Nonlinear Maps Satisfying Derivability of a Class of Matrix Ring over Commutative Rings

Shikun OU*, Jin ZHONG
School of Science, Jiangxi University of Science and Technology, Jiangxi 341000, P. R. China

Abstract

Let R be an arbitrary commutative ring with identity, and let $N_{n}(R)$ be the set consisting of all $n \times n$ strictly upper triangular matrices over R. In this paper, we give an explicit description of the maps (without linearity or additivity assumption) $\phi: N_{n}(R) \rightarrow N_{n}(R)$ satisfying $\phi(x y)=\phi(x) y+x \phi(y)$. As a consequence, additive derivations and derivations of $N_{n}(R)$ are also described.

Keywords maps satisfying derivability; derivations; strictly upper triangular matrices; commutative rings

MR(2010) Subject Classification 15A04

1. Introduction

Let R be a commutative ring with identity, and denote by $M_{n}(R)$ (resp., $T_{n}(R), N_{n}(R)$ and $D_{n}(R)$) the set of all $n \times n$ matrices (resp., all $n \times n$ upper triangular matrices, all $n \times n$ strictly upper triangular matrices and all $n \times n$ diagonal matrices) over R.

Let \mathscr{A} be an R-algebra. A map ϕ from \mathscr{A} to itself is called an SD-map (means satisfying derivability) if

$$
\phi(a b)=a \phi(b)+\phi(a) b, \quad \forall a, b \in \mathscr{A} .
$$

It is well known that an SD-map ϕ is called an additive derivation (resp., a derivation) if it is additive (resp., R-linear).

In 1968, Johnson and Sinclair [1] initiated the study of additive derivations, which attracted series of authors to determine additive derivations on certain algebras. For instance, Coelho and Milies [2] characterized the additive derivations of $T_{n}(R)$ for R, an arbitrary ring with identity. Jøndrup [3] described the additive derivations of $T_{n}(\mathscr{A})$ and $M_{n}(\mathscr{A})$. See [4-7] for others. Some other authors $[8-16]$ are interested in Lie derivations and Lie triple derivations. For example, Ou et al. [10] considered the Lie derivations on $N_{n}(R)$. Wang and Li [15] determined the Lie triple derivations of $N_{n}(R)$. Recently, Chen and Zhang [17] introduced nonlinear Lie derivations which may not satisfy linear conditions, and studied the nonlinear Lie derivation from $T_{n}(R)$ into $M_{n}(R)$ when R is a commutative unital algebra. Chen and Xiao [18] introduced the nonlinear Lie

[^0]triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Motivated by the above works, we intend to investigate the SD-maps of $N_{n}(R)$.

Note that an SD-map ϕ of \mathscr{A} is an additive derivation iff ϕ is additive, so the notion SD-map is a natural generalization of the notion additive derivation. But sometimes an SD-map of \mathscr{A} may fail to be an additive derivation. The following is a counterexample.

Example 1.1 Let $\phi: N_{3}(R) \rightarrow N_{3}(R)$, defined by

$$
\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & a_{23} \\
0 & 0 & 0
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & 0 & a_{12} a_{23} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then it is verified that ϕ is an SD-map of $N_{3}(R)$, but not an additive map.
Above example shows that it is interesting to characterize all SD-maps of $N_{n}(R)$. Before giving the main result of this paper, we introduce some preliminary notations.

For $1 \leq i, j \leq n$, we denote by $r E_{i j}$ the $n \times n$ matrix, whose sole nonzero entry r is in the (i, j) position ($1 E_{i j}$ is abbreviated to $E_{i j}$). Then, for any $X \in N_{n}(R)$, we may write $X=\sum_{1 \leq i<j \leq n} x_{i j} E_{i j}$ with $x_{i j} \in R$. Set

$$
\mathbb{Q}_{k+1}=\left\{\sum_{j-i \geq k} a_{i j} E_{i j} \in N_{n}(R) \mid a_{i j} \in R\right\}, \quad 1 \leq k \leq n-1
$$

It is easy to see that each \mathbb{Q}_{k} remains stable under any SD-maps of $N_{n}(R)$ and $\phi(O)=O$, where O is the $n \times n$ zero matrix. Denote

$$
\begin{aligned}
& \mathbb{M}_{k}=\sum_{k+1 \leq j \leq n} R E_{k j}, \quad 1 \leq k \leq n-1, \\
& \mathbb{N}_{k}=\sum_{1 \leq i \leq k-1} R E_{i k}, \quad 2 \leq k \leq n .
\end{aligned}
$$

2. Standard SD-maps of $N_{n}(R)$

In this section, several standard SD-maps of $N_{n}(R)$ are given. They will be used to describe arbitrary SD-maps of $N_{n}(R)$ in the next section.
(1) Inner derivations

For $X \in N_{n}(R)$, the map ad $X: N_{n}(R) \rightarrow N_{n}(R), Y \mapsto X Y-Y X$ is a derivation of $N_{n}(R)$, called the inner derivation of $N_{n}(R)$ induced by X.
(2) Diagonal derivations

Let $D \in D_{n}(R)$. Then the map $D^{\#}: N_{n}(R) \rightarrow N_{n}(R), Y \mapsto D Y-Y D$ is a derivation of $N_{n}(R)$, called the diagonal derivation of $N_{n}(R)$ induced by $D \in D_{n}(R)$.
(3) Ring derivations

