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Nonlinear Maps Satisfying Derivability of a Class
of Matrix Ring over Commutative Rings

Shikun OU*, Jin ZHONG
School of Science, Jiangzi University of Science and Technology, Jiangzi 341000, P. R. China

Abstract Let R be an arbitrary commutative ring with identity, and let N,(R) be the set
consisting of all n x n strictly upper triangular matrices over R. In this paper, we give an ex-
plicit description of the maps (without linearity or additivity assumption) ¢ : Ny, (R) — Nn(R)
satisfying ¢(zy) = ¢(x)y + zd(y). As a consequence, additive derivations and derivations of
Ny (R) are also described.
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1. Introduction

Let R be a commutative ring with identity, and denote by M,,(R) (resp., T, (R), N, (R) and
D, (R)) the set of all n x n matrices (resp., all n X n upper triangular matrices, all n x n strictly
upper triangular matrices and all n x n diagonal matrices) over R.
Let o/ be an R-algebra. A map ¢ from &7 to itself is called an SD-map (means satisfying
derivability) if
o(ab) = ap(b) + ¢p(a)b, Va,be .

It is well known that an SD-map ¢ is called an additive derivation (resp., a derivation) if it is
additive (resp., R-linear).

In 1968, Johnson and Sinclair [1] initiated the study of additive derivations, which attracted
series of authors to determine additive derivations on certain algebras. For instance, Coelho and
Milies [2] characterized the additive derivations of T;,(R) for R, an arbitrary ring with identity.
Jondrup [3] described the additive derivations of T, () and M, (7). See [4-7] for others. Some
other authors [8-16] are interested in Lie derivations and Lie triple derivations. For example,
Ou et al.[10] considered the Lie derivations on N,(R). Wang and Li [15] determined the Lie
triple derivations of N, (R). Recently, Chen and Zhang [17] introduced nonlinear Lie derivations
which may not satisfy linear conditions, and studied the nonlinear Lie derivation from T,,(R) into

M, (R) when R is a commutative unital algebra. Chen and Xiao [18] introduced the nonlinear Lie
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triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Motivated
by the above works, we intend to investigate the SD-maps of N,,(R).

Note that an SD-map ¢ of &7 is an additive derivation iff ¢ is additive, so the notion SD-map
is a natural generalization of the notion additive derivation. But sometimes an SD-map of &

may fail to be an additive derivation. The following is a counterexample.

Example 1.1 Let ¢ : N3(R) — N3(R), defined by

0 a2 aiz 0 0 aizass
0 0 a3 — 0 0 0
0 O 0 0 0 0

Then it is verified that ¢ is an SD-map of N3(R), but not an additive map.

Above example shows that it is interesting to characterize all SD-maps of N, (R). Before
giving the main result of this paper, we introduce some preliminary notations.

For 1 < 4,5 < n, we denote by rE;; the n x n matrix, whose sole nonzero entry r is
in the (¢,j) position (1E;; is abbreviated to E;;). Then, for any X € N, (R), we may write
X = Zl§i<j§n x;E;; with x;; € R. Set

@k+1 = { Z aijEij S Nn(R)|aij S R}, 1<k<n-1
j—i>k
It is easy to see that each Qj remains stable under any SD-maps of N, (R) and ¢(O) = O, where
O is the n x n zero matrix. Denote
M, = Z RE;, 1<k<n-—1,
k+1<j<n

Ne= Y REy, 2<k<n,
1<i<k—1

2. Standard SD-maps of N,(R)

In this section, several standard SD-maps of N,,(R) are given. They will be used to describe
arbitrary SD-maps of N, (R) in the next section.

(1) Inner derivations

For X € N, (R), the map ad X : N,(R) = N,(R),Y — XY —Y X is a derivation of N, (R),
called the inner derivation of N, (R) induced by X.

(2) Diagonal derivations

Let D € D,(R). Then the map D# : N,(R) — N,(R), Y — DY — YD is a derivation of
N, (R), called the diagonal derivation of N, (R) induced by D € D, (R).

