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Abstract We investigate some fundamental properties of the higher order Teodorescu oper-

ators which are defined by the high order Cauchy-Pompeiu formulas in superspace. Moreover,

we get an expansion of Almansi type for k-supermonogenic functions in sense of the Teodores-

cu operators. By the expansion, a Morera type theorem, a Painleve theorem and a uniqueness

theorem for k-supermonogenic functions are obtained.
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1. Introduction

This operator is nothing else than a 2-dimensional weak singular integral operator over a

domain in the complex plane, which is right inverse to the Cauchy-Riemann operator. It reads

as follows:

Tg(z) = − 1

π

∫ ∫
Ω

g(ζ)

ζ − z
dξdη, ζ = ξ + iη,

where Ω is a bounded domain in C. It is worth noticing that the Teodoreseu integral kernel is

the Cauchy kernel, which itself is a convolution kernel obtained by translating the fundamental

solution 1
πz to the Cauchy-Riemann operator ∂ (see [1]). Recently, great progress has been made

in Teodorescu operators. Without claiming completeness, we mention some of them. One is

the Teodorescu operator in several complex variables. In this case, the kernel of the operator

is not holomorphic but still harmonic, which formally mimics the Martinelli-Bochner kernel [2].

Another direction is the Teodorescu operator in the Euclidean Clifford analysis which is a hy-

percomplex function theory with functions defined in the Euclidean space Rm and taking values

in an orthogonal Clifford algebra. In this case, the kernel of the operator is monogenic, obtained

by the fundamental solution for the Dirac operator ∂x (i.e., the vector derivative
∑m

i=1 ei∂xi)

(see [3]). However, we are interested in the Teodorescu operator in superspace. The kernel of
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the operator is supermonogenic, obtained by the fundamental solution for the Dirac operator in

superspace.

Superspaces, developed during the second half of the previous century, are spaces equipped

with both a set of commuting variables and a set of anti-commuting variables (generating the so-

called Grassmann algebra) in order to describe the properties of bosons and fermions in Quantum

Mechanics. In recent years, Sommen, DeBie and others have studied a superspace of dimension

(m, 2n) with a novel approach. Their approach is not based on algebraic geometry as in [4], nor

on differential geometry as in [5], but Clifford analysis [6]. They constructed a Laplace and a

Dirac operator, acting on functions depending on both commuting and anti-commuting variables

[7]. Furthermore the fundamental solutions of these differential operators were obtained in [8].

Besides, they defined integration in superspace by Berezin integration [9,10]. Moreover, using a

distributional approach to integration in superspace, they obtained a Stokes formula, a Morera

theorem, etc [11]. Based on their work, we want to investigate the Almansi type expansion in

superspace.

In 1899, the Almansi expansion for polyharmonic functions was given, which was equivalent

to the Fischer decomposition for polynomials [12]. The results in the case of complex analysis

and Clifford analysis have been well developed in [13,14]. But as we know, up to now there is no

hint on the Almansi expansion in superspace. We try to fill part of this gap. In [15], we studied

the Almansi type expansion in superspace by constructing special integral operators. Then, we

discussed the Almansi type expansion in superspace from normalized systems [16,17]. In this

paper, we investigate the Almansi type expansion in superspace by the high order Teodorescu

operators, inspired by an expansion of polyanalytic functions applying the iterate operator of

Pompeiu due to Pascai [18].

The paper is organized as follows. We start with a short introduction to Clifford analysis

in Rm|2n. We introduce the higher order Cauchy-Pompeiu formula in superspace [19]. By the

formula, the operators Ti are defined, which are the so-called higher order Teodorescu operators.

These operators are singular integral operators over a domain in Rm|2n, with Berezin integration.

The kernel functions of the operators are described with the help of the fundamental solutions for

all natural powers of the super Dirac operator (i.e., the Dirac operator inRm|2n), where the kernel

functions containing anti-commuting variables are more complicated than the kernel functions in

Rm. Next, we investigate some basic properties of the operators, such as the relations between

the operators Ti and Cauchy type integral, the relations of the operators Ti and Ti−1. The

most important is to obtain an expansion for k-supermonogenic functions applying the integral

operators. Besides, by the expansion, we obtain a Morera type theorem, a Painleve theorem and

a uniqueness theorem for k-supermonogenic functions.