Let σ be an additive derivation of R. Then the map

$$
\sigma^{\#}: N_{n}(R) \rightarrow N_{n}(R), \quad \sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto \sum_{1 \leq i<j \leq n} \sigma\left(a_{i j}\right) E_{i j},
$$

is an additive derivation of $N_{n}(R)$, which is called the ring derivation of $N_{n}(R)$ induced by σ.
(4) Induced SD-maps $(n=3)$

Let $\theta: R \rightarrow R$ be an SD-map of R. We define the map

$$
\theta^{\#}: N_{3}(R) \rightarrow N_{3}(R), \quad \sum_{1 \leq i<j \leq 3} a_{i j} E_{i j} \mapsto \sum_{1 \leq i<j \leq 3} \theta\left(a_{i j}\right) E_{i j}
$$

It is easy to verify that $\theta^{\#}$ is an SD-map, which is called an induced SD-map of $N_{3}(R)$.
Remark 2.1 Let $\theta^{\#}$ be defined as above with θ an SD-map of R. Then $\theta^{\#}$ is an additive derivation of $N_{3}(R)$ iff θ is an additive map. Since, for any $a, b \in R, \theta^{\#}$ is an additive derivation of $N_{3}(R) \Leftrightarrow \theta(a+b) E_{13}=\theta^{\#}\left((a+b) E_{13}\right)=\theta^{\#}\left(\left(a E_{12}\right) E_{23}+E_{12}\left(b E_{23}\right)\right)=(\theta(a)+\theta(b)) E_{13} \Leftrightarrow$ $\theta(a+b)=\theta(a)+\theta(b)$. Moreover, $\theta^{\#}$ is a ring derivation when θ is additive.
(5) Central derivations $(n \geq 4)$

Let $\alpha=\left(r_{1}, r_{2}, \ldots, r_{n-3}\right) \in R^{n-3}$. Then the map $\alpha^{\#}: N_{n}(R) \rightarrow N_{n}(R)$, defined by

$$
\alpha^{\#}\left(\sum_{1 \leq i<j \leq n} a_{i j} E_{i j}\right)=\left(r_{1} a_{23}+r_{2} a_{34}+\cdots+r_{n-3} a_{n-2, n-1}\right) E_{1 n}
$$

is a derivation of $N_{n}(R)$, which is called a central derivation of $N_{n}(R)$ induced by $\alpha \in R^{n-3}$.
(6) Central SD-maps $(n \geq 3)$

Let $f\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ be an R-value function on variables $x_{1}, x_{2}, \ldots, x_{n-1}$ satisfying $f(0,0$, $\ldots, 0)=f(1,0, \ldots, 0)=f(0,1, \ldots, 0)=\cdots=f(0,0, \ldots, 1)=0$. We define $f^{\#}: N_{n}(R) \rightarrow$ $N_{n}(R)$ by

$$
f^{\#}\left(\sum_{1 \leq i<j \leq n} a_{i j} E_{i j}\right)=f\left(a_{12}, a_{23}, \ldots, a_{n-1, n}\right) E_{1 n}
$$

It is checked that $f^{\#}$ is an SD-map of $N_{n}(R)$, which is called a central SD-map of $N_{n}(R)$ induced by f.

Remark 2.2 Let $f^{\#}$ be a central SD-map defined as above. Then $f^{\#}$ is an additive derivation of $N_{n}(R)$ iff f is an additive function:

$$
f\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n-1}+y_{n-1}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+f\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)
$$

(7) Almost zero SD-maps

Let $\xi: N_{n}(R) \rightarrow N_{n}(R)$ be an SD-map. We call ξ an almost zero SD-map of $N_{n}(R)$ if ξ sends any elements of the set $\left\{r E_{i j} \mid r \in R, 1 \leq i<j \leq n\right\}$ to O, i.e.,

$$
\xi\left(r E_{i j}\right)=O \text { for any } r \in R, 1 \leq i<j \leq n
$$

Lemma 2.3 Let $\xi: N_{n}(R) \rightarrow N_{n}(R)$ be an almost zero $S D$-map. For any $X \in N_{n}(R)$, assume that $\xi(X)=\sum_{1 \leq i<j \leq n} a_{i j} E_{i j}$. Then $a_{12}=0, a_{n-1, n}=0$ and $a_{i j}=0$ for $2 \leq i<j \leq n-1$.

Proof Let $X=\sum_{1 \leq i<j \leq n} x_{i j} E_{i j} \in N_{n}(R)$. Since

$$
\left\{\begin{array}{l}
X E_{2 n}=x_{12} E_{1 n} \\
E_{1, n-1} X=x_{n-1, n} E_{1 n} \\
E_{i-1, i} X E_{j, j+1}=x_{i j} E_{i-1, j+1}, \quad 2 \leq i<j \leq n-1
\end{array}\right.
$$

it follows that

$$
\left\{\begin{array}{l}
\xi(X) E_{2 n}=O \\
E_{1, n-1} \xi(X)=O \\
E_{i-1, i} \xi(X) E_{j, j+1}=O, \quad 2 \leq i<j \leq n-1
\end{array}\right.
$$

By a direct computation, we get

$$
\left\{\begin{array}{l}
a_{12}=0 \\
a_{n-1, n}=0 \\
a_{i j}=0, \quad 2 \leq i<j \leq n-1
\end{array}\right.
$$

Remark 2.4 An almost zero SD-map ξ is just the zero mapping of $N_{n}(R)$ if it is an additive map (since $\left\{r E_{i, i+1} \mid r \in R, 1 \leq i \leq n-1\right\}$ generates the ring $N_{n}(R)$ and all such $r E_{i, i+1}$ are sent to O by ξ). Sometimes an almost zero SD-map is not the zero mapping (see Example 1.1 in Section 1).

