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Abstract Let F be an algebraically closed field of characteristic 0, H be an eight-dimensional

non-semisimple Hopf algebra which is neither pointed nor unimodular and M2(F) be the full

matrix algebra of 2 × 2 over F. In this paper, we discuss and classify all H-module algebra

structures on M2(F).
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1. Introduction

The notion of Hopf algebra actions on algebras was introduced by Beattie [1,2] in 1976.

A duality theorem for Hopf module algebras was studied by Blattner and Montgomery [3] in

1985. It generalized the corresponding theorem of group actions. Later, many mathematicians

were engaged in the theory of Hopf algebra actions [4–6]. In recent years, the classification of

finite-dimensional Hopf algebra actions on algebras has drawn people’s attention extensively. In

[7], Chen and Zhang classified the Yetter-Drinfeld H4-module algebra structures on M2(k) over a

field k of characteristic ̸= 2. Gordieko [8] described and classified H4-module algebra structures

on full matrix algebra Mn(F) over an algebraically closed field of characteristic ̸= 2.

The classification of all Hopf algebras with dimension ≤ 11 over algebraically closed field F
was done by Williams [9], and conformed by Stefan [10]. The result of eight-dimensional Hopf

algebras tells us that there are six types of eight-dimensional nonsemisimple Hopf algebras up

to isomorphism. Among these, the type (H ′′
C4

)∗ is neither pointed nor unimodular [11], which

makes it much more difficult to describe completely the (H ′′
C4

)∗-actions on Mn(F) for n ≥ 3. The

aim of this paper is to discuss and classify all (H ′′
C4

)∗-actions on M2(F) by the actions of a Hopf

subalgebra and theory on square root of matrix.

2. Preliminaries

Firstly, we recall some basic concepts and results on Hopf algebra actions on algebras from

[12].
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Let H be a Hopf algebra. Denote the comultiplication and the counit ∆ and ε, respectively.

We also fix some notations as follows:

• N: the set of natural numbers,

• [n] = {1, 2, . . . , n− 1, n} for any n ∈ N,

• Mn(k): the full matrix algebra of n× n-matrices over k,

• En: n× n-identity matrix,

• GLn(k): the multiplicative group of the invertible matrices in Mn(k),

• A standard basis of M2(k): E11, E22, E12, E21,

• S1 × S2: the Cartesian product of two sets S1 and S2.

Let A be an algebra over a field k. We call A a left H-module algebra if A is a left H-module,

and

h · (ab) =
∑
(h)

(h1 · a)(h2 · b), h · 1A = ε(h)1A

for all h ∈ H and a, b ∈ A, where ∆(h) =
∑

(h)(h1 ⊗ h2). The reader can also refer to [13, 14]

for more notions about Hopf algebras and Hopf algebra actions.

Let P1, P2 ∈ Mn(k). We say P1 and P2 are weakly similar if P2 = αOP1O
−1 for some

O ∈ GLn(k) and α ∈ k∗ = k\{0}. Obviously, two similar matrices are weakly similar, and weak

similarity is an equivalence relation on Mn(k). We have the following fact [15].

Lemma 2.1 Let φ1 and φ2 be two inner automorphisms of Mn(k). If φ1(a) = P1aP
−1
1 , φ2(a) =

P2aP
−1
2 for all a ∈ Mn(k), where P1, P2 ∈ GLn(k), then φ1 = φ2 if and only if P1 is weakly

similar to P2.

Let (H ′′
C4

)∗ = F⟨g, x⟩/(g4 − 1, x2, gx− ωxg) be the eight-dimensional non-semisimple Hopf

algebra which is neither pointed nor unimodular. Its Hopf algebra structure is given by

∆(g) = g ⊗ g − 2g3x⊗ gx, ∆(x) = g2 ⊗ x+ x⊗ 1,

where ω ∈ F is a primitive 4-th root of unity.