2. Preliminaries

2.1. Superspace



Higher order Teodorescu operators in superspace 645

We study the superspace

Rm|2n = {(x, x̀) | x = (x1, . . . , xm) ∈ Rm, x̀ = (x̀1, . . . , x̀2n) ∈ Λ2n},

by introducing

Alg(xi, x̀j)⊗Alg(ei, èj) = Alg(xi, ei; x̀j , èj), i = 1, . . . ,m; j = 1, . . . , 2n,

where the scalar algebra P = Alg(xi, x̀j) and the Clifford algebra C = Alg(ei, èj), respectively

satisfy the following relations:
xixj = xjxi, i, j ∈ {1, . . . ,m},
x̀ix̀j = −x̀j x̀i, i, j ∈ {1, . . . , 2n},
xix̀j = x̀jxi, i ∈ {1, . . . ,m}, j ∈ {1, . . . , 2n},

and 

ejek + ekej = −2δjk, j, k ∈ {1, . . . ,m},
è2j è2k − è2kè2j = 0, j, k ∈ {1, . . . , n},
è2j−1è2k−1 − è2k−1è2j−1 = 0, j, k ∈ {1, . . . , n},
è2j−1è2k − è2kè2j−1 = δjk, j, k ∈ {1, . . . , n},
ej èk + èkej = 0, j ∈ {1, . . . ,m}, k ∈ {1, . . . , 2n}.

Moreover, the elements of the two algebras can commute with each other. When n = 0, we have

that C ∼= R0,m, with R0,m being the standard orthogonal Clifford algebra.

When m = 0, P ⊗ C = Λ2n ⊗W2n, where the Grassmann algebra Λ2n = Alg(x̀1, . . . , x̀2n),

and the Weyl algebra W2n = Alg(è1, . . . , è2n).

The most important element of the algebra P ⊗ C is the super vector variable:

x = x+ x̀, with x =
m∑
i=1

xiei, and x̀ =
2n∑
j=1

x̀j èj .

One can calculate that

x2 =
n∑

j=1

x̀2j−1x̀2j −
m∑
i=1

x2
i = x̀2 + x2,

where x2 = −
∑m

i=1 x
2
i .

Finally, we define a more general function space as:

Ck(Ω)⊗ Λ2n ⊗ C,

where Ck(Ω) denotes the space of the k-times continuously differentiable real-valued functions

defined in some domain Ω ⊂ Rm. We use the notation Ck(Ω)m|2n = Ck(Ω)⊗ Λ2n.

2.2. Differential operators in superspace

The left super Dirac operator is defined by

∂x· = ∂x̀ · −∂x· = 2

n∑
j=1

(è2j∂x̀2j−1 · −è2j−1∂x̀2j ·)−
m∑
i=1

ei∂xi · .
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Similarly, we define the right super Dirac operator by

·∂x = − · ∂x̀ − ·∂x.

A direct calculation shows that ∂x(x) = (x)∂x = m − 2n = M , where M is the so-called

super-dimension. The physical meaning of this super-dimension was discussed in [9].

The square of the super Dirac operator is the super Laplace operator

∆ = ∂2
x· = 4

n∑
j=1

∂x̀2j−1∂x̀2j · −
m∑
i=1

∂2
xi

· .

Definition 2.1 A function f(x) ∈ Ck(Ω)m|2n⊗C is called left k-supermonogenic (k-supermonogenic

in short) in an open set Ω ⊂ Rm if ∂k
xf(x) = 0.

2.3. Integration in superspace

The integration in superspace is defined by∫
Rm|2n

· =
∫
Rm

dV (x)

∫
B

· =
∫
B

∫
Rm

·dV (x),

where dV (x) = dx1 · · · dxm is the usual Lebesgue measure in Rm, and∫
B

· = π−n∂x̀2n · · · ∂x̀1 ·

used on Λ2n is the so-called Berezin integration.

2.4. Fundamental solutions

The fundamental solutions for the natural powers of the classical Laplace operator ∆b are

well-known [13].