3. SD-maps of $N_{n}(R)$

We prove, in this section, the main result of this paper. If $n=1$ or $n=2$, there is nothing to do on the SD-maps of $N_{n}(R)$, so we only consider the case when $n \geq 3$. As a beginning, we give a lemma.

Lemma 3.1 Let ϕ be an SD-map of $N_{n}(R)$. If $\phi\left(E_{1 t}\right)=O$ for any $2 \leq t \leq n$, then $\phi\left(E_{i j}\right)=\mathbb{M}_{1}$, $1 \leq i<j \leq n$.

Proof Suppose that

$$
\begin{equation*}
\phi\left(E_{i j}\right)=\sum_{1 \leq k<l \leq n} a_{k l}^{(i j)} E_{k l} \in N_{n}(R), \quad 2 \leq i<j \leq n \tag{3.1}
\end{equation*}
$$

Since $E_{1 t} E_{i j}=\delta_{t i} E_{1 j}$, where δ is the Kronecker delta symbol, it follows that $E_{1 t} \phi\left(E_{i j}\right)=O$. This forces that in (3.1)

$$
a_{t, t+1}^{(i j)}=a_{t, t+2}^{(i j)}=\cdots=a_{t n}^{(i j)}=0, \quad 2 \leq t \leq n-1
$$

leading to $\phi\left(E_{i j}\right)=\mathbb{M}_{1}, 2 \leq i<j \leq n$. Thus $\phi\left(E_{i j}\right)=\mathbb{M}_{1}$ for all $1 \leq i<j \leq n$.
The following theorem is the main result of this paper.
Theorem 3.2 Let R be an arbitrary commutative ring with identity, ϕ an SD-map of the ring $N_{n}(R)$. Then ϕ may be uniquely written as
(1) $\phi=\operatorname{ad} X+D^{\#}+\alpha^{\#}+\sigma^{\#}+f^{\#}+\xi$ when $n \geq 4$,
(2) $\phi=\operatorname{ad} X+D^{\#}+\theta^{\#}+f^{\#}+\xi$ when $n=3$,
where $\operatorname{ad} X, D^{\#}, \alpha^{\#}, \sigma^{\#}, \theta^{\#}, f^{\#}$ and ξ are the inner derivation, diagonal derivation, central derivation, ring derivation, induced SD-map, central SD-map and almost zero SD-map, respectively.

Proof Let ϕ be an SD-map of $N_{n}(R)$.
(1) If $n \geq 4$, the proof will be given by steps.

Step 1. There exist $X_{1} \in N_{n}(R)$ and $D \in D_{n}(R)$ such that $\left(\phi-\operatorname{ad} X_{1}-D^{\#}\right)\left(E_{1 j}\right)=O$, $2 \leq j \leq n$.

Suppose that

$$
\begin{equation*}
\phi\left(E_{12}\right)=\sum_{1 \leq k<l \leq n} a_{k l}^{(2)} E_{k l} \in N_{n}(R) \tag{3.2}
\end{equation*}
$$

For $2 \leq k \leq n-1$, by applying ϕ on $E_{1 k} E_{12}=O$, we get $E_{1 k} \phi\left(E_{12}\right)=O$, following that in (3.2) $a_{k l}^{(2)}=0, k+1 \leq l \leq n$. Set $X_{11}=-\sum_{3 \leq t \leq n} a_{1 t}^{(2)} E_{2 t}$ and $D_{1}=-a_{12}^{(2)} E_{22}$. Then $\left(\phi-\operatorname{ad} X_{11}-D_{1}^{\#}\right)\left(E_{12}\right)=O$. Denote $\phi-\operatorname{ad} X_{11}-D_{1}^{\#}$ by ϕ_{1}.

Now we consider the action of ϕ_{1} on $E_{1 j}, 3 \leq j \leq n$. Operating ϕ_{1} to $E_{1 j}=E_{12} E_{2 j}$, we get that $\phi_{1}\left(E_{1 j}\right)=E_{12} \phi_{1}\left(E_{2 j}\right) \in \mathbb{M}_{1}$. On the other hand, by $E_{1 j} \in \mathbb{Q}_{j}$ we have $\phi_{1}\left(E_{1 j}\right) \in \mathbb{Q}_{j}$, $3 \leq j \leq n$. Thus, we may assume that

$$
\begin{equation*}
\phi_{1}\left(E_{1 j}\right)=\sum_{j \leq l \leq n} a_{1 l}^{(j)} E_{1 l} \in \mathbb{M}_{1} \cap \mathbb{Q}_{j}, \quad 3 \leq j \leq n \tag{3.3}
\end{equation*}
$$

Set $X_{22}=-\sum_{3 \leq k \leq n-1} \sum_{k+1 \leq t \leq n} a_{1 t}^{(k)} E_{k t}$ and $D_{2}=-\operatorname{diag}\left(0,0, a_{13}^{(3)}, a_{14}^{(4)}, \ldots, a_{1, n-1}^{(n-1)}, a_{1 n}^{(n)}\right)$. Then by (3.3) we see that $\left(\phi_{1}-\operatorname{ad} X_{22}-D_{2}^{\#}\right)\left(E_{1 j}\right)=O, 3 \leq j \leq n$. In the following, we denote $\phi_{1}-\operatorname{ad} X_{22}-D_{2}^{\#}$ by ϕ_{2}.

