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Abstract Let R be an arbitrary commutative ring with identity, and let Nn(R) be the set

consisting of all n× n strictly upper triangular matrices over R. In this paper, we give an ex-

plicit description of the maps (without linearity or additivity assumption) ϕ : Nn(R) → Nn(R)

satisfying ϕ(xy) = ϕ(x)y + xϕ(y). As a consequence, additive derivations and derivations of

Nn(R) are also described.

Keywords maps satisfying derivability; derivations; strictly upper triangular matrices;

commutative rings

MR(2010) Subject Classification 15A04

1. Introduction

Let R be a commutative ring with identity, and denote by Mn(R) (resp., Tn(R), Nn(R) and

Dn(R)) the set of all n×n matrices (resp., all n×n upper triangular matrices, all n×n strictly

upper triangular matrices and all n× n diagonal matrices) over R.

Let A be an R-algebra. A map ϕ from A to itself is called an SD-map (means satisfying

derivability) if

ϕ(ab) = aϕ(b) + ϕ(a)b, ∀a, b ∈ A .

It is well known that an SD-map ϕ is called an additive derivation (resp., a derivation) if it is

additive (resp., R-linear).

In 1968, Johnson and Sinclair [1] initiated the study of additive derivations, which attracted

series of authors to determine additive derivations on certain algebras. For instance, Coelho and

Milies [2] characterized the additive derivations of Tn(R) for R, an arbitrary ring with identity.

Jøndrup [3] described the additive derivations of Tn(A ) and Mn(A ). See [4–7] for others. Some

other authors [8–16] are interested in Lie derivations and Lie triple derivations. For example,

Ou et al. [10] considered the Lie derivations on Nn(R). Wang and Li [15] determined the Lie

triple derivations of Nn(R). Recently, Chen and Zhang [17] introduced nonlinear Lie derivations

which may not satisfy linear conditions, and studied the nonlinear Lie derivation from Tn(R) into

Mn(R) when R is a commutative unital algebra. Chen and Xiao [18] introduced the nonlinear Lie
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triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Motivated

by the above works, we intend to investigate the SD-maps of Nn(R).

Note that an SD-map ϕ of A is an additive derivation iff ϕ is additive, so the notion SD-map

is a natural generalization of the notion additive derivation. But sometimes an SD-map of A

may fail to be an additive derivation. The following is a counterexample.

Example 1.1 Let ϕ : N3(R) → N3(R), defined by 0 a12 a13

0 0 a23

0 0 0

 7→

 0 0 a12a23

0 0 0

0 0 0

 .

Then it is verified that ϕ is an SD-map of N3(R), but not an additive map.

Above example shows that it is interesting to characterize all SD-maps of Nn(R). Before

giving the main result of this paper, we introduce some preliminary notations.

For 1 ≤ i, j ≤ n, we denote by rEij the n × n matrix, whose sole nonzero entry r is

in the (i, j) position (1Eij is abbreviated to Eij). Then, for any X ∈ Nn(R), we may write

X =
∑

1≤i<j≤n xijEij with xij ∈ R. Set

Qk+1 =
{ ∑

j−i≥k

aijEij ∈ Nn(R)|aij ∈ R
}
, 1 ≤ k ≤ n− 1.

It is easy to see that each Qk remains stable under any SD-maps of Nn(R) and ϕ(O) = O, where

O is the n× n zero matrix. Denote

Mk =
∑

k+1≤j≤n

REkj , 1 ≤ k ≤ n− 1,

Nk =
∑

1≤i≤k−1

REik, 2 ≤ k ≤ n.

2. Standard SD-maps of Nn(R)

In this section, several standard SD-maps of Nn(R) are given. They will be used to describe

arbitrary SD-maps of Nn(R) in the next section.

(1) Inner derivations

For X ∈ Nn(R), the map adX : Nn(R) → Nn(R), Y 7→ XY −Y X is a derivation of Nn(R),

called the inner derivation of Nn(R) induced by X.

