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H-Module Algebra Structures On M;(F)
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Abstract Let IF be an algebraically closed field of characteristic 0, H be an eight-dimensional
non-semisimple Hopf algebra which is neither pointed nor unimodular and M (F) be the full
matrix algebra of 2 x 2 over F. In this paper, we discuss and classify all H-module algebra
structures on M (F).
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1. Introduction

The notion of Hopf algebra actions on algebras was introduced by Beattie [1,2] in 1976.
A duality theorem for Hopf module algebras was studied by Blattner and Montgomery [3] in
1985. It generalized the corresponding theorem of group actions. Later, many mathematicians
were engaged in the theory of Hopf algebra actions [4-6]. In recent years, the classification of
finite-dimensional Hopf algebra actions on algebras has drawn people’s attention extensively. In
[7], Chen and Zhang classified the Yetter-Drinfeld Hy-module algebra structures on My (k) over a
field k of characteristic # 2. Gordieko [8] described and classified Hy-module algebra structures
on full matrix algebra M, (F) over an algebraically closed field of characteristic # 2.

The classification of all Hopf algebras with dimension < 11 over algebraically closed field F
was done by Williams [9], and conformed by Stefan [10]. The result of eight-dimensional Hopf
algebras tells us that there are six types of eight-dimensional nonsemisimple Hopf algebras up

*

to isomorphism. Among these, the type (Hg4) is neither pointed nor unimodular [11], which
makes it much more difficult to describe completely the (H¢, )*-actions on M, (F) for n > 3. The
aim of this paper is to discuss and classify all (H¢, )*-actions on My (F) by the actions of a Hopf

subalgebra and theory on square root of matrix.

2. Preliminaries

Firstly, we recall some basic concepts and results on Hopf algebra actions on algebras from
[12].
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Let H be a Hopf algebra. Denote the comultiplication and the counit A and €, respectively.

We also fix some notations as follows:

N: the set of natural numbers,

e [n]={1,2,...,n—1,n} for any n € N,

e M, (k): the full matrix algebra of n x n-matrices over k,
e F,.: n X n-identity matrix,

e GL,(k): the multiplicative group of the invertible matrices in M, (k),

A standard basis of My(k): Fi11, E2s, E12, Fa1,

S1 x Sy: the Cartesian product of two sets S7; and Ss.

Let A be an algebra over a field k. We call A a left H-module algebra if A is a left H-module,

and
he(ab)=> (h1-a)(hy-b), h-1s=e(h)la
(h)

for all h € H and a,b € A, where A(h) = }_,)(h1 ® h2). The reader can also refer to [13, 14]
for more notions about Hopf algebras and Hopf algebra actions.

Let Pi,P, € M, (k). We say P, and P, are weakly similar if P, = aOP,O~! for some
O € GL, (k) and a € k* = E\{0}. Obviously, two similar matrices are weakly similar, and weak

similarity is an equivalence relation on M, (k). We have the following fact [15].

Lemma 2.1 Let ¢ and @, be two inner automorphisms of M, (k). If p1(a) = PiaP*, pa(a) =
Pganl for all a € M, (k), where Py, P, € GL,(k), then o1 = @2 if and only if P is weakly
similar to Ps.

Let (H{,)* = F(g,x)/(¢9* — 1,2%, gx — wag) be the eight-dimensional non-semisimple Hopf

algebra which is neither pointed nor unimodular. Its Hopf algebra structure is given by
Alg)=g®g—2"r®gz, Alr)=g@z+z®1,

where w € F is a primitive 4-th root of unity.

From now on we denote H¢ by H. Let K = F1& Fg®> ® Fx @ Fgx and Hy = (c,v |¢® =
1,v2 = 0,vg + gv = 0) be the four-dimensional Sweedler Hopf algebra. It is clear that K is a
Hopf subalgebra of H and K = Hy as Hopf algebras. So we have the following lemma from [§].

Lemma 2.2 All K-module algebra structures on My (F) are as follows. For any C = (¢;j)ax2 €
M,(F),

(i) - C=C,z-C=0;

(i) ¢*-C = diag(1,—1)C diag(1,—1), z- C = 0;

(i) ¢% - C = diag(1, —1)C diag(1, —1), z - C = (_‘léf;ff_“zz) Lonen )
and these module algebras are not isomorphic for different a € F.
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3. The main result and proof

In this section we mainly describe and classify all the H-module algebra structures on Mz (FF).