Step 2. There exist $X_{2} \in \mathbb{M}_{1}$ and $\alpha \in R^{n-3}$ such that $\left(\phi_{2}-\operatorname{ad} X_{2}-\alpha^{\#}\right)\left(E_{i, i+1}\right)=O$, $2 \leq i \leq n-1$.

By Step1 and Lemma 3.1, we may assume that

$$
\begin{equation*}
\phi_{2}\left(E_{i, i+1}\right)=\sum_{2 \leq l \leq n} a_{1 l}^{(i)} E_{1 l} \in \mathbb{M}_{1}, \quad 2 \leq i \leq n-1 \tag{3.4}
\end{equation*}
$$

For $2 \leq t \leq n-1$ and $t \neq i+1$, by applying ϕ_{2} on $E_{i, i+1} E_{t n}=O$, we get that

$$
\phi_{2}\left(E_{i, i+1}\right) E_{t n}+E_{i, i+1} \phi_{2}\left(E_{t n}\right)=O
$$

Since $E_{i, i+1} \phi_{2}\left(E_{t n}\right)=O$ (by Lemma 3.1), $\phi_{2}\left(E_{i, i+1}\right) E_{t n}=O$. This implies that $a_{1 t}^{(i)}=0$ for $2 \leq t \leq n-1$ and $t \neq i+1$. Thus (3.4) may be rewritten as

$$
\begin{align*}
& \phi_{2}\left(E_{i, i+1}\right)=a_{1, i+1}^{(i)} E_{1, i+1}+a_{1 n}^{(i)} E_{1 n}, \quad 2 \leq i \leq n-2, \\
& \phi_{2}\left(E_{n-1, n}\right)=a_{1 n}^{(n-1)} E_{1 n} . \tag{3.5}
\end{align*}
$$

Choose $X_{2}=\sum_{2 \leq t \leq n-1} a_{1, t+1}^{(t)} E_{1 t} \in \mathbb{M}_{1}$ and $\alpha=\left(a_{1 n}^{(2)}, a_{1 n}^{(3)}, \ldots, a_{1 n}^{(n-2)}\right) \in R^{n-3}$, then by (3.5) we obtain that $\left(\phi_{2}-\operatorname{ad} X_{2}-\alpha^{\#}\right)\left(E_{i, i+1}\right)=O, 2 \leq i \leq n-1$. Now we denote $\phi_{3}=\phi_{2}-\operatorname{ad} X_{2}-\alpha^{\#}$.

Step 3. $\phi_{3}\left(R E_{i, i+1}\right) \subseteq R E_{i, i+1}+R E_{1 n}, 1 \leq i \leq n-1$.
Given $r \in R$, assume that

$$
\phi_{3}\left(r E_{i, i+1}\right)=\sum_{1 \leq k<l \leq n} a_{k l}^{(i)} E_{k l} \in N_{n}(R), \quad 1 \leq i \leq n-1
$$

We first consider the action of ϕ_{3} on $r E_{i, i+1}, 1 \leq i \leq n-2$. For $2 \leq s \leq n-1$ and $s \neq i$, by applying ϕ_{3} on $E_{s-1, s}\left(r E_{i, i+1}\right)=O$, we have $E_{s-1, s} \phi_{3}\left(r E_{i, i+1}\right)=O$, which leads to $a_{s l}^{(i)}=0$, $s+1 \leq l \leq n$. For $2 \leq t \leq n-1$ and $t \neq i+1$, by applying ϕ_{3} on $\left(r E_{i, i+1}\right) E_{t, t+1}=O$, we get $\phi_{3}\left(r E_{i, i+1}\right) E_{t, t+1}=O$, which shows that $a_{1 t}^{(i)}=a_{i t}^{(i)}=0$. Thus

$$
\phi_{3}\left(r E_{12}\right)=a_{12}^{(1)} E_{12}+a_{1 n}^{(1)} E_{1 n}
$$

$$
\begin{equation*}
\phi_{3}\left(r E_{i, i+1}\right)=a_{1, i+1}^{(i)} E_{1, i+1}+a_{1 n}^{(i)} E_{1 n}+a_{i, i+1}^{(i)} E_{i, i+1}+a_{i n}^{(i)} E_{i n}, \quad 2 \leq i \leq n-2 . \tag{3.6}
\end{equation*}
$$

Operating ϕ_{3} to $\left(r E_{i, i+1}\right) E_{i+1, n}=E_{i, i+1}\left(r E_{i+1, n}\right)$, we get

$$
\phi_{3}\left(r E_{i, i+1}\right) E_{i+1, n}=E_{i, i+1} \phi_{3}\left(r E_{i+1, n}\right) \in \mathbb{M}_{i} .
$$