(2) Diagonal derivations

Let D ∈ Dn(R). Then the map D# : Nn(R) → Nn(R), Y 7→ DY − Y D is a derivation of

Nn(R), called the diagonal derivation of Nn(R) induced by D ∈ Dn(R).

(3) Ring derivations

Let σ be an additive derivation of R. Then the map

σ# : Nn(R) → Nn(R),
∑

1≤i<j≤n

aijEij 7→
∑

1≤i<j≤n

σ(aij)Eij ,

is an additive derivation of Nn(R), which is called the ring derivation of Nn(R) induced by σ.
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(4) Induced SD-maps (n = 3)

Let θ : R → R be an SD-map of R. We define the map

θ# : N3(R) → N3(R),
∑

1≤i<j≤3

aijEij 7→
∑

1≤i<j≤3

θ(aij)Eij .

It is easy to verify that θ# is an SD-map, which is called an induced SD-map of N3(R).

Remark 2.1 Let θ# be defined as above with θ an SD-map of R. Then θ# is an additive

derivation of N3(R) iff θ is an additive map. Since, for any a, b ∈ R, θ# is an additive derivation

of N3(R) ⇔ θ(a+ b)E13 = θ#((a+ b)E13) = θ#((aE12)E23 + E12(bE23)) = (θ(a) + θ(b))E13 ⇔
θ(a+ b) = θ(a) + θ(b). Moreover, θ# is a ring derivation when θ is additive.

(5) Central derivations (n ≥ 4)

Let α = (r1, r2, . . . , rn−3) ∈ Rn−3. Then the map α# : Nn(R) → Nn(R), defined by

α#(
∑

1≤i<j≤n

aijEij) = (r1a23 + r2a34 + · · ·+ rn−3an−2,n−1)E1n,

is a derivation of Nn(R), which is called a central derivation of Nn(R) induced by α ∈ Rn−3.

(6) Central SD-maps (n ≥ 3)

Let f(x1, x2, . . . , xn−1) be an R-value function on variables x1, x2, . . . , xn−1 satisfying f(0, 0,

. . . , 0) = f(1, 0, . . . , 0) = f(0, 1, . . . , 0) = · · · = f(0, 0, . . . , 1) = 0. We define f# : Nn(R) →
Nn(R) by

f#(
∑

1≤i<j≤n

aijEij) = f(a12, a23, . . . , an−1,n)E1n.

It is checked that f# is an SD-map of Nn(R), which is called a central SD-map of Nn(R) induced

by f .

Remark 2.2 Let f# be a central SD-map defined as above. Then f# is an additive derivation

of Nn(R) iff f is an additive function:

f(x1 + y1, x2 + y2, . . . , xn−1 + yn−1) = f(x1, x2, . . . , xn−1) + f(y1, y2, . . . , yn−1).

(7) Almost zero SD-maps

Let ξ : Nn(R) → Nn(R) be an SD-map. We call ξ an almost zero SD-map of Nn(R) if ξ

sends any elements of the set {rEij |r ∈ R, 1 ≤ i < j ≤ n} to O, i.e.,

ξ(rEij) = O for any r ∈ R, 1 ≤ i < j ≤ n.

Lemma 2.3 Let ξ : Nn(R) → Nn(R) be an almost zero SD-map. For any X ∈ Nn(R), assume

that ξ(X) =
∑

1≤i<j≤n aijEij . Then a12 = 0, an−1,n = 0 and aij = 0 for 2 ≤ i < j ≤ n− 1.

Proof Let X =
∑

1≤i<j≤n xijEij ∈ Nn(R). Since
XE2n = x12E1n,

E1,n−1X = xn−1,nE1n,

Ei−1,iXEj,j+1 = xijEi−1,j+1, 2 ≤ i < j ≤ n− 1,
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it follows that 
ξ(X)E2n = O,

E1,n−1ξ(X) = O,

Ei−1,iξ(X)Ej,j+1 = O, 2 ≤ i < j ≤ n− 1.