(3) Ring derivations

Let o be an additive derivation of R. Then the map

o# : No(R) = No(R), > ayEij— Y olai)Ey,
1<i<j<n 1<i<j<n

is an additive derivation of N, (R), which is called the ring derivation of N, (R) induced by o.
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(4) Induced SD-maps (n = 3)
Let 0 : R — R be an SD-map of R. We define the map

9# : Ng(R) — N3(R), Z ClijEij — Z G(Cbij)Eij.
1<i<j<3 1<i<j<3

It is easy to verify that #% is an SD-map, which is called an induced SD-map of N3(R).

Remark 2.1 Let 6% be defined as above with # an SD-map of R. Then ## is an additive
derivation of N3(R) iff @ is an additive map. Since, for any a,b € R, #7 is an additive derivation
of N3(R) < 0(a +b)E13 = 07 ((a+ b)E13) = 0% ((aE12)Eas + E12(bE23)) = (6(a) + (b)) E13 <
O(a +b) = 0(a) + 6(b). Moreover, 67 is a ring derivation when 6 is additive.

(5) Central derivations (n > 4)

Let a = (ry,72,...,7n_3) € R" 3. Then the map o : N,(R) — N, (R), defined by

o ( Z a;;Fi;) = (r1ags + 12034 + -+ + rn_3an—2n—1)Ein,
1<i<j<n

is a derivation of N,,(R), which is called a central derivation of N,,(R) induced by o € R"~3.

(6) Central SD-maps (n > 3)

Let f(z1,22,...,2n—1) be an R-value function on variables x1, xa, . . ., ¢,—1 satisfying f(0,0,
...,0) = f(1,0,...,0) = f(0,1,...,0) = --- = £(0,0,...,1) = 0. We define f# : N,(R) —
Nn(R) by

F#( Z a;ijEij) = f(a12,a23, ..., an—1,n)Ern.

1<i<j<n

It is checked that f# is an SD-map of N,,(R), which is called a central SD-map of N,,(R) induced
by f.

Remark 2.2 Let f# be a central SD-map defined as above. Then f# is an additive derivation
of N, (R) iff f is an additive function:

fxr+y, 22+ Y2, Tn1 + Yn-1) = f(@1, 22, 1) + F(Y1, 92, Yno1)-

(7) Almost zero SD-maps

Let £ : N, (R) — N, (R) be an SD-map. We call £ an almost zero SD-map of N, (R) if £
sends any elements of the set {rE;;|r € R,1 <1i<j <n}to O, ie.,

E(rE;j) =0 forany re R, 1<i<j<mn.

Lemma 2.3 Let £ : N,(R) — N,(R) be an almost zero SD-map. For any X € N, (R), assume
that E(X) = Zl§i<j§n aijEij. Then ajp = 0, Un—1,n = 0 and Qi = 0 for 2 S ) <] S n—1.
Proof Let X = ZlSKan x;;E;; € Np(R). Since

XEy, = x12F1,,
El,nle = xnfl,nElna
Ei 1, XEjj11=xiE 111, 2<i<j<n—1,
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it follows that
g(X)EZn = Ov
By n18(X) =0,
Eiflyif(X)Ej’j+1 =0, 2<i<j<n-1.

By a direct computation, we get

a2 =0,
anfl,nzov
al-j:O, 2§2<]§n71 O

Remark 2.4 An almost zero SD-map ¢ is just the zero mapping of N, (R) if it is an additive
map (since {rE; ;1 | 7 € R, 1 < i <n — 1} generates the ring N,,(R) and all such rE; ;11 are
sent to O by £). Sometimes an almost zero SD-map is not the zero mapping (see Example 1.1

in Section 1).

3. SD-maps of N, (R)

We prove, in this section, the main result of this paper. If n =1 or n = 2, there is nothing
to do on the SD-maps of N, (R), so we only consider the case when n > 3. As a beginning, we

give a lemma.

Lemma 3.1 Let ¢ be an SD-map of N,,(R). If ¢(E1;) = O for any 2 < t < n, then ¢(E;;) = M,
1<i<j<n.