From now on we denote H ′′′′
C4

by H. Let K = F1 ⊕ Fg2 ⊕ Fx ⊕ Fg2x and H4 = ⟨c, ν |c2 =

1, ν2 = 0, νg + gν = 0⟩ be the four-dimensional Sweedler Hopf algebra. It is clear that K is a

Hopf subalgebra of H and K ∼= H4 as Hopf algebras. So we have the following lemma from [8].

Lemma 2.2 All K-module algebra structures on M2(F) are as follows. For any C = (cij)2×2 ∈
M2(F),

(i) g2 · C = C, x · C = 0;

(ii) g2 · C = diag(1,−1)C diag(1,−1), x · C = 0;

(iii) g2 · C = diag(1,−1)C diag(1,−1), x · C =
(

a(c12+c21) c11−c22
−a(c11−c22) a(c12+c21)

)
,

and these module algebras are not isomorphic for different a ∈ F.
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3. The main result and proof

In this section we mainly describe and classify all theH-module algebra structures onM2(F).
First we give the main result of this paper as follows.

Theorem 3.1 Up to isomorphism, there are four H-module algebra structures on M2(F) such
that for all C ∈ M2(F),

(i) g · C = C, x · C = 0;

(ii) g · C = diag(1,−1)C diag(1,−1), x · C = 0;

(iii) g · C = diag(1, ω)C diag(1, ω), x · C = 0;

(iv) The matrices of g and x as linear transformations on the standard basis are

(
1 0 0 0
0 1 0 0
0 0 ω 2ω
0 0 0 −ω

)
and

(
1 0 0 −1
0 0 0 −1
1 −1 0 0
0 0 0 0

)
, respectively.

Proof By (i) and (ii) of the Lemma 2.2 in Section 2, we know all K-module structures on

M2(F). That is, the action of g2 and x on M2(F) is clear. Therefore, to describe all H-module

algebra structures on M2(F), we only need find the action of g satisfying the following conditions

gx · Eij = ω(xg · Eij),

g · (EijEkl) = (g · Eij)(g · Ekl)− 2(g2 · (gx · Eij))(gx · Ekl)

for all i, j, k, l ∈ [2]. In particular, when the action of x on M2(F) is zero, we have

g · (EijEkl) = (g · Eij)(g · Ekl) for all i, j, k, l ∈ [2].

Since M2(F) as an algebra can be generated by the standard basis, the action of g on M2(F)
is an algebraic automorphism. Since all algebraic automorphisms of M2(F) are inner, we may

assume g · C = PCP−1 for some P ∈ GL2(F). Thus g2 · C = P 2CP−2. In fact, by (i) and (ii)

of Lemma 2.2, we have g2 · C = C or g2 · C = diag(1,−1)C diag(1,−1).

If g2 ·C = C, then P 2C = CP 2 for all C ∈ M2(F) and P must be weakly similar to diag(1, 1)

or diag(1,−1).

If g2 · C = diag(1,−1)C diag(1,−1), then P 2 must be weakly similar to P = diag(1, ω).

Therefore, we have proven (i), (ii) and (iii). The proof of (iv) is much more complex, we need

make some preparation.

When the action of x is not zero, the action of g need not be an algebraic automorphism.

Hence, to describe the action of g onM2(F), we need find the matrix of g as linear transformation.

By Lemma 2.2, the matrix of g2 on the standard basis is B = diag(1, 1,−1,−1). Let

D =


d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

 and X =


0 0 −a −1

0 0 −a −1

1 −1 0 0

−a a 0 0


be the matrices of g and the matrix of x, respectively, where a ∈ F.
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First, we find those matrices D such that

D2 = B, DX = ωXD, (3.1)

g · (EijEkl) = (g · Eij)(g · Ekl)− 2(g2 · (gx · Eij))(gx · Ekl) for all i, j, k, l ∈ [2]. (3.2)

We know that a square root of a matrix Y ∈ Mn(F) is a matrix Z ∈ Mn(F) such that

Z2 = Y . It is obvious that the square root of a diagonal matrix must exist. We also know that

a square root of an invertible diagonal matrix Y must be diagonalizable, any eigenvalue of the

square root is a square root of some eigenvalue of Y (see [15]).