This implies that $a_{1, i+1}^{(i)}=0,2 \leq i \leq n-2$. Operating ϕ_{3} to $E_{1 i}\left(r E_{i, i+1}\right)=\left(r E_{12}\right) E_{2, i+1}$, $2 \leq i \leq n-2$, we have $E_{1 i} \phi_{3}\left(r E_{i, i+1}\right)=\phi_{3}\left(r E_{12}\right) E_{2, i+1} \in R E_{1, i+1}$, which shows that $a_{i n}^{(i)}=0$, $2 \leq i \leq n-2$. Thus (3.6) may be rewritten as

$$
\phi_{3}\left(r E_{i, i+1}\right)=a_{i, i+1}^{(i)} E_{i, i+1}+a_{1 n}^{(i)} E_{1 n}, \quad 1 \leq i \leq n-2 .
$$

We next consider the action of ϕ_{3} on $r E_{n-1, n}$. For $2 \leq s \leq n-2$, by applying ϕ_{3} to $E_{s-1, s}\left(r E_{n-1, n}\right)=O$, we obtain that $a_{s l}^{(n-1)}=0, s+1 \leq l \leq n$. For $2 \leq t \leq n-1$, by operating ϕ_{3} to $\left(r E_{n-1, n}\right) E_{t, t+1}=O$, we obtain that $a_{1 t}^{(n-1)}=0$. So $\phi_{3}\left(r E_{n-1, n}\right)=a_{n-1, n}^{(n-1)} E_{n-1, n}+a_{1 n}^{(n-1)} E_{1 n}$.

Now, we define $\sigma_{i}: R \rightarrow R, f_{i}: R \rightarrow R, 1 \leq i \leq n-1$ such that

$$
\begin{equation*}
\phi_{3}\left(r E_{i, i+1}\right)=\sigma_{i}(r) E_{i, i+1}+f_{i}(r) E_{1 n}, \quad r \in R, 1 \leq i \leq n-1 . \tag{3.7}
\end{equation*}
$$

Obviously, $f_{i}(0)=f_{i}(1)=0,1 \leq i \leq n-1$. Let $f\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ be an R-value function satisfying $f\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n-1}\left(x_{n-1}\right)$. Then

$$
f(0,0, \ldots, 0)=f(1,0, \ldots, 0)=f(0,1, \ldots, 0)=\cdots=f(0,0, \ldots, 1)=0 .
$$

Denote $\phi_{3}-f^{\#}$ by ϕ_{4}, where $f^{\#}$ is the central SD-map induced by f. By (3.7) we see that

$$
\begin{equation*}
\phi_{4}\left(r E_{i, i+1}\right)=\sigma_{i}(r) E_{i, i+1}, \quad 1 \leq i \leq n-1 . \tag{3.8}
\end{equation*}
$$

Step 4. There exists an SD-map σ of R such that

$$
\begin{equation*}
\phi_{4}\left(r E_{k l}\right)=\sigma(r) E_{k l} \text { for all } r \in R, \quad 1 \leq k<l \leq n . \tag{3.9}
\end{equation*}
$$

We first assert that the σ_{i} 's in (3.8) may be chosen to be identical. For any $r \in R$, by applying ϕ_{4} on $\left(r E_{12}\right) E_{2 n}=\cdots=E_{1 i}\left(r E_{i, i+1}\right) E_{i+1, n}=\cdots=E_{1, n-1}\left(r E_{n-1, n}\right)$, we get

$$
\phi_{4}\left(r E_{12}\right) E_{2 n}=\cdots=E_{1 i} \phi_{4}\left(r E_{i, i+1}\right) E_{i+1, n}=\cdots=E_{1, n-1} \phi_{4}\left(r E_{n-1, n}\right),
$$

which follows that $\sigma_{1}(r)=\cdots=\sigma_{i}(r)=\cdots=\sigma_{n-1}(r)$. By the arbitrariness of r, we get $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{n-1}$, as required. Denote $\sigma_{i}(1 \leq i \leq n-1)$ by σ, then (3.8) may be rewritten as $\phi_{4}\left(r E_{i, i+1}\right)=\sigma(r) E_{i, i+1}, 1 \leq i \leq n-1$. For $i+2 \leq j$, by applying ϕ_{4} on $r E_{i j}=\left(r E_{i, i+1}\right) E_{i+1, j}$, we obtain that $\phi_{4}\left(r E_{i j}\right)=\sigma(r) E_{i j}$. Thus $\phi_{4}\left(r E_{i j}\right)=\sigma(r) E_{i j}$ for all $1 \leq i<j \leq n$.

We next prove that σ is an SD-map of R. For any $a, b \in R$, by operating ϕ_{4} to $(a b) E_{1 n}=$ $\left(a E_{12}\right)\left(b E_{2 n}\right)$, we have $\sigma(a b) E_{1 n}=\phi_{4}\left(a E_{12}\right)\left(b E_{2 n}\right)+\left(a E_{12}\right) \phi_{4}\left(b E_{2 n}\right)$. Comparing the $(1, n)-$ entry of the two sides, we see that $\sigma(a b)=\sigma(a) b+a \sigma(b)$.