First we give the main result of this paper as follows.

Theorem 3.1 Up to isomorphism, there are four H-module algebra structures on Ms(F) such
that for all C' € Ms(TF),

(i) g-C=C,z-C=0;

(ii) g-C = diag(l,—1)C diag(1l,—1), - C =0;

(iii) g - C = diag(1l,w)C diag(l,w), z - C = 0;

o€ oo

é?oo
N—

[=lelelig
[slel ]

(iv) The matrices of g and x as linear transformations on the standard basis are (
100-1
and ((1J —01 8 _01 ), respectively.
00

Proof By (i) and (ii) of the Lemma 2.2 in Section 2, we know all K-module structures on
My (F). That is, the action of g2 and x on M;(F) is clear. Therefore, to describe all H-module

algebra structures on Mo (FF), we only need find the action of g satisfying the following conditions
gz - B =w(xg - Eyj),
9 (BijBu) = (9 Eij)(g - Ew) — 2(9° - (92 - Eij)) (92 - Ewa)
for all ¢, 4, k,1 € [2]. In particular, when the action of x on Ms(F) is zero, we have
9+ (EijEn) = (9 Eij)(g - Ew) for alli, j,k,1 € [2].

Since M3 (F) as an algebra can be generated by the standard basis, the action of g on My (F)
is an algebraic automorphism. Since all algebraic automorphisms of Ms(F) are inner, we may
assume g - C = PCP~! for some P € GLy(F). Thus ¢> - C = P2CP~2. In fact, by (i) and (ii)
of Lemma 2.2, we have g2 - C = C or ¢ - C' = diag(1, —1)C diag(1, —1).

If g>-C = C, then P?2C = CP? for all C € M(F) and P must be weakly similar to diag(1,1)
or diag(1, —1).

If g2 - C = diag(1,—1)C diag(1, —1), then P? must be weakly similar to P = diag(1,w).
Therefore, we have proven (i), (ii) and (iii). The proof of (iv) is much more complex, we need
make some preparation.

When the action of x is not zero, the action of g need not be an algebraic automorphism.
Hence, to describe the action of g on Ms(F), we need find the matrix of g as linear transformation.
By Lemma 2.2, the matrix of g on the standard basis is B = diag(1,1,—1,—1). Let

dyy dip diz dyg 0 0 -—-a -1

d d d d — -1
D— 21 G22 0423 d24 and X — 0 0 a

ds1 dsa dss dsg 1 -1 0 0

dyr dao daz dug —a a 0 O

be the matrices of g and the matrix of x, respectively, where a € F.
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First, we find those matrices D such that

D? =B, DX =wXD, (3.1)
9 (EijEx) = (9- Eij)(g- En) —2(9° - (97 - Eyj))(9x - Ex) for alli, j k1 € [2]. (3.2)

We know that a square root of a matrix ¥ € M, (F) is a matrix Z € M, (F) such that
Z%? =Y. It is obvious that the square root of a diagonal matrix must exist. We also know that
a square root of an invertible diagonal matrix Y must be diagonalizable, any eigenvalue of the

square root is a square root of some eigenvalue of Y (see [15]).

Since B is invertible, every square root of B is diagonalizable. It is clear that every square

root of B must be similar to one of the following nine types:

I: diag(1, 1, w,w), IT : diag(1, 1, —w, —w), III : diag(—1, -1, w,w),
IV : diag(—1, -1, —w, —w), V :diag(l,1,w, —w), VI: diag(—1, -1, w, —w),
VII : diag(1, —1,w,w), VIII : diag(1, -1, —w, —w), IX:diag(—1,1,w, —w).

Let W be the set of above nine types. Thus D has the form PQP~! for some P € GL4(F)
and Q € W, and D? = (PQP~1)? = PQ?*P~! = diag(1,1,—1,—1). Thus Pdiag(1,1,—1,—1) =

diag(1,1,—1,—1)P. Direct calculation shows that P = (181 192) for some P; € GLy(F), i € [2].
1 _ PQ. P! 0 . _
Let Q = (% QOQ)- Then D = PQP! = ( 1Q; ! PQQZP;). Since |P;P; ! = 1, we may
assume |P;| = 1.
Let Py = ({1 2), P = ({21°) with tyty — tots = tsts — tety = 1,¢; € F. Then all square
roots of B consist of the following nine classes.