Since B is invertible, every square root of B is diagonalizable. It is clear that every square

root of B must be similar to one of the following nine types:

I : diag(1, 1, ω, ω), II : diag(1, 1,−ω,−ω), III : diag(−1,−1, ω, ω),

IV : diag(−1,−1,−ω,−ω), V : diag(1, 1, ω,−ω), VI : diag(−1,−1, ω,−ω),

VII : diag(1,−1, ω, ω), VIII : diag(1,−1,−ω,−ω), IX : diag(−1, 1, ω,−ω).

Let W be the set of above nine types. Thus D has the form PQP−1 for some P ∈ GL4(F)
and Q ∈ W , and D2 = (PQP−1)2 = PQ2P−1 = diag(1, 1,−1,−1). Thus Pdiag(1, 1,−1,−1) =

diag(1, 1,−1,−1)P . Direct calculation shows that P =
(

P1 0
0 P2

)
for some Pi ∈ GL2(F), i ∈ [2].

Let Q =
(

Q1 0
0 Q2

)
. Then D = PQP−1 =

(
P1Q1P

−1
1 0

0 P2Q2P
−1
2

)
. Since |PiP

−1
i | = 1, we may

assume |Pi| = 1.

Let P1 =
(
t1 t2
t3 t4

)
, P2 =

(
t5 t6
t7 t8

)
with t1t4 − t2t3 = t5t8 − t6t7 = 1, ti ∈ F. Then all square

roots of B consist of the following nine classes.

(I) : diag(1, 1, ω, ω); (II) : diag(1, 1,−ω,−ω);

(III) : diag(−1,−1, ω, ω); (IV) : diag(−1,−1,−ω,−ω);

(V) :


1 0 0 0

0 1 0 0

0 0 ω(t5t8 + t6t7) −2ωt5t6

0 0 2ωt7t8 −ω(t5t8 + t6t7)

 ;

(VI) :


−1 0 0 0

0 −1 0 0

0 0 ω(t5t8 + t6t7) −2ωt5t6

0 0 2ωt7t8 −ω(t5t8 + t6t7)

 ;

(VII) :


t1t4 + t2t3 −2t1t2 0 0

2t3t4 −(t1t4 + t2t3) 0 0

0 0 ω 0

0 0 0 ω

 ;
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(VIII) :


t1t4 + t2t3 −2t1t2

2t3t4 −(t1t4 + t2t3)

0 0 −ω 0

0 0 0 −ω

 ;

(IX) :


t1t4 + t2t3 −2t1t2 0 0

2t3t4 −(t1t4 + t2t3) 0 0

0 0 ω(t5t8 + t6t7) −2ωt5t6

0 0 2ωt7t8 −ω(t5t8 + t6t7)

 .

First it is easy to see that the matrices {D}′s in (I)–(IV) do not satisfy the condition

DX = ωXD.

In (V): Let

X1 =

(
−a −1

−a −1

)
, X2 =

(
1 −1

−a a

)
and D1 =

(
t5t8 + t6t7 −2t5t6

2t7t8 −(t5t8 + t6t7)

)
.

Then DX = ωXD is equivalent to X1 = −X1D1 and X2 = D1X2. More precisely,

X1 =

(
at5t8 + at6t7 + 2t7t8 −2at5t6 − t5t8 − t6t7

at5t8 + at6t7 + 2t7t8 −2at5t6 − t5t8 − t6t7

)
;

X2 =

(
t5t8 + t6t7 + 2at5t6 −t5t8 − t6t7 − 2at5t6

2t7t8 + at5t8 + at6t7 −2t7t8 − at5t8 − at6t7

)
.

Thus 
at5t8 + at6t7 + 2t7t8 = −a,

t5t8 + t6t7 + 2at5t6 = 1,

t5t8 − t6t7 = 1.