Step 5. σ is an additive derivation of R.
It suffices to prove that $\sigma(a+b)=\sigma(a)+\sigma(b)$ for any $a, b \in R$. Denote $A=E_{12}+a E_{13}$, $B=b E_{24}+E_{34}$, and suppose that

$$
\begin{equation*}
\phi_{4}(A)=a_{12} E_{12}+a_{13} E_{13}+a_{23} E_{23}+A_{1} \in N_{n}(R) \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{4}(B)=\sum_{3 \leq j \leq n} b_{2 j} E_{2 j}+\sum_{4 \leq j \leq n} b_{3 j} E_{3 j}+B_{1} \in N_{n}(R), \tag{3.11}
\end{equation*}
$$

where $A_{1} \in \bigcup_{s=4}^{n} \mathbb{N}_{s}, B_{1} \in \mathbb{M}_{1} \bigcup\left(\bigcup_{t=4}^{n-1} \mathbb{M}_{t}\right)$. Applying ϕ_{4} on $A E_{23}=E_{13}, E_{12} A=O$ and $A E_{34}=a E_{14}$, respectively, we get

$$
\phi_{4}(A) E_{23}=O, \quad E_{12} \phi_{4}(A)=O \quad \text { and } \phi_{4}(A) E_{34}=\sigma(a) E_{14}
$$

which shows that $a_{12}=0, a_{23}=0$ and $a_{13}=\sigma(a)$. Thus, (3.10) may be rewritten as

$$
\begin{equation*}
\phi_{4}(A)=\sigma(a) E_{13}+A_{1} . \tag{3.12}
\end{equation*}
$$

Similarly, by operating ϕ_{4} to $E_{12} B=b E_{14}$ and $E_{13} B=E_{14}$, respectively, we have

$$
E_{12} \phi_{4}(B)=\sigma(b) E_{14} \quad \text { and } \quad E_{13} \phi_{4}(B)=O .
$$

This implies that $b_{24}=\sigma(b), b_{2 s}=0$ for $s \neq 4, b_{3 t}=0$ for $4 \leq t \leq n$. Then (3.11) may be rewritten as

$$
\begin{equation*}
\phi_{4}(B)=\sigma(b) E_{24}+B_{1} \tag{3.13}
\end{equation*}
$$

By (3.12) and (3.13), we obtain that $\phi_{4}\left((a+b) E_{14}\right)=\phi_{4}(A B)=\phi_{4}(A) B+A \phi_{4}(B)=\left(\sigma(a) E_{13}+\right.$ $\left.A_{1}\right) B+A\left(\sigma(b) E_{24}+B_{1}\right)=(\sigma(a)+\sigma(b)) E_{14}$. On the other hand, by (3.9) we know that $\phi_{4}\left((a+b) E_{14}\right)=\sigma(a+b) E_{14}$. Thus $\sigma(a+b)=\sigma(a)+\sigma(b)$, as desired.

Since σ is an additive derivation of R, we may construct the ring derivation $\sigma^{\#}$ of $N_{n}(R)$. Then by (3.9) we get $\left(\phi_{4}-\sigma^{\#}\right)\left(r E_{k l}\right)=O$ for all $r \in R$ and all $1 \leq k<l \leq n$. This shows that $\phi_{4}-\sigma^{\#}$ is an almost zero SD-map of $N_{n}(R)$, which is denoted by ξ. Above discussion shows that $\phi=\operatorname{ad} X+D^{\#}+\alpha^{\#}+\sigma^{\#}+f^{\#}+\xi$, where $X=X_{1}+X_{2}$.

Step 6. The uniqueness of the decomposition.
It suffices to prove that if $a d X+D^{\#}+\alpha^{\#}+\sigma^{\#}+f^{\#}+\xi=O$, then $\operatorname{ad} X=D^{\#}=$ $\alpha^{\#}=\sigma^{\#}=f^{\#}=\xi=O$. Assume that $\phi=\operatorname{ad} X+D^{\#}+\alpha^{\#}+\sigma^{\#}+f^{\#}+\xi=O$. Using $\phi\left(E_{i, i+1}\right)=O, 2 \leq i \leq n-2$, we see that $\alpha=(0,0, \ldots, 0)$, which leads to $\alpha^{\#}=O$. Thus $\phi=\operatorname{ad} X+D^{\#}+\sigma^{\#}+f^{\#}+\xi=O$. By $\phi\left(E_{i, i+1}\right)=O, 1 \leq i \leq n-1$, we get $X \in R E_{1 n}$ and $D=a E$ for some $a \in R$, forcing ad $X=D^{\#}=O$. So $\phi=\sigma^{\#}+f^{\#}+\xi=O$. Then by making use of $\phi\left(r E_{i, i+1}\right)=O$ for any $r \in R$ and any $1 \leq i \leq n-1$, we see that $\sigma(r)=0$, which shows that $\sigma^{\#}=O$. Therefore, $\phi=f^{\#}+\xi=O$. For any $x_{1}, x_{2}, \ldots, x_{n-1} \in R$, by $\phi\left(\sum_{1 \leq i \leq n-1} x_{i} E_{i, i+1}\right)=O$, we obtain that $f\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)=0$. Thus $f^{\#}=O$, and so $\xi=O$.
(2) If $n=3$, we first consider the action of ϕ on E_{12} and E_{23}. Suppose that

$$
\phi\left(E_{i, i+1}\right)=a_{12}^{(i)} E_{12}+a_{13}^{(i)} E_{13}+a_{23}^{(i)} E_{23} \in N_{3}(R), \quad i=1,2 .
$$

Applying ϕ to $E_{12}^{2}=O$ and $E_{23}^{2}=O$, we get $E_{12} \phi\left(E_{12}\right)=O$ and $\phi\left(E_{23}\right) E_{23}=O$, respectively. This shows that $a_{23}^{(1)}=0$ and $a_{12}^{(2)}=0$. Choose $X=a_{13}^{(2)} E_{12}-a_{13}^{(1)} E_{23}$ and $D=\left(a_{12}^{(1)}+a_{23}^{(2)}\right) E_{11}+$ $a_{23}^{(2)} E_{22} \in D_{3}(R)$, then we have that $\left(\phi-\operatorname{ad} X-D^{\#}\right)\left(E_{i, i+1}\right)=O, i=1,2$. Denote $\phi-\operatorname{ad} X-D^{\#}$ by ϕ_{1}.