(1) : diag(1, 1, w, w); (II) : diag(1, 1, —w, —w);
(I1I) : diag(—1, —1, w, w); (IV) : diag(—1, -1, —w, —w);
1 0 0 0
0 1 0 0
(V) : ;
0 0 w(tsts+tetr) —2wtstg
0 0 2wt7t8 7w(t5t8 + t6t7)
-1 0 0 0
0o -1 0 0
(VI) ;
0 0 w(t5t8 + t6t7) —2wt5t6
0 0 2wirts —w(t5t8 + t6t7>
t1ty + tots —2t1to 0 O
2tst —(t1t tol 0 0
(VIT) : 3l4 (trts + tats) ;
0 0 w 0
0 0 0 w
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tity + tots —2t1to
2tst —(tq1t tot
(VIIT) : 3l4 (tits + tats) :
0 0 —w 0
0 0 0 —w
t1ty + tots —2t1to 0 0
2tst —(t1t tot 0 0
(IX) : 3l (t1ts + tats)
0 0 w(t5t8 + t6t7) 72wt5t6
0 0 2uwttg —w(t5t8 + t6t7)

First it is easy to see that the matrices {D}'s in (I)=(IV) do not satisfy the condition
DX =wXD.

In (V): Let

— -1 1 -1 tsts + tgt —2t5t
X, — a Xy — and D, — [ fots Ttelr 5t6 .
—a —1 —a a 2t7tg —(tsts + tetr)

Then DX = wXD is equivalent to X; = —X1D; and Xy = D;X5. More precisely,

¥ - ( atsts + atglty + 2ty —2alsts — tsts — Lotr ) ;
atsts + atets + 2rts  —2atste — tsts — tetr
[ tsts+tetr + 2atste  —tsts — tetr — 2atsts
B ( Urts + alsts + atgly —2trts — atsts — atgly ) '
Thus

atsts + atgty + 27ty = —a,
tsts + tety + 2atsts = 1,
tsts — totr = 1.

Now, we begin to solve the above equations. Firstly,

(1) If @ = 0, then t;ts = 0, tgty = 0 and t5tg = 1.

(2) If a # 0, then trtg = a’tsts — a, tsts + tety = 1 — 2atste.
It follows that

1 0 0 0
0 1 0 0
D =
0 0 w(l — 2at5t6) —2wt5t6
0 0 w(2a%tsts —2a) —w(l — 2atsts)
We denote t5ts by t, then
10 0 0
0 1 0 0
D= with ¢ € F.
0 0 w(l-—2at) —2wt
0 0 w(2a%—2a) —w(l—2at)
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In (VI): DX = wXD is equivalent to the following equations:
atsts + atgt7 + 2t7ts = a,
t5t8 + t6t7 + 2at5t6 = 717

tsts — ety = 1.

By solving the above equations we obtain that

-1 0 0 0
0 -1 0 0

D = with ¢ € F.
0 0 w(—1-2at) —2wt

0 0 w(2d®t+2a) w(l+2at)

In (VII): DX = wX D is equivalent to the following equations:

tity 4 tots — 21ty = —1;
t1t4 + t2t3 — 2t3t4 = 1,
tity — tots = 1.

By solving the above equations we get

1+2t -2-2¢t 0 O
2t -1-2t 0 0
D = with ¢t € F.
0 0 w 0
0 0 0 w

In (VIII): DX = wX D is equivalent to the following equations:
tity 4 tots — 2t1ts = 1,
2t3t4 — t1t4 — t2t3 = ].,

11ty — tats = 1.

By solving the above equations we obtain

142t —2t 0 0
242t -1-2t 0 0

D= i with t € F.
0 0 —w 0

0 0 0 —w
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In (IX): DX = wXD is equivalent to the following equations:

tity + tots — 2t1t9 — 2atste — tsts — tet7 = 0,
—atity — atots + 2at1ts — atsts — atgty — 2t7tg = 0,
atits + atots — sty — atsts — atgty — 2trtg = 0,
2tsty — t1ty — tots — 2atstg — tsty — tgty = 0,

tity 4 totg — 2t3ty — tsts — tgty — 2atstg = 0,

tita + tots — 2t1ts + tsts + tety + 2atsts = 0,
—atity — atots + 2atsty — 2t7tg — atsts — atgty = 0,
atity + atots — 2at 1ty — 2t7ts — atsts — atgt7 = 0,
ity — tots = 1,

tsts — tgt7 = 1.