By a direct computation, we get
a12 = 0,

an−1,n = 0,

aij = 0, 2 ≤ i < j ≤ n− 1. �

Remark 2.4 An almost zero SD-map ξ is just the zero mapping of Nn(R) if it is an additive

map (since {rEi,i+1 | r ∈ R, 1 ≤ i ≤ n − 1} generates the ring Nn(R) and all such rEi,i+1 are

sent to O by ξ). Sometimes an almost zero SD-map is not the zero mapping (see Example 1.1

in Section 1).

3. SD-maps of Nn(R)

We prove, in this section, the main result of this paper. If n = 1 or n = 2, there is nothing

to do on the SD-maps of Nn(R), so we only consider the case when n ≥ 3. As a beginning, we

give a lemma.

Lemma 3.1 Let ϕ be an SD-map of Nn(R). If ϕ(E1t) = O for any 2 ≤ t ≤ n, then ϕ(Eij) = M1,

1 ≤ i < j ≤ n.

Proof Suppose that

ϕ(Eij) =
∑

1≤k<l≤n

a
(ij)
kl Ekl ∈ Nn(R), 2 ≤ i < j ≤ n. (3.1)

Since E1tEij = δtiE1j , where δ is the Kronecker delta symbol, it follows that E1tϕ(Eij) = O.

This forces that in (3.1)

a
(ij)
t,t+1 = a

(ij)
t,t+2 = · · · = a

(ij)
tn = 0, 2 ≤ t ≤ n− 1,

leading to ϕ(Eij) = M1, 2 ≤ i < j ≤ n. Thus ϕ(Eij) = M1 for all 1 ≤ i < j ≤ n. �
The following theorem is the main result of this paper.

Theorem 3.2 Let R be an arbitrary commutative ring with identity, ϕ an SD-map of the ring

Nn(R). Then ϕ may be uniquely written as

(1) ϕ = adX +D# + α# + σ# + f# + ξ when n ≥ 4,

(2) ϕ = adX +D# + θ# + f# + ξ when n = 3,

where adX, D#, α#, σ#, θ#, f# and ξ are the inner derivation, diagonal derivation, central

derivation, ring derivation, induced SD-map, central SD-map and almost zero SD-map, respec-

tively.

Proof Let ϕ be an SD-map of Nn(R).

(1) If n ≥ 4, the proof will be given by steps.
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Step 1. There exist X1 ∈ Nn(R) and D ∈ Dn(R) such that (ϕ − adX1 − D#)(E1j) = O,

2 ≤ j ≤ n.

Suppose that

ϕ(E12) =
∑

1≤k<l≤n

a
(2)
kl Ekl ∈ Nn(R). (3.2)

For 2 ≤ k ≤ n − 1, by applying ϕ on E1kE12 = O, we get E1kϕ(E12) = O, following that

in (3.2) a
(2)
kl = 0, k + 1 ≤ l ≤ n. Set X11 = −

∑
3≤t≤n a

(2)
1t E2t and D1 = −a

(2)
12 E22. Then

(ϕ− adX11 −D#
1 )(E12) = O. Denote ϕ− adX11 −D#

1 by ϕ1.

Now we consider the action of ϕ1 on E1j , 3 ≤ j ≤ n. Operating ϕ1 to E1j = E12E2j , we

get that ϕ1(E1j) = E12ϕ1(E2j) ∈ M1. On the other hand, by E1j ∈ Qj we have ϕ1(E1j) ∈ Qj ,

3 ≤ j ≤ n. Thus, we may assume that

ϕ1(E1j) =
∑

j≤l≤n

a
(j)
1l E1l ∈ M1 ∩Qj , 3 ≤ j ≤ n. (3.3)

SetX22 = −
∑

3≤k≤n−1

∑
k+1≤t≤n a

(k)
1t Ekt andD2 = −diag(0, 0, a

(3)
13 , a

(4)
14 , . . . , a

(n−1)
1,n−1, a

(n)
1n ). Then

by (3.3) we see that (ϕ1 − adX22 − D#
2 )(E1j) = O, 3 ≤ j ≤ n. In the following, we denote

ϕ1 − adX22 −D#
2 by ϕ2.