Next, we consider the action of ϕ_{1} on $r E_{i, i+1}$ for any $r \in R$ and $i=1,2$. Assume that

$$
\begin{equation*}
\phi_{1}\left(r E_{i, i+1}\right)=b_{12}^{(i)} E_{12}+b_{13}^{(i)} E_{13}+b_{23}^{(i)} E_{23} \in N_{3}(R), \quad i=1,2 \tag{3.14}
\end{equation*}
$$

Operating ϕ_{1} to $E_{12}\left(r E_{12}\right)=O$ and $\left(r E_{23}\right) E_{23}=O$, we get $b_{23}^{(1)}=0$ and $b_{12}^{(2)}=0$, respectively. Thus, (3.14) may be rewritten as

$$
\begin{equation*}
\phi_{1}\left(r E_{i, i+1}\right)=\theta_{i}(r) E_{i, i+1}+f_{i}(r) E_{13}, \quad i=1,2, \tag{3.15}
\end{equation*}
$$

where $\theta_{i}: R \rightarrow R, f_{i}: R \rightarrow R$ satisfying $f_{i}(0)=f_{i}(1)=0, i=1,2$. Let $f\left(x_{1}, x_{2}\right)$ be an R-value function satisfying $f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$. Then $f(0,0)=f(1,0)=f(0,1)=0$. Denote $\phi_{1}-f^{\#}$ by ϕ_{2}, where $f^{\#}$ is the central SD-map induced by f, then by (3.15) we obtain that

$$
\begin{equation*}
\phi_{2}\left(r E_{i, i+1}\right)=\theta_{i}(r) E_{i, i+1}, \quad i=1,2 . \tag{3.16}
\end{equation*}
$$

Operating ϕ_{2} to $\left(r E_{12}\right) E_{23}=E_{12}\left(r E_{23}\right)$, we get $\theta_{1}(r)=\theta_{2}(r)$ for any $r \in R$. This shows that $\theta_{1}=\theta_{2}$. Denote $\theta_{i}(i=1,2)$ by θ.

For any $a, b \in R$, by applying ϕ_{2} on $\left((a b) E_{12}\right) E_{23}=\left(a E_{12}\right)\left(b E_{23}\right)$, we get $\theta(a b)=\theta(a) b+$ $a \theta(b)$, which shows that θ is an SD-map of R. Then by (3.16) we have $\left(\phi_{2}-\theta^{\#}\right)\left(r E_{i, i+1}\right)=O$, $i=1,2$, where $\theta^{\#}$ is an induced SD-map of $N_{3}(R)$. It follows that $\left(\phi_{2}-\theta^{\#}\right)\left(r E_{13}\right)=\left(\phi_{2}-\right.$ $\left.\theta^{\#}\right)\left(r E_{12}\right) E_{23}+\left(r E_{12}\right)\left(\phi_{2}-\theta^{\#}\right)\left(E_{23}\right)=O$. Thus $\phi_{2}-\theta^{\#}$ is an almost zero SD-map of $N_{3}(R)$, which is denoted by ξ. So

$$
\phi=\operatorname{ad} X+D^{\#}+\theta^{\#}+f^{\#}+\xi .
$$

The proof of the uniqueness is similar to that when $n \geq 4$, thus, is omitted. The proof is completed.

4. Applications

As an application of Theorem 3.2, we consider the additive derivations of $N_{n}(R)$. In [6], Driss et al. gave an decomposition of any additive derivations of $N_{n}(R)$. However, the decomposition in [6] is not unique. In the following, by using the result of Theorem 3.2, we give a unique decomposition of the additive derivations of $N_{n}(R)$.

Theorem 4.1 Let R be an arbitrary commutative ring with identity, ϕ an additive derivation of $N_{n}(R)$. Then ϕ may be uniquely written as
(1) $\phi=\operatorname{ad} X+D^{\#}+\sigma^{\#}+\alpha^{\#}+f^{\#}$ when $n \geq 4$,
(2) $\phi=\operatorname{ad} X+D^{\#}+\sigma^{\#}+f^{\#}$ when $n=3$,
where $\operatorname{ad} X, D^{\#}, \sigma^{\#}, \alpha^{\#}$ and $f^{\#}$ are additive derivations of $N_{n}(R)$, defined as in Section 2.
Proof Any additive derivation ϕ of $N_{n}(R)$ is also an SD-map. If $n \geq 4$, by Theorem 3.2, we have a unique decomposition: $\phi=\operatorname{ad} X+D^{\#}+\alpha^{\#}+\sigma^{\#}+f^{\#}+\xi$. Since $a d X, D^{\#}, \sigma^{\#}$ and $\alpha^{\#}$ are additive derivations of $N_{n}(R)$, so does $f^{\#}+\xi$. For $1 \leq i \leq n-1$ and $x_{i}, y_{i} \in R$, by applying $f^{\#}+\xi$ to $\left(x_{i}+y_{i}\right) E_{i, i+1}=x_{i} E_{i, i+1}+y_{i} E_{i, i+1}$, we get