Solving the above equations reveals that they are incompatible. That is, there is no such D
which can satisfy simultaneously the conditions D? = B and DX = wXD. In conclusion, we

have the following

Lemma 3.2 D? = B and DX = wXD if and only if D is one of the following forms (t € F):

1 0 0 0
] 01 0 0
(i)
0 0 w(l-—2at) —2wt
0 0 w(2a?t—2a) —w(l—2at)
-1 0 0 0
0 -1 0 0
(ii) ;
0 0 —w(l+2at) —2wt
0 0 w(2a+2d%t) w(l+ 2at)
1+2t -2-2¢t 0 O
2t -1-2t 0 0
i ;
(i) 0 w 0
0 0 w
14+2¢ —2t 0 0
. 242t -1-2t 0 0
(iv)
0 0 —w 0
0 0 0 —w

For convenience, for all i, 7, k,l € [2], we denote by L(i, j, k,l) and R(z, 7, k,1) the left side
and the right side of (3.2), respectively.

Lemma 3.3 Let D be any matrix from Lemma 3.2. Then the action of g attached to D satisfies
L(i,j,k, 1) = R(i,j,k,1) foralli,j, k,l € [2]if and only if
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1 0 0 O

01 0 O
D=

0 0 w 2w

0 0 0 —w

Moreover, the matrices of x and gx on the standard basis are

0 0 0 -1 0 0 0 -1
0 0 0 -1 0 0 0 -1 .
and , respectively.
1 -1 0 O 1 -1 0
0o 0 0 O 0 0 0
Proof
Case 1 The matrices of g and gz are
10 0 0 0 0 —a -1
0 1 0 0 0 0 —a -1 )
and , respectively,
0 0 w — 2wat —2wt w —w
0 0 w(2a®t—2a) —w(l—2at) —wa wa 0

where a, 8 € F. On the one hand, we have
L(1,1,1,1) =g (EEn) =g- By = B,
L(2,2,2,2) = g (EasF22) = g - Eay = Fao.
On the other hand,
R(1,1,1,1) = (g E11)(g - E11) — 2(¢% - (92 - E11))(gx - E11) = (14 2a)Eq1 + 2aEss,
R(2,2,2,2) = (g E22)(g - Ea2) — 2(¢% - (9 - E22))(g - Eg2) = 2aF11 + (1 + 2a) Egs.
Therefore, the equations
L(1,1,1,1) = R(1,1,1,1) and L(2,2,2,2) = R(2,2,2,2)
hold if and only if 1 +2a =1, 2a = 0. It is clear that ¢ = 0. In addition,
L(1,1,2,1) = g(En1 Ean) = 0,
R(1,1,2,1) = (g~ En)(g - E21) — 2(¢° - (92 - E11)) (g2 - Ea1) = —2w(1 + t) Ena.
By L(1,1,2,1) = R(1,1,2,1) we have t = —1. At the same time, the matrices of g and z are

10 0 0 0 0 0 -1
01 0 0 0 0 -1
D= and X = , respectively.
0 0 w 2w 1 -1 0
0 0 0 —w 0 0 0 O
Let S ={(1,1,1,1),(2,2,2,2),(1,1,2,1)},U = [2] x [2] x [2] x [2] and U\ S be the comple-

ment of S in U. Direct calculation shows that L(i, 7, k,1) = R(i, j, k,1) for all (¢,7,k,1) € UN\S.

Case 2 The matrices of g and gz are
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-1 0 0 0 a 1
0 -1 0 0 1
D= and X = ¢ , respectively.
0 0 w(—1-2at) —w(2t) —-w w 0 0
0 0 w(2a?t+2a) w(l+ 2at) wa —wa 0 0

It is easy to see that
L(1,1,1,1) = —E11, R(1,1,1,1) = (1 + 2a) E11 + (2c0) Ea,
L(2,2,2,2) = —E9, R(2,2,2,2) = (2a)E11 + (1 + 2a) Eas.

Therefore, the equations
L(1,1,1,1) = R(1,1,1,1) and L(2,2,2,2) = R(2,2,2,2)

hold if and only if —1 =1 4 2a, 0 = 2a. Obviously, such a does not exist.
Similarly, we can also prove that any D in (iii) and (iv) of Lemma 3.2 does not satisfy (3.2).

The proof of Lemma is completed. [
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