Step 2. There exist X2 ∈ M1 and α ∈ Rn−3 such that (ϕ2 − adX2 − α#)(Ei,i+1) = O,

2 ≤ i ≤ n− 1.

By Step1 and Lemma 3.1, we may assume that

ϕ2(Ei,i+1) =
∑

2≤l≤n

a
(i)
1l E1l ∈ M1, 2 ≤ i ≤ n− 1. (3.4)

For 2 ≤ t ≤ n− 1 and t ̸= i+ 1, by applying ϕ2 on Ei,i+1Etn = O, we get that

ϕ2(Ei,i+1)Etn + Ei,i+1ϕ2(Etn) = O.

Since Ei,i+1ϕ2(Etn) = O (by Lemma 3.1), ϕ2(Ei,i+1)Etn = O. This implies that a
(i)
1t = 0 for

2 ≤ t ≤ n− 1 and t ̸= i+ 1. Thus (3.4) may be rewritten as

ϕ2(Ei,i+1) = a
(i)
1,i+1E1,i+1 + a

(i)
1nE1n, 2 ≤ i ≤ n− 2,

ϕ2(En−1,n) = a
(n−1)
1n E1n. (3.5)

ChooseX2 =
∑

2≤t≤n−1 a
(t)
1,t+1E1t ∈ M1 and α = (a

(2)
1n , a

(3)
1n , . . . , a

(n−2)
1n ) ∈ Rn−3, then by (3.5) we

obtain that (ϕ2−adX2−α#)(Ei,i+1) = O, 2 ≤ i ≤ n−1. Now we denote ϕ3 = ϕ2−adX2−α#.

Step 3. ϕ3(REi,i+1) ⊆ REi,i+1 +RE1n, 1 ≤ i ≤ n− 1.

Given r ∈ R, assume that

ϕ3(rEi,i+1) =
∑

1≤k<l≤n

a
(i)
kl Ekl ∈ Nn(R), 1 ≤ i ≤ n− 1.

We first consider the action of ϕ3 on rEi,i+1, 1 ≤ i ≤ n − 2. For 2 ≤ s ≤ n − 1 and s ̸= i, by

applying ϕ3 on Es−1,s(rEi,i+1) = O, we have Es−1,sϕ3(rEi,i+1) = O, which leads to a
(i)
sl = 0,

s + 1 ≤ l ≤ n. For 2 ≤ t ≤ n − 1 and t ̸= i + 1, by applying ϕ3 on (rEi,i+1)Et,t+1 = O, we get

ϕ3(rEi,i+1)Et,t+1 = O, which shows that a
(i)
1t = a

(i)
it = 0. Thus

ϕ3(rE12) = a
(1)
12 E12 + a

(1)
1nE1n,
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ϕ3(rEi,i+1) = a
(i)
1,i+1E1,i+1 + a

(i)
1nE1n + a

(i)
i,i+1Ei,i+1 + a

(i)
inEin, 2 ≤ i ≤ n− 2. (3.6)

Operating ϕ3 to (rEi,i+1)Ei+1,n = Ei,i+1(rEi+1,n), we get

ϕ3(rEi,i+1)Ei+1,n = Ei,i+1ϕ3(rEi+1,n) ∈ Mi.

This implies that a
(i)
1,i+1 = 0, 2 ≤ i ≤ n − 2. Operating ϕ3 to E1i(rEi,i+1) = (rE12)E2,i+1,

2 ≤ i ≤ n − 2, we have E1iϕ3(rEi,i+1) = ϕ3(rE12)E2,i+1 ∈ RE1,i+1, which shows that a
(i)
in = 0,

2 ≤ i ≤ n− 2. Thus (3.6) may be rewritten as

ϕ3(rEi,i+1) = a
(i)
i,i+1Ei,i+1 + a

(i)
1nE1n, 1 ≤ i ≤ n− 2.