$$
f\left(0, \ldots, 0, x_{i}+y_{i}, 0, \ldots, 0\right)=f\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right)+f\left(0, \ldots, 0, y_{i}, 0, \ldots, 0\right),
$$

which shows that f is additive. Thus, $f^{\#}$ is an additive derivation and so $\xi=O$. In the same way, we can prove that the theorem is true for $n=3$.

By Theorem 4.1, one can obtain the following result.

Corollary 4.2 ([6]) Let R be an arbitrary commutative ring with identity, ϕ a derivation of $N_{n}(R)$. Then ϕ may be uniquely written as
(1) $\phi=\operatorname{ad} X+D^{\#}+\alpha^{\#}$ when $n \geq 4$,
(2) $\phi=\operatorname{ad} X+D^{\#}$ when $n=3$, where $\operatorname{ad} X, D^{\#}$ and $\alpha^{\#}$ are derivations of $N_{n}(R)$, defined as in Section 2.

For a long time, linear preserving problem attracted a lot of attention. Recently, some authors are interested in non-linear preserving problem on matrix algebras or operator algebras. Sometimes, it seems much difficult to determine non-linear maps on the algebra in question. An effective method of simplifying the non-linear preserving problem is to turn to study its linear object, SD-map of the algebra. In view of this point, we think that the main result of this paper is a foundation for further works on non-linear preserving problem.

References

[1] B. E. JOHNSON, A. M. SINCLAIR. Continuity of derivations and a problem of Kaplansky. Amer. J. Math., 1968, 90(4): 1067-1073.
[2] S. P. COELHO, C. P. MILIES. Derivations of upper triangular matrix rings. Linear Algebra Appl., 1993, 187: 263-267.
[3] S. JøNDRUP. Automorphisms and derivations of upper triangular matrix rings. Linear Algebra Appl., 1995, 221: 205-218.
[4] S. ALBEVERIO, S. A. AYUPOV, R. Z. ABDULLAEV, et al. Additive derivations on generalized Arens algebras. Lobachevskii J. Math., 2011, 32(3): 194-202.
[5] Zhenxin CHEN, Yu'e ZHAO. Nonlinear maps satisfying derivability on the parabolic subalgebras of the full matrix algebras. J. Math. Res. Exposition, 2011, 31(5): 791-800.
[6] A. H. A. DRISS, You'an CAO, L. B. YAKOUB. A note on derivations of strictly upper triangular matrices over rings. JP J. Algebra Number Theory Appl., 2004, 4(1): 89-102.
[7] Deguang HAN. Additive derivations of triangular operator algebras. Proc. Amer. Math. Soc., 1993, 119(4): 1165-1169.
[8] W. S. CHEUNG. Lie derivations of triangular algebras. Linear Multilinear Algebra, 2003, 51(3): 299-310.
[9] Peisheng JI, Lin WANG. Lie triple derivations of TUHF algebras. Linear Algebra Appl., 2005, 403: 399-408.
[10] Shikun OU, Dengyin WANG, Ruiping YAO. Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring. Linear Algebra Appl., 2007, 424(2-3): 378-383.
[11] Shikun OU, Dengyin WANG, Chunguang XIA. Derivations of certain linear Lie Algebras over commutative rings. J. Math. Res. Exposition, 2009, 29(3): 441-453.
[12] Dengyin WANG, Shikun OU, Qiu YU. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring. Linear Multilinear Algebra, 2006, 54(5): 369-377.
[13] Dengyin WANG, Qiu YU, Shikun OU. Derivations of certain Lie Algebras of upper triangular matrices over commutative rings. J. Math. Res. Exposition, 2007, 27(3): 474-478.
[14] Dengyin WANG, Qiu YU. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring. Linear Algebra Appl., 2006, 418(2-3): 763-774.
[15] Hengtai WANG, Qingguo LI. Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring. Linear Algebra Appl., 2009, 430(1): 66-77.
[16] Jianhua ZHANG, Baowei WU, Huaixin CAO. Lie triple derivations of nest algebras. Linear Algebra Appl., 2006, 416(2-3): 559-567.
[17] Lin CHEN, Jianhua ZHANG. Nonlinear Lie derivations on upper triangular matrices. Linear Multilinear Algebra, 2008, 56(6): 725-730.
[18] Zhenxin CHEN, Zhankui XIAO. Nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Linear Multilinear Algebra, 2012, 60(6): 645-656.

[^0]: Received September 17, 2014; Accepted April 25, 2015
 Supported by the National Natural Science Foundation of China (Grant Nos. 11171343; 11426121) and the Science Foundation of Jiangxi University of Science and Technology (Grant Nos. NSFJ2014-K12; NSFJ2015-G24).

 * Corresponding author

 E-mail address: ok6096@126.com (Shikun OU); zhongjin.1984@yahoo.com.cn (Jin ZHONG)