We denote by ν
m|0
2l (x), l = 1, 2, . . . , a sequence of such fundamental solutions, satisfying ∆j

bν
m|0
2l (x) = ν

m|0
2l−2j(x), j < l,

∆l
bν

m|0
2l (x) = δ(x), j = l,

where δ(x) is the classical Dirac distribution in Rm. Their explicit form depends both on the

dimension m and on l. More specifically, in the case where m is odd we have that

ν
m|0
2l (x) =

r2l−m

γl−1
, γl = (−1)l+1(2−m)4ll!

Γ(l + 2− m
2 )

Γ(2− m
2 )

2π
m
2

Γ(m2 )
, r =

√
−x2.

The formulae for m even are more complicated and can be found in [13].

In the sequel, we will show the fundamental solutions for the natural powers of the super

Laplace and Dirac operators.

Lemma 2.2 ([8]) The function ν
m|2n
2k (x) defined by

ν
m|2n
2k (x) = πn

n∑
l=0

4l
(l + k − 1)!

(n− l)!(k − 1)!
ν
m|0
2l+2k(x)x̀

2n−2l

is a fundamental solution for the operator ∆k.
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The lemma means that ∆kν
m|2n
2k (x) = δ(x), where δ(x) = δ(x)π

n

n! (x̀)
2n is the super Dirac

distribution in Rm|2n.

In a similar vein one can obtain the fundamental solution ν
m|2n
2k+1(x) for the operator ∆k∂x,

by calculating ∂xν
m|2n
2k+2(x). This leads to

Lemma 2.3 ([8]) The function ν
m|2n
2k (x) defined by

ν
m|2n
2k+1(x) =πn

n−1∑
l=0

2
4l(l + k)!

(n− l − 1)!k!
ν
m|0
2l+2k+2(x)x̀

2n−2l−1−

πn
n∑

l=0

4l(l + k)!

(n− l)!k!
ν
m|0
2l+2k+1(x)x̀

2n−2l

is a fundamental solution for the operator ∆k∂x.

The lemma means that ∂2k+1
x ν

m|2n
2k+1(x) = ν

m|2n
2k+1(x)∂

2k+1
x = δ(x), where δ(x) is the super

Dirac distribution in Rm|2n.

2.5. Higher order Cauchy-Pompeiu formula in superspace

In complex analysis, a special case of the Cauchy-Pompeiu formula is the Cauchy formula

of holomorphic functions which is deduced from the Grass theorem. Analogously to this, the

Cauchy-Pompeiu formula in superspace is also a consequence of the Stokes formula in superspace

[11]. Inspired by the above-mentioned results, we developed further these ideas to construct the

higher order Cauchy-Pompeiu formulae in superspace [19].

The Clifford analysis version of Stokes formula in Rm|2n are given in the following lemma.

Lemma 2.4 ([11]) For β ∈ Λ2n, and f, g ∈ C1(Ω)m|2n ⊗ C, with Ω ⊂ Rm a compact oriented

differentiable m-dimensional manifold with smooth boundary ∂Ω the following holds:∫
Ω

∫
B

[(fβ̂∂x)g + fβ(∂xg)]dV (x) = −
∫
∂Ω

∫
B

fβdσxg +

∫
Ω

∫
B

f(β∂x̀)gdV (x).

Note that with fβ̂∂x̀ we mean the fermionic Dirac operator acting from the left on fβ but

β is not derived. We cannot switch β and ∂x̀ from place because of the anticommuting variables.

In the sequel, we will need the following lemma.

Lemma 2.5 ([6]) Let Ω be as stated before, and let f ∈ C1(Ω)⊗R0,m. Let B(y,R) be a ball

of radius R and center y contained in Ω. Further let the functions ν
m|0
k (x − y) be defined as in

Section 2.4. Then the following holds:

lim
R→0

∫
B(y,R)

ν
m|0
k (x− y)f(x)dV (x) = 0, k ∈ N,

lim
R→0

∫
∂B(y,R)

ν
m|0
k (x− y)dσxf(x) =

{
0, k > 1,

−f(y), k = 1.