We next consider the action of ϕ3 on rEn−1,n. For 2 ≤ s ≤ n − 2, by applying ϕ3 to

Es−1,s(rEn−1,n) = O, we obtain that a
(n−1)
sl = 0, s+1 ≤ l ≤ n. For 2 ≤ t ≤ n−1, by operating ϕ3

to (rEn−1,n)Et,t+1 = O, we obtain that a
(n−1)
1t = 0. So ϕ3(rEn−1,n) = a

(n−1)
n−1,nEn−1,n+a

(n−1)
1n E1n.

Now, we define σi : R → R, fi : R → R, 1 ≤ i ≤ n− 1 such that

ϕ3(rEi,i+1) = σi(r)Ei,i+1 + fi(r)E1n, r ∈ R, 1 ≤ i ≤ n− 1. (3.7)

Obviously, fi(0) = fi(1) = 0, 1 ≤ i ≤ n − 1. Let f(x1, x2, . . . , xn−1) be an R-value function

satisfying f(x1, x2, . . . , xn−1) = f1(x1) + f2(x2) + · · ·+ fn−1(xn−1). Then

f(0, 0, . . . , 0) = f(1, 0, . . . , 0) = f(0, 1, . . . , 0) = · · · = f(0, 0, . . . , 1) = 0.

Denote ϕ3 − f# by ϕ4, where f# is the central SD-map induced by f . By (3.7) we see that

ϕ4(rEi,i+1) = σi(r)Ei,i+1, 1 ≤ i ≤ n− 1. (3.8)

Step 4. There exists an SD-map σ of R such that

ϕ4(rEkl) = σ(r)Ekl for all r ∈ R, 1 ≤ k < l ≤ n. (3.9)

We first assert that the σi’s in (3.8) may be chosen to be identical. For any r ∈ R, by

applying ϕ4 on (rE12)E2n = · · · = E1i(rEi,i+1)Ei+1,n = · · · = E1,n−1(rEn−1,n), we get

ϕ4(rE12)E2n = · · · = E1iϕ4(rEi,i+1)Ei+1,n = · · · = E1,n−1ϕ4(rEn−1,n),

which follows that σ1(r) = · · · = σi(r) = · · · = σn−1(r). By the arbitrariness of r, we get

σ1 = σ2 = · · · = σn−1, as required. Denote σi (1 ≤ i ≤ n − 1) by σ, then (3.8) may be

rewritten as ϕ4(rEi,i+1) = σ(r)Ei,i+1, 1 ≤ i ≤ n − 1. For i + 2 ≤ j, by applying ϕ4 on

rEij = (rEi,i+1)Ei+1,j , we obtain that ϕ4(rEij) = σ(r)Eij . Thus ϕ4(rEij) = σ(r)Eij for all

1 ≤ i < j ≤ n.

We next prove that σ is an SD-map of R. For any a, b ∈ R, by operating ϕ4 to (ab)E1n =

(aE12)(bE2n), we have σ(ab)E1n = ϕ4(aE12)(bE2n) + (aE12)ϕ4(bE2n). Comparing the (1, n)-

entry of the two sides, we see that σ(ab) = σ(a)b+ aσ(b).

Step 5. σ is an additive derivation of R.

It suffices to prove that σ(a + b) = σ(a) + σ(b) for any a, b ∈ R. Denote A = E12 + aE13,

B = bE24 + E34, and suppose that

ϕ4(A) = a12E12 + a13E13 + a23E23 +A1 ∈ Nn(R), (3.10)
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ϕ4(B) =
∑

3≤j≤n

b2jE2j +
∑

4≤j≤n

b3jE3j +B1 ∈ Nn(R), (3.11)

where A1 ∈
∪n

s=4 Ns, B1 ∈ M1

∪
(
∪n−1

t=4 Mt). Applying ϕ4 on AE23 = E13, E12A = O and

AE34 = aE14, respectively, we get

ϕ4(A)E23 = O, E12ϕ4(A) = O and ϕ4(A)E34 = σ(a)E14,

which shows that a12 = 0, a23 = 0 and a13 = σ(a). Thus, (3.10) may be rewritten as

ϕ4(A) = σ(a)E13 +A1. (3.12)

Similarly, by operating ϕ4 to E12B = bE14 and E13B = E14, respectively, we have

E12ϕ4(B) = σ(b)E14 and E13ϕ4(B) = O.