Now, we begin to solve the above equations. Firstly,

(1) If a = 0, then t7t8 = 0, t6t7 = 0 and t5t8 = 1.

(2) If a ̸= 0, then t7t8 = a2t5t6 − a, t5t8 + t6t7 = 1− 2at5t6.

It follows that

D =


1 0 0 0

0 1 0 0

0 0 ω(1− 2at5t6) −2ωt5t6

0 0 ω(2a2t5t6 − 2a) −ω(1− 2at5t6)

 .

We denote t5t6 by t, then

D =


1 0 0 0

0 1 0 0

0 0 ω(1− 2at) −2ωt

0 0 ω(2a2t− 2a) −ω(1− 2at)

 with t ∈ F.
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In (VI): DX = ωXD is equivalent to the following equations:


at5t8 + at6t7 + 2t7t8 = a,

t5t8 + t6t7 + 2at5t6 = −1,

t5t8 − t6t7 = 1.

By solving the above equations we obtain that

D =


−1 0 0 0

0 −1 0 0

0 0 ω(−1− 2at) −2ωt

0 0 ω(2a2t+ 2a) ω(1 + 2at)

 with t ∈ F.

In (VII): DX = ωXD is equivalent to the following equations:


t1t4 + t2t3 − 2t1t2 = −1;

t1t4 + t2t3 − 2t3t4 = 1;

t1t4 − t2t3 = 1.

By solving the above equations we get

D =


1 + 2t −2− 2t 0 0

2t −1− 2t 0 0

0 0 ω 0

0 0 0 ω

 with t ∈ F.

In (VIII): DX = ωXD is equivalent to the following equations:


t1t4 + t2t3 − 2t1t2 = 1;

2t3t4 − t1t4 − t2t3 = 1;

t1t4 − t2t3 = 1.

By solving the above equations we obtain

D =


1 + 2t −2t 0 0

2 + 2t −1− 2t 0 0

0 0 −ω 0

0 0 0 −ω

 with t ∈ F.
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In (IX): DX = ωXD is equivalent to the following equations:

t1t4 + t2t3 − 2t1t2 − 2at5t6 − t5t8 − t6t7 = 0,

−at1t4 − at2t3 + 2at1t2 − at5t8 − at6t7 − 2t7t8 = 0,

at1t4 + at2t3 − 2t3t4 − at5t8 − at6t7 − 2t7t8 = 0,

2t3t4 − t1t4 − t2t3 − 2at5t6 − t5t8 − t6t7 = 0,

t1t4 + t2t3 − 2t3t4 − t5t8 − t6t7 − 2at5t6 = 0,

t1t4 + t2t3 − 2t1t2 + t5t8 + t6t7 + 2at5t6 = 0,

−at1t4 − at2t3 + 2at3t4 − 2t7t8 − at5t8 − at6t7 = 0,

at1t4 + at2t3 − 2at1t2 − 2t7t8 − at5t8 − at6t7 = 0,

t1t4 − t2t3 = 1,

t5t8 − t6t7 = 1.

Solving the above equations reveals that they are incompatible. That is, there is no such D

which can satisfy simultaneously the conditions D2 = B and DX = ωXD. In conclusion, we

have the following

Lemma 3.2 D2 = B and DX = ωXD if and only if D is one of the following forms (t ∈ F):

(i)


1 0 0 0

0 1 0 0

0 0 ω(1− 2at) −2ωt

0 0 ω(2a2t− 2a) −ω(1− 2at)

;

(ii)


−1 0 0 0

0 −1 0 0

0 0 −ω(1 + 2at) −2ωt

0 0 ω(2a+ 2a2t) ω(1 + 2at)

;

(iii)


1 + 2t −2− 2t 0 0

2t −1− 2t 0 0

0 0 ω 0

0 0 0 ω

;

(iv)


1 + 2t −2t 0 0

2 + 2t −1− 2t 0 0

0 0 −ω 0

0 0 0 −ω

.