Now we can show the higher order Cauchy-Pompeiu formulas in superspace which is the

most important lemma in this section, as follows:
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Lemma 2.6 ([19]) Let Ω be as stated before and Ω a compact oriented differentiable m-

dimensional manifold with smooth boundary ∂Ω. Let f(x) ∈ Ck(Ω)m|2n⊗C and let the functions

ν
m|2n
j (x− y) be the fundamental solutions for the powers of the super Dirac operator ∂x. Then∫

∂Ω

∫
B

k∑
j=1

(−1)j+1ν
m|2n
j (x− y)dσx∂

j−1
x f(x) + (−1)k+1

∫
Ω

∫
B

ν
m|2n
k (x− y)[∂k

xf(x)]dV (x)

=

{
0, y ∈ Rm\Ω.
−f(y), y ∈ Ω.

(2.1)

3. Higher order Teodorescu operators in superspace

As a consequence of this higher order Cauchy-Pompeiu formulae in superspace, we shall be

able to define higher order Teodorescu operators in superspace. In other words, the last term

in equality (2.1) for the case y ∈ Ω suggests the following definition of higher order Teodorescu

operators in superspace.

Definition 3.1 Let Ω be as stated before. If f(x) ∈ Ci(Ω)m|2n ⊗ C, then we define the operators

Ti by

Tif(y) = (−1)i
∫
Ω

∫
B

ν
m|2n
i (x− y)f(x)dV (x), i = 1, 2, . . . , (3.1)

where ν
m|2n
i (x − y) are the fundamental solutions for the operators ∂i

x. It means that in the

distributional sense that ∂i
xν

m|2n
i (x − y) = δ(x − y), where δ(x − y) stands for the super Dirac

distribution in Rm|2n. The operators Ti are the so-called higher order Teodorescu operators

in superspace, and regarded as the Cauchy principal value of singular integral operators. For

i = 1, the operator T1 is the Teodorescu operator T , which is the right inverses of the super

Dirac operator ∂x. It is a meaningful generalization of the Teodorescu operator in the Euclidean

Clifford analysis which is the right inverse of the Dirac operator ∂x. Especially we denote f as

T0f.

We now begin with investigating the links between the operators Ti and Cauchy type inte-

gral.

Theorem 3.2 Let Ω be as stated before and let f(x) ∈ Ck(Ω)m|2n ⊗ C. If f(x) is k-supermonogenic,

then for y ∈ Ω,

Tif(y) =

k−1∑
j=0

(−1)j+i+1

∫
∂Ω

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x), i = 1, 2, . . . . (3.2)

Proof Suppose that f(x) ∈ Ck(Ω)m|2n ⊗ C is k-supermonogenic. We consider a ball Γ =

B(y,R) ⊂ Ω. By Lemma 2.4 for the case β = 1, we obtain

k−1∑
j=0

(−1)j+i+1

∫
∂(Ω\Γ)

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x)



Higher order Teodorescu operators in superspace 649

= (−1)i+1

∫
∂(Ω\Γ)

∫
B

ν
m|2n
i+1 (x− y)dσxf(x)+

(−1)i+2

∫
∂(Ω\Γ)

∫
B

ν
m|2n
i+2 (x− y)dσx∂xf(x) + · · ·+

(−1)i+k

∫
∂(Ω\Γ)

∫
B

ν
m|2n
i+k (x− y)dσx∂

k
xf(x)

= (−1)i
∫
Ω\Γ

∫
B

[
(ν

m|2n
i+1 (x− y)∂x)f(x) + ν

m|2n
i+1 (x− y)(∂xf(x))

]
dV (x)+

(−1)i+1

∫
Ω\Γ

∫
B

[
(ν

m|2n
i+2 (x− y)∂x)f(x) + ν

m|2n
i+2 (x− y)(∂2

xf(x))
]
dV (x) + · · ·+

(−1)i+k−1

∫
Ω\Γ

∫
B

[
(ν

m|2n
i+k (x− y)∂x)f(x) + ν

m|2n
i+k (x− y)(∂k

xf(x))
]
dV (x)

= (−1)i
∫
Ω\Γ

∫
B

[
ν
m|2n
i (x− y)f(x) + ν

m|2n
i+1 (x− y)(∂xf(x))

]
dV (x)+

(−1)i+1

∫
Ω\Γ

∫
B

[
ν
m|2n
i+1 (x− y)f(x) + ν

m|2n
i+2 (x− y)(∂2

xf(x))
]
dV (x) + · · ·+

(−1)i+k−1

∫
Ω\Γ

∫
B

[
ν
m|2n
i+k−1(x− y)f(x) + ν

m|2n
i+k (x− y)(∂k

xf(x))
]
dV (x)

= (−1)i
∫
Ω\Γ

∫
B

ν
m|2n
i (x− y)f(x)dV (x).