Proof Suppose that
S(E) = Y alfEueN,(R), 2<i<j<n. (3.1)
1<k<i<n
Since EqE;; = 64Eq;, where § is the Kronecker delta symbol, it follows that Eq,¢(E;;) = O.
This forces that in (3.1)

ag?g-)&-lzagfg-)mz”':az(tg):Ov 2<t<n-—-1,

leading to (;ﬁ(EU) =My, 2<1 <j<n. Thus ¢(El]) =M;j forall 1 <1 <j<n. |

The following theorem is the main result of this paper.

Theorem 3.2 Let R be an arbitrary commutative ring with identity, ¢ an SD-map of the ring
N, (R). Then ¢ may be uniquely written as

(1) ¢ =adX + D# + a¥ +o# + f# + & when n > 4,

(2) ¢=adX + D# 4+ 0# 4 f# 4 ¢ whenn =3,
where ad X, D#, o#  o#, 0%, f# and ¢ are the inner derivation, diagonal derivation, central
derivation, ring derivation, induced SD-map, central SD-map and almost zero SD-map, respec-

tively.

Proof Let ¢ be an SD-map of N, (R).
(1) If n >4, the proof will be given by steps.
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Step 1. There exist X; € N,,(R) and D € D,,(R) such that (¢ —ad X1 — D#)(Ey;) = O,
2<j<n.
Suppose that

$(Ern) = Y. afEu € Ny(R). (3.2)

1<k<I<n
For 2 < k < n — 1, by applying ¢ on E1xE12 = O, we get E1x¢(E12) = O, following that
in (3.2) al(fl) =0,k+1<1<mn. Set Xy = —Z3§t5n ag)EQt and D; = —ag)Egg. Then

(¢ —ad X1, — D¥)(E1,) = O. Denote ¢ — ad X1 — DI by ¢1.

Now we consider the action of ¢; on Eyj;, 3 < j < n. Operating ¢, to E1; = Ei12E»j, we
get that ¢1(Ev;) = E12¢1(E2;) € My. On the other hand, by E1; € Q; we have ¢1(E1;) € Qj,
3 < j < n. Thus, we may assume that

$1(Brj)= Y. alEyeMinQ;, 3<j<n. (3.3)
j<i<n

Set Xo3 = — Y acpcnt Soppicien @5 Ere and Dy = —diag(0,0,a(3,aly, ..., a{" "), af})). Then

by (3.3) we see that (¢1 — ad Xaz — D#)(Elj) = 0, 3 < j < n. In the following, we denote
¢1 —ad Xoo — Df by ¢s.
Step 2. There exist Xo € My and a € R" 3 such that (¢o — ad Xo — o) (E;i11) = O,
2<i1<n-—1.
By Stepl and Lemma 3.1, we may assume that
$2(Biip1) = Y al)EyeM, 2<i<n-—1. (3.4)
2<i<n

For 2 <t <n—1andt#i+1, by applying ¢ on E; ;41 E, = O, we get that
02(E; i+1)Ewn + Eiip102(Ern) = O.

Since E; j+1¢2(Ein) = O (by Lemma 3.1), ¢2(E; i41)Ew, = O. This implies that aﬁ) = 0 for
2<t<n-—1andt#i+ 1. Thus (3.4) may be rewritten as

¢2(Ej 1) = (Zﬁ)iHEl,Hl + a(12E1n7 2<i<n-2,

¢2(En71,n) = agz_l)Eln' (35)

Choose Xo =Y pccpp 1 agf%+1E1t eM anda = (al?,al¥,...,a{""?) € R"=3 then by (3.5) we

obtain that (¢2 —ad Xo —a#)(E;41) = O, 2 < i < n—1. Now we denote ¢p3 = ¢ —ad Xy —a¥.

Step 3. ¢3(RE;+1) C RE; ;41 + RE1,, 1 <i<n—1.