For convenience, for all i, j, k, l ∈ [2], we denote by L(i, j, k, l) and R(i, j, k, l) the left side

and the right side of (3.2), respectively.

Lemma 3.3 Let D be any matrix from Lemma 3.2. Then the action of g attached to D satisfies

L(i, j, k, l) = R(i, j, k, l) for all i, j, k, l ∈ [2] if and only if
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D =


1 0 0 0

0 1 0 0

0 0 ω 2ω

0 0 0 −ω

.

Moreover, the matrices of x and gx on the standard basis are
0 0 0 −1

0 0 0 −1

1 −1 0 0

0 0 0 0

 and


0 0 0 −1

0 0 0 −1

1 −1 0 0

0 0 0 0

 , respectively.

Proof

Case 1 The matrices of g and gx are
1 0 0 0

0 1 0 0

0 0 ω − 2ωat −2ωt

0 0 ω(2a2t− 2a) −ω(1− 2at)

 and


0 0 −α −1

0 0 −α −1

ω −ω 0 0

−ωα ωα 0 0

, respectively,

where α, β ∈ F. On the one hand, we have

L(1, 1, 1, 1) = g · (E11E11) = g · E11 = E11,

L(2, 2, 2, 2) = g · (E22E22) = g · E22 = E22.

On the other hand,

R(1, 1, 1, 1) = (g · E11)(g · E11)− 2(g2 · (gx · E11))(gx · E11) = (1 + 2a)E11 + 2aE22,

R(2, 2, 2, 2) = (g · E22)(g · E22)− 2(g2 · (gx · E22))(gx · E22) = 2aE11 + (1 + 2a)E22.

Therefore, the equations

L(1, 1, 1, 1) = R(1, 1, 1, 1) and L(2, 2, 2, 2) = R(2, 2, 2, 2)

hold if and only if 1 + 2a = 1, 2a = 0. It is clear that a = 0. In addition,

L(1, 1, 2, 1) = g(E11E21) = 0,

R(1, 1, 2, 1) = (g · E11)(g · E21)− 2(g2 · (gx · E11))(gx · E21) = −2ω(1 + t)E12.

By L(1, 1, 2, 1) = R(1, 1, 2, 1) we have t = −1. At the same time, the matrices of g and x are

D =


1 0 0 0

0 1 0 0

0 0 ω 2ω

0 0 0 −ω

 and X =


0 0 0 −1

0 0 0 −1

1 −1 0 0

0 0 0 0

 , respectively.

Let S = {(1, 1, 1, 1), (2, 2, 2, 2), (1, 1, 2, 1)}, U = [2]× [2]× [2]× [2] and U�S be the comple-

ment of S in U . Direct calculation shows that L(i, j, k, l) = R(i, j, k, l) for all (i, j, k, l) ∈ U�S.

Case 2 The matrices of g and gx are



642 Fengxia GAO and Shilin YANG

D =


−1 0 0 0

0 −1 0 0

0 0 ω(−1− 2at) −ω(2t)

0 0 ω(2a2t+ 2a) ω(1 + 2at)

 and X =


0 0 a 1

0 0 a 1

−ω ω 0 0

ωa −ωa 0 0

, respectively.

It is easy to see that

L(1, 1, 1, 1) = −E11, R(1, 1, 1, 1) = (1 + 2α)E11 + (2α)E22,

L(2, 2, 2, 2) = −E22, R(2, 2, 2, 2) = (2α)E11 + (1 + 2α)E22.

Therefore, the equations

L(1, 1, 1, 1) = R(1, 1, 1, 1) and L(2, 2, 2, 2) = R(2, 2, 2, 2)

hold if and only if −1 = 1 + 2a, 0 = 2a. Obviously, such a does not exist.

Similarly, we can also prove that any D in (iii) and (iv) of Lemma 3.2 does not satisfy (3.2).

The proof of Lemma is completed. �
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