj−1/nj < 1, it gives

log+ Enj (H,R0)(R/R0)
2nj

nj
> (C − ϵ)1/ρ

′
R(q,H)/ϕ(log[q−2] nj−1) + o(1).
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Proceeding to limits, we get

lim inf
j→∞

[
ϕ(log[q−2] nj−1)

( log+ Enj (H,R0)(R/R0)
2nj

nj

)]ρ′
R(q,H) ≥ C.

Now using Theorem 3.3 in above inequality, the required result follows.

Remrak 4.4 The above theorem generalizes the Theorem 3.3 of [12].
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