This implies that b24 = σ(b), b2s = 0 for s ̸= 4, b3t = 0 for 4 ≤ t ≤ n. Then (3.11) may be

rewritten as

ϕ4(B) = σ(b)E24 +B1. (3.13)

By (3.12) and (3.13), we obtain that ϕ4((a+b)E14) = ϕ4(AB) = ϕ4(A)B+Aϕ4(B) = (σ(a)E13+

A1)B + A(σ(b)E24 + B1) = (σ(a) + σ(b))E14. On the other hand, by (3.9) we know that

ϕ4((a+ b)E14) = σ(a+ b)E14. Thus σ(a+ b) = σ(a) + σ(b), as desired.

Since σ is an additive derivation of R, we may construct the ring derivation σ# of Nn(R).

Then by (3.9) we get (ϕ4 − σ#)(rEkl) = O for all r ∈ R and all 1 ≤ k < l ≤ n. This shows that

ϕ4 − σ# is an almost zero SD-map of Nn(R), which is denoted by ξ. Above discussion shows

that ϕ = adX +D# + α# + σ# + f# + ξ, where X = X1 +X2.

Step 6. The uniqueness of the decomposition.

It suffices to prove that if adX + D# + α# + σ# + f# + ξ = O, then adX = D# =

α# = σ# = f# = ξ = O. Assume that ϕ = adX + D# + α# + σ# + f# + ξ = O. Using

ϕ(Ei,i+1) = O, 2 ≤ i ≤ n − 2, we see that α = (0, 0, . . . , 0), which leads to α# = O. Thus

ϕ = adX + D# + σ# + f# + ξ = O. By ϕ(Ei,i+1) = O, 1 ≤ i ≤ n − 1, we get X ∈ RE1n

and D = aE for some a ∈ R, forcing adX = D# = O. So ϕ = σ# + f# + ξ = O. Then by

making use of ϕ(rEi,i+1) = O for any r ∈ R and any 1 ≤ i ≤ n − 1, we see that σ(r) = 0,

which shows that σ# = O. Therefore, ϕ = f# + ξ = O. For any x1, x2, . . . , xn−1 ∈ R, by

ϕ(
∑

1≤i≤n−1 xiEi,i+1) = O, we obtain that f(x1, x2, . . . , xn−1) = 0. Thus f# = O, and so

ξ = O.

(2) If n = 3, we first consider the action of ϕ on E12 and E23. Suppose that

ϕ(Ei,i+1) = a
(i)
12E12 + a

(i)
13E13 + a

(i)
23E23 ∈ N3(R), i = 1, 2.

Applying ϕ to E2
12 = O and E2

23 = O, we get E12ϕ(E12) = O and ϕ(E23)E23 = O, respectively.

This shows that a
(1)
23 = 0 and a

(2)
12 = 0. Choose X = a

(2)
13 E12−a

(1)
13 E23 and D = (a

(1)
12 +a

(2)
23 )E11+

a
(2)
23 E22 ∈ D3(R), then we have that (ϕ−adX−D#)(Ei,i+1) = O, i = 1, 2. Denote ϕ−adX−D#

by ϕ1.

Next, we consider the action of ϕ1 on rEi,i+1 for any r ∈ R and i = 1, 2. Assume that

ϕ1(rEi,i+1) = b
(i)
12E12 + b

(i)
13E13 + b

(i)
23E23 ∈ N3(R), i = 1, 2. (3.14)
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Operating ϕ1 to E12(rE12) = O and (rE23)E23 = O, we get b
(1)
23 = 0 and b

(2)
12 = 0, respectively.