Given r € R, assume that

$3(rEiin) = Y. a\Eu € Ny(R), 1<i<n—1.
1<k<l<n

We first consider the action of ¢35 on rE; ;11,1 <i<n—2. For2<s<n-—1ands # i, by
applying ¢3 on Es_1 s(rE;11) = O, we have Es_1 s¢3(rE; ;+1) = O, which leads to ag) =0,
s+1<i<n. For2<t<n-—1andt##i+1, by applying ¢3 on (rE; ;+1)E; 41 = O, we get
¢3(rE; iv1)Fi 141 = O, which shows that ag? = ag? = 0. Thus

¢3(rE12) = aglg)Em + a&)Elm
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$3(rEiiv1) = o\ Brip1 + ) Ery +al) By +al B, 2<i<n—2.  (3.6)
Operating ¢3 to (rE; it1)Eivin = Eiit1(rEiy1n), we get
¢3(TEi,i+1)Ei+1,n = i,i+1¢3(TEi+1,n) € M.

This implies that agfz_H =0, 2 < i< n-—2 Operating ¢3 to E1;(rE;;+1) = (rE12)E2,41,
2 S ) S n — 27 we have E1i¢3(rEi,i+l) = ¢3(TE12)E271'+1 S RELH—D which shows that LLE:Z) = 0,
2 <i<mn—2. Thus (3.6) may be rewritten as

63(rBi i) = a1 Eip1 + a5 B, 1<i<n—2.

In

We next consider the action of ¢3 on rE,_;1,. For 2 < s < n — 2, by applying ¢3 to

Es_1 4(rEn_1,) = O, we obtain that ai;l_l) =0,s+1 <l <n. For2 <t <n-—1, by operating ¢3

to (rEn—1,n)E¢ 141 = O, we obtain that a&?il) =0. So¢p3(rEp—1,n) = al" Y En,l’n—i—a(n*l)Eln.

n—1,n in

Now, we define 0; : R— R, f;: R— R, 1 <i<n—1 such that
¢3(T‘Ei7i+1) = Ui("")Ei7i+1 + fi(’l")Eln, reR, 1<i<n—1. (37)

Obviously, f;(0) = f;(1) =0, 1 <i <n-—1. Let f(x1,x2,...,2,—1) be an R-value function
satisfying f(x1,22,...,2n-1) = fi(21) + fo(x2) + - + fu—1(zn—1). Then

£(0,0,...,0) = f(1,0,...,0) = £(0,1,...,0) = --- = £(0,0,...,1) = 0.
Denote ¢3 — f# by ¢4, where f# is the central SD-map induced by f. By (3.7) we see that
¢4(TEi,i+l) = Ji(r)Ei,i+la 1 S ) § n — 1. (38)

Step 4. There exists an SD-map o of R such that

pa(rEg) =o(r)Ey forall re R, 1<k<l<n. (3.9)
We first assert that the o;’s in (3.8) may be chosen to be identical. For any r € R, by
applying ¢4 on (rEi2)Eoy = -+ = Ei(rE; iy1)Eivin = = E1n1(rEn_1n), we get
¢4(rE12)Eoy = -+ = E1;04(rEs j11)Eig1 =+ = E1 no104(TEn_1.0),
which follows that o1(r) = -+ = o0;(r) = -+ = o,—1(r). By the arbitrariness of r, we get
01 = 09 = -+ = 0p_1, as required. Denote o; (1 < ¢ < n — 1) by o, then (3.8) may be

rewritten as @4(rE;it1) = o(r)Eiiq41, 1 < i < n—1. For i +2 < j, by applying ¢4 on
rE;j = (rE;it1)Fiq1,j, we obtain that ¢4(rE;;) = o(r)E;;. Thus ¢4(rE;;) = o(r)E;; for all
1<i<j<n.

We next prove that o is an SD-map of R. For any a,b € R, by operating ¢4 to (ab)Ey,, =
(aF12)(bE2y,), we have o(ab)Ey, = ¢4(aFE12)(bEa2y,) + (aFE12)¢4(bF2,). Comparing the (1,n)-
entry of the two sides, we see that o(ab) = o(a)b + ac(b).

Step 5. ¢ is an additive derivation of R.