On the one side, we have

lim
R→0

k−1∑
j=0

(−1)j+i+1

∫
∂(Ω\Γ)

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x)

= lim
R→0

(−1)i
∫
Ω\Γ

∫
B

ν
m|2n
i (x− y)f(x)dV (x)

= (−1)i
∫
Ω

∫
B

ν
m|2n
i (x− y)f(x)dV (x)− (−1)i lim

R→0

∫
Γ

∫
B

ν
m|2n
i (x− y)f(x)dV (x).

Now we calculate the second integral in previous equality.

Case 1 i = 2s is even. From Lemma 2.2, we have

lim
R→0

∫
Γ

∫
B

ν
m|2n
2s (x− y)f(x)dV (x)

= lim
R→0

∫
Γ

∫
B

πn
n∑

l=0

4l
(l + s− 1)!

(n− l)!(s− 1)!
ν
m|0
2l+2s(x− y)(x̀− ỳ)2n−2lf(x)dV (x).

Due to the linearity it suffices to prove this formula for f(x) = f1(x)f2(x̀), where f1(x) ∈
Ck(Ω)⊗R0,m and f2(x̀) ∈ Λ2n ⊗W2n. By Lemma 2.5, we obtain

lim
R→0

∫
Γ

ν
m|0
2l+2s(x− y)f1(x)dV (x)

∫
B

(x̀− ỳ)2n−2lf2(x̀) = 0.

Case 2 i = 2s + 1 is odd. By Lemmas 2.3 and 2.5, it can be similarly proved. Therefore, we

have

lim
R→0

∫
Γ

∫
B

ν
m|2n
i (x− y)f(x)dV (x) = 0. (3.3)
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On the other side, we have

lim
R→0

k−1∑
j=0

(−1)j+i+1

∫
∂(Ω\Γ)

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x)

=
k−1∑
j=0

(−1)j+i+1

∫
∂Ω

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x)−

k−1∑
j=0

(−1)j+i+1 lim
R→0

∫
∂Γ

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x).

The proof of the second integral in previous equality is similar to the equality (3.3). Thus, we

have

lim
R→0

∫
∂Γ

∫
B

ν
m|2n
j+i+1(x− y)dσx∂

j
xf(x) = 0, j = 0, 1, 2, . . . , k − 1.

Combining these two sides, we have the conclusion. �
This gives rise to the following properties of higher order Teodorescu operators in superspace.

Corollary 3.3 Let Ω be as stated before and let f(x) ∈ Ck(Ω)m|2n ⊗ C. If f(x) is k-supermonogenic,

then for y ∈ Ω, ∂yTif(y) = Ti−1f(y), i = 1, 2, . . . , k.

Proof From Theorem 3.2, we have

∂yTif(y) =

k−1∑
j=0

(−1)j+i+1

∫
∂Ω

∫
B

∂yν
m|2n
j+i+1(x− y)dσx∂

j
xf(x)

=
k−1∑
j=0

(−1)j+i

∫
∂Ω

∫
B

∂yν
m|2n
j+i (x− y)dσx∂

j
xf(x)

=Ti−1f(y). �

Corollary 3.3 implies that Tkf provides a particular solution to the inhomogeneous equation

∂k
yω = f(y), where f(y) is k-supermonogenic.

These above results pave the way for investigating the Almansi type expansion for k-

supermonogenic functions in the sequel.

Theorem 3.4 Let Ω be as stated before, and Ω be a compact oriented differentiable m-

dimensional manifold with smooth boundary ∂Ω. If the function f(y) ∈ Ck(Ω)m|2n ⊗ C is k-

supermonogenic, then there exist unique supermonogenic functions f0, . . . , fk−1 in the domain

Ω such that

f(y) = f0(y) + T1f1(y) + · · ·+ Tk−1fk−1(y), (3.4)

where

fj(y) = −
∫
∂Ω

∫
B

ν
m|2n
1 (x− y)dσx∂

j
xf(x), j = 0, . . . , k − 1, (3.5)

and the function ν
m|2n
1 (x− y) is the fundamental solution for the super Dirac operator.