Thus, (3.14) may be rewritten as

ϕ1(rEi,i+1) = θi(r)Ei,i+1 + fi(r)E13, i = 1, 2, (3.15)

where θi : R → R, fi : R → R satisfying fi(0) = fi(1) = 0, i = 1, 2. Let f(x1, x2) be an R-value

function satisfying f(x1, x2) = f1(x1) + f2(x2). Then f(0, 0) = f(1, 0) = f(0, 1) = 0. Denote

ϕ1 − f# by ϕ2, where f# is the central SD-map induced by f , then by (3.15) we obtain that

ϕ2(rEi,i+1) = θi(r)Ei,i+1, i = 1, 2. (3.16)

Operating ϕ2 to (rE12)E23 = E12(rE23), we get θ1(r) = θ2(r) for any r ∈ R. This shows that

θ1 = θ2. Denote θi (i = 1, 2) by θ.

For any a, b ∈ R, by applying ϕ2 on ((ab)E12)E23 = (aE12)(bE23), we get θ(ab) = θ(a)b +

aθ(b), which shows that θ is an SD-map of R. Then by (3.16) we have (ϕ2 − θ#)(rEi,i+1) = O,

i = 1, 2, where θ# is an induced SD-map of N3(R). It follows that (ϕ2 − θ#)(rE13) = (ϕ2 −
θ#)(rE12)E23 + (rE12)(ϕ2 − θ#)(E23) = O. Thus ϕ2 − θ# is an almost zero SD-map of N3(R),

which is denoted by ξ. So

ϕ = adX +D# + θ# + f# + ξ.

The proof of the uniqueness is similar to that when n ≥ 4, thus, is omitted. The proof is

completed. �

4. Applications

As an application of Theorem 3.2, we consider the additive derivations ofNn(R). In [6], Driss

et al. gave an decomposition of any additive derivations of Nn(R). However, the decomposition

in [6] is not unique. In the following, by using the result of Theorem 3.2, we give a unique

decomposition of the additive derivations of Nn(R).

Theorem 4.1 Let R be an arbitrary commutative ring with identity, ϕ an additive derivation

of Nn(R). Then ϕ may be uniquely written as

(1) ϕ = adX +D# + σ# + α# + f# when n ≥ 4,

(2) ϕ = adX +D# + σ# + f# when n = 3,

where adX, D#, σ#, α# and f# are additive derivations of Nn(R), defined as in Section 2.

Proof Any additive derivation ϕ of Nn(R) is also an SD-map. If n ≥ 4, by Theorem 3.2, we

have a unique decomposition: ϕ = adX +D# +α# +σ# + f# + ξ. Since adX, D#, σ# and α#

are additive derivations of Nn(R), so does f# + ξ. For 1 ≤ i ≤ n− 1 and xi, yi ∈ R, by applying

f# + ξ to (xi + yi)Ei,i+1 = xiEi,i+1 + yiEi,i+1, we get

f(0, . . . , 0, xi + yi, 0, . . . , 0) = f(0, . . . , 0, xi, 0, . . . , 0) + f(0, . . . , 0, yi, 0, . . . , 0),

which shows that f is additive. Thus, f# is an additive derivation and so ξ = O. In the same

way, we can prove that the theorem is true for n = 3. �
By Theorem 4.1, one can obtain the following result.
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Corollary 4.2 ([6]) Let R be an arbitrary commutative ring with identity, ϕ a derivation of

Nn(R). Then ϕ may be uniquely written as

(1) ϕ = adX +D# + α# when n ≥ 4,

(2) ϕ = adX +D# when n = 3,

where adX, D# and α# are derivations of Nn(R), defined as in Section 2.

For a long time, linear preserving problem attracted a lot of attention. Recently, some

authors are interested in non-linear preserving problem on matrix algebras or operator algebras.

Sometimes, it seems much difficult to determine non-linear maps on the algebra in question. An

effective method of simplifying the non-linear preserving problem is to turn to study its linear

object, SD-map of the algebra. In view of this point, we think that the main result of this paper

is a foundation for further works on non-linear preserving problem.
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