It suffices to prove that o(a +b) = o(a) + o(b) for any a,b € R. Denote A = E15 + aFEh3,
B = bEsyy + E34, and suppose that

¢4(A) = a1oF19 + a13F13 + as3FEa3 + A€ Nn(R), (310)



Nonlinear maps satisfying derivability of a class of matriz ring over commutative rings 631

¢4(B) = Z bnggj + Z b3jE3j + By € Nn(R), (3.11)
3<j<n 4<j<n
where 4, € U'_, Ny, By € M; U(U/Z, My). Applying ¢4 on AEy; = Ey3, EjpA = O and
AFs34 = aFy4, respectively, we get

¢4(A)Ea3 = O, FE12¢4(A) = O and ¢4(A)E3y = o(a)E1y,
which shows that a15 =0, ass = 0 and a13 = o(a). Thus, (3.10) may be rewritten as
$4(A) = o(a)Ers + As. (3.12)
Similarly, by operating ¢4 to E12B = bE14 and E13B = Fh4, respectively, we have
Ei204(B) =c(b)E1y and Ej3¢4(B) = O.
This implies that boy = o(b), bas = 0 for s # 4, b3z = 0 for 4 < ¢t < n. Then (3.11) may be

rewritten as
$4(B) = 0(b)Eas + Bi. (3.13)

By (3.12) and (3.13), we obtain that ¢4((a+0b)E14) = ¢p4(AB) = ¢4(A)B+ Aps(B) = (0(a)FE13+
A1)B + A(o(b)E24 + B1) = (o(a) + o(b))E14. On the other hand, by (3.9) we know that
¢4((a+b)E14) = o(a+ b)E14. Thus o(a+b) = o(a) + o(b), as desired.

Since o is an additive derivation of R, we may construct the ring derivation o# of N, (R).
Then by (3.9) we get (¢4 — 07 )(rEg) = O for all r € R and all 1 < k < [ < n. This shows that
¢4 — o™ is an almost zero SD-map of N, (R), which is denoted by £&. Above discussion shows
that ¢ = ad X + D# 4+ o + o# + f# + ¢, where X = X + X,.

Step 6. The uniqueness of the decomposition.

It suffices to prove that if adX + D# + o# + o# + f# + ¢ = O, then ad X = D# =
a = o = f# = £ = 0. Assume that ¢ = ad X + D# + o 4+ o7 + f# + & = O. Using
#(Eiiy1) = O, 2 < i < n—2, we see that a = (0,0,...,0), which leads to a# = O. Thus
¢ =adX +D¥ +o% + f#4+6=0. By ¢(Fijp1) = 0,1 <i<n-—1, weget X € REy,
and D = aF for some a € R, forcing ad X = D# = O. So ¢ = o + f# + £ = O. Then by
making use of ¢(rE;;+1) = O for any r € R and any 1 < ¢ < n — 1, we see that o(r) = 0,
which shows that ¢# = O. Therefore, ¢ = f# 4+ ¢ = O. For any z1,23,...,2,_1 € R, by
O cicn 1 TiEiir1) = O, we obtain that f(z1,22,...,2,-1) = 0. Thus f# = O, and so
£=0.

(2) If n = 3, we first consider the action of ¢ on Ej2 and Es3. Suppose that

O(Ei1) = a\)Erg + a\) Eys + al) Bas € N3(R), i=1,2.

Applying ¢ to EZ, = O and E2; = O, we get E12¢(E12) = O and ¢(Fa3)E23 = O, respectively.
This shows that ag? =0 and ag) = 0. Choose X = a%)Elg —a%)Egg and D = (aglg) —l—a%))Eu +
a,g23)E22 € D3(R), then we have that (¢—ad X —D#)(E; ;1) = O, i = 1,2. Denote ¢—ad X — D#

by ¢1.