Conversely, if the functions f0, . . . , fk−1 are supermonogenic, then the sum in (3.4) is a

k-supermonogenic function.
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Proof First, for any y ∈ Ω,

∂yfj(y) = −
∫
∂Ω

∫
B

∂yν
m|2n
1 (x− y)dσx∂

j
xf(x) = 0.

Secondly, from Corollary 3.3, we have

∂j
yf(y) =∂j

y [f0(y) + T1f1(y) + · · ·+ Tk−1fk−1(y)]

=fj(y) + T1[fj+1(y) + · · ·+ Tk−1−jfk−1(y)]

=fj(y) + T1(∂
j+1
y f(y)). (3.6)

On the other side, by Lemma 2.6 for the case k = 1, we obtain

∂j
yf(y) = −

∫
∂Ω

∫
B

ν
m|2n
1 (x− y)dσx∂

j
xf(x)−

∫
Ω

∫
B

ν
m|2n
1 (x− y)∂j+1

x f(x)dV (x)

= −
∫
∂Ω

∫
B

ν
m|2n
1 (x− y)dσx∂

j
xf(x) + T1(∂

j+1
y f(y)). (3.7)

By comparing (3.6) with (3.7), we have

fj(y) = −
∫
∂Ω

∫
B

ν
m|2n
1 (x− y)dσx∂

j
xf(x).

Conversely, if the functions f0, . . . , fk−1 are supermonogenic, then by Corollary 3.3, we have

∂k
y(f0(y) + T1f1(y) + · · ·+ Tk−1fk−1(y)) = 0.

Therefore, we obtain the conclusion. �
As the reader may have noticed, the new issue of this result is that it is valid for the domain

in superspace, without assuming in the star domain. Furthermore, it connects k-supermonogenic

functions with supermonogenic functions, and leads to the properties of k-supermonogenic func-

tions in the next section.

4. Fundamental theorems for k-supermonogenic functions

Lemma 4.1 ([11]) A function f ∈ C0(Ω)m|2n ⊗ C (with Ω being an open subset of Rm) is

supermonogenic in Ω if and only if∫
∂I

∫
B

αdσxf −
∫
I

∫
B

(α∂x̀)fdV (x) = 0, (4.1)

for every interval I ⊂ Ω and for every α in Λ2n.

Applying Lemma 4.1 (i.e., Morera theorem for supermonogenic functions), we get the fol-

lowing Morera type theorem for k-supermonogenic functions.

Theorem 4.2 Let Ω be as stated before. A function f ∈ Ck(Ω)m|2n ⊗ C is k-supermonogenic

if and only if∫
∂I

∫
B

αdσy[∂
jf − T1(∂

j+1f)]−
∫
I

∫
B

(α∂ỳ)[∂
jf − T1(∂

j+1f)]dV (y) = 0,

where j = 0, 1, . . . , k − 1, I ⊂ Ω, and α ∈ Λ2n.
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In [15], a Painleve theorem and a uniqueness theorem for supermonogenic functions were giv-

en. By Theorem 3.4, we obtain a Painleve theorem and a uniqueness theorem for k-supermonogenic

functions as follows:

Theorem 4.3 Let Ω be as stated before and Ω′ be open in Rm−1 such that Ω′ ∩Rm = Ω′. If

f(x) ∈ Ck(Ω)m|2n ⊗ C is k-supermonogenic in Ω \ Ω′, then f(x) is k-supermonogenic in Ω.

Theorem 4.4 If a function f is k-supermonogenic in the open connected set Ω ⊂ Rm and

vanishes in the open set Σ ⊂ Ω, then f is identically zero in Ω.

Acknowledgements We thank the referees for their time and comments.

References

[1] I. N. VEKUA. Generalized Analytic Functions. Pergamon Press, London, 1962.

[2] A. KYTMANOV. The Bochner-Martinelli Integral and Its Applications. Birldaiitmer Verlag, London, 1995.

[3] F. BRACKX, H. D. SCHEPPERLET, M. E. LUNA-ELIZARRARÁS, et al. The Teodorescu operator in
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