Next, we consider the action of ¢; on rE; ;y; for any r € R and i = 1,2. Assume that

¢1 (rEz‘,i—i-l) = bgiQ)Em + b%)Elgg + bé?Egg, S N3(R), = 1, 2. (314)
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Operating ¢ to E12(rE12) = O and (rEs3)Ess = O, we get b%) =0 and bg) = 0, respectively.
Thus, (3.14) may be rewritten as

1 (TE;i41) = 0;(r)Es j11 + fi(r)Ers, i=1,2, (3.15)

where 6; : R — R, f; : R — R satisfying f;(0) = f;(1) =0, i =1,2. Let f(z1,22) be an R-value
function satisfying f(z1,22) = fi(z1) + fa(x2). Then f(0,0) = f(1,0) = f(0,1) = 0. Denote
#1 — f# by ¢2, where f# is the central SD-map induced by f, then by (3.15) we obtain that

(]52(7‘Ei’7;+1) = ai(T)EinH, L= 17 2. (316)

Operating ¢ to (rE12)Fas = E12(rEas3), we get 01(r) = 02(r) for any r € R. This shows that
61 = 05. Denote 0; (i =1,2) by 0.

For any a,b € R, by applying ¢2 on ((ab)E12)E2s = (aL12)(bE2s), we get 0(ab) = 0(a)b +
af(b), which shows that 6 is an SD-map of R. Then by (3.16) we have (¢2 — 0%)(rE; ;+1) = O,
i = 1,2, where 0% is an induced SD-map of N3(R). It follows that (¢ — 67)(rEi3) = (¢2 —
07)(rE12)Ea3 + (rE12)(¢p2 — 0%)(Fa3) = O. Thus ¢ — 67 is an almost zero SD-map of N3(R),
which is denoted by £. So

¢=adX + D¥ + 0% + f# 4 ¢.

The proof of the uniqueness is similar to that when n > 4, thus, is omitted. The proof is

completed. [J

4. Applications

As an application of Theorem 3.2, we consider the additive derivations of N,,(R). In [6], Driss
et al. gave an decomposition of any additive derivations of N, (R). However, the decomposition
in [6] is not unique. In the following, by using the result of Theorem 3.2, we give a unique

decomposition of the additive derivations of N, (R).

Theorem 4.1 Let R be an arbitrary commutative ring with identity, ¢ an additive derivation
of Ny, (R). Then ¢ may be uniquely written as

(1) ¢ =ad X + D¥# + 0% + a¥ + f# whenn > 4,

(2) ¢ =adX + D# + o + f# whenn = 3,
where ad X, D#, o, o and f# are additive derivations of N, (R), defined as in Section 2.

Proof Any additive derivation ¢ of N,(R) is also an SD-map. If n > 4, by Theorem 3.2, we
have a unique decomposition: ¢ = ad X + D# 4+ o# + o# + f# 4 ¢. Since adX, D#, o# and o#
are additive derivations of N, (R), so does f# +¢&. For 1 <i<n—1 and x;,y; € R, by applying
f#+ & to (v +yi)Eiiv1 = 2iBiiy1 + yiBiiy1, we get

f@0,...,0,2; +v;,0,...,0) = f(0,...,0,240,...,0)+ f(0,...,0,;,0,...,0),

which shows that f is additive. Thus, f# is an additive derivation and so & = O. In the same
way, we can prove that the theorem is true for n = 3. [0

By Theorem 4.1, one can obtain the following result.



Nonlinear maps satisfying derivability of a class of matriz ring over commutative rings 633

Corollary 4.2 ([6]) Let R be an arbitrary commutative ring with identity, ¢ a derivation of
N, (R). Then ¢ may be uniquely written as

(1) ¢ =adX + D# + a# whenn > 4,

(2) ¢ =adX + D# when n = 3,
where ad X, D# and o are derivations of N, (R), defined as in Section 2.

For a long time, linear preserving problem attracted a lot of attention. Recently, some
authors are interested in non-linear preserving problem on matrix algebras or operator algebras.
Sometimes, it seems much difficult to determine non-linear maps on the algebra in question. An
effective method of simplifying the non-linear preserving problem is to turn to study its linear
object, SD-map of the algebra. In view of this point, we think that the main result of this paper

is a foundation for further works on non-linear preserving problem.
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