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Abstract In this paper, we investigate the robust exponential stability of a class of fractional

order Hopfield neural network with Caputo derivative, and we get some sufficient conditions to

guarantee its robust exponential stability. Finally, we use one numerical simulation example

to illustrate the correctness and effectiveness of our results.
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1. Introduction

The subject of fractional calculus was planted over 300 years ago. In recent years, fractional

calculus has played a significant role in many areas of science and engineering [1–3]. The necessary

and sufficient stability conditions for linear fractional differential equations and linear time-

delayed fractional differential equations have already been obtained in [4–6]. The stability of

nonlinear fractional order system for Caputo’s derivative was studied in [7,8]. Especially, some

excellent results about fractional-order neural networks have been investigated in [9–11].

In this paper, by making the systems translate into the nonlinear Volterra integral equation

of the second kind, and making use of the existence and uniqueness Theorem of the fractional

differential equations, and the Gronwall inequality, we will study the robust stability for the

fractional-order Hopfield neural networks as follows:

Dαxi(t) = −cixi(t) +

n∑
j=1

aijgj(xj(t)) + Ii, i = 1, 2, . . . , n, (1)

where 0 < α < 1, n corresponds to the number of units in the neural networks; xi(t) corresponds

to the state of the i-th neuron at time t; gj(xj) denotes the activation function of the j-th

neuron; aij denotes the constant connection weight of the j-th neuron on the i-th neuron; ci > 0

represents the rate with which the i-th neuron will reset its potential to the resting state when

disconnected from the network and Ii denotes external inputs. If we consider the influence of
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the disturbing function ci(t) and aij(t) in the system, then the system (1) is changed into the

system as follows:

Dαxi(t) = − (ci + ci(t))xi(t) +
n∑

j=1

(aij + aij(t))gj(xj(t)) + Ii, i = 1, 2, . . . , n. (2)

The remainder of this paper is organized as follows: In Section 2, some necessary definitions

and lemmas are presented. We give some sufficient conditions to guarantee robust exponential

stability for a class of fractional order Hopfield neural networks in Section 3. In Section 4, one

example and corresponding numerical simulation are used to illustrate the validity and feasibility

of the results obtained in Section 3.

2. Preliminaries

There are several definitions of a fractional derivative of order α, which is the extended

concept of integer order derivative. The commonly used definitions are Grunwald-Letnikov,

Riemann-Liouville, and Caputo definitions. Firstly, we will recall the definition of Caputo frac-

tional derivative and the several important lemmas.

Definition 2.1 ([12]) The Caputo fractional derivative of order α ∈ R+ of a function x(t) is

defined as

t0D
α
t x(t) =

1

Γ(m− α)

∫ t

t0

dmx(τ)

dτm
(t− τ)

m−α−1
dτ,

where m ∈ N, m − 1 ≤ α < m, dmx(τ)
dτm is the m-th derivative of x(t) in the usual sense, Γ(·) is

the gamma function, i.e., Γ(β) =
∫∞
0

sβ−1e−sds.

Consider the Cauchy problem of the following Caputo fractional differential equation{
Dαx(t) = f(t, x(t)), t ∈ [0,+∞),

x(0) = x0, x0 ∈ Rn,
(3)

where x = (x1, x2, . . . , xn)
T ∈ Rn, 0 < α < 1, f : [0,+∞×Rn → Rn is continuous in t.

Definition 2.2 ([13]) The constant x∗ is an equilibrium point of Eq. (3) if and only if f (t, x∗) = 0

for any t ∈ [0,+∞).

Definition 2.3 The zero solution of the system (1) is said to be robust exponential stable for

the disturbing function ∆C and ∆A if the equilibrium point of the system (2) is exponential

asymptotically stable.

Lemma 2.4 ([12]) Let 0 ≤ α < 1 and f(t, x) : [0,+∞]×Rn → Rn be a function such that, for

all t ∈ [0,+∞] and all x1, x2 ∈ G ⊂ Rn,

|f (t, x1)− f (t, x2)| ≤ L |x1 − x2| , (4)

where L > 0 does not depend on t ∈ [0,+∞]. Then there exists a unique solution x(t) to the

Cauchy problem (3) in the C[0,+∞].
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Lemma 2.5 ([14]) Consider the following equation{
Dαx(t) = f(t, x(t)), m− 1 < α < m,m ∈ N, t ∈ [0,+∞),

x(k)(0) = x
(k)
0 , x

(k)
0 ∈ Rn, k = 0, 1, . . . ,m− 1.

(5)

The homotopy perturbation technique yields that the initial value problem (5) is equivalent to

the nonlinear Volterra integral equation of the second kind

x(t) =
m−1∑
k=0

x
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

f (τ, x(τ))

(t− τ)
1−α dτ . (6)

In particular, if 0 < α < 1, then Eq. (6) can be written in the following form

x(t) = x
(0)
0 +

1

Γ(α)

∫ t

0

f (τ, x(τ))

(t− τ)
1−α dτ . (7)

Lemma 2.6 ([15]) Let a variable x(t) satisfy x(t) ≤ b(t) +
∫ t

0
a(τ)x(τ)dτ with a(t) and b(t)

being known real functions. Then

x(t) ≤
∫ t

0

a(τ)b(τ) exp
{∫ t

τ

a(r)dr
}
dτ + b(t). (8)

If b(t) is differentiable, then

x(t) ≤ b(0) exp
{∫ t

0

a(τ)dτ
}
+

∫ t

0

ḃ(τ) exp
{∫ t

τ

a(r)dr
}
dτ . (9)

In particular, if b(t) is a constant, we simply have

x(t) ≤ b(0) exp
{∫ t

0

a(τ)dτ
}
. (10)

3. Main results

In this section, we suppose the fractional order Hopfield neural networks (1) satisfies the

following assumptions:

(A1) gj (j = 1, 2, . . . , n) are Lipschitz-continuous on (−∞,+∞) with Lipschitz constants

Lj > 0, i.e., |gj (ξ)− gj (η)| ≤ Lj |ξ − η|, for all ξ, η ∈ (−∞,+∞);

(A2) |ci(t)| ≤ M, |aij(t)| ≤ N ;

(A3) λi = ci −M −
n∑

j=1

(|aji|+N)Li > 0.

Let λ = min{λ1, λ2, . . . , λn}. Then we have λ > 0.

Theorem 3.1 Under the assumptions (A1), (A2) and (A3), the system (1) is robust exponential

stable.

Proof Assume that x(t) = (x1(t), x2(t), . . . , xn(t))
T

is a solution of the system (1) different

from the equilibrium point x∗. Denote ei(t) = yi(t)− x∗
i , i = 1, 2, . . . , n, then ei(0) ̸= 0, and

Dαei(t) = − (ci + ci(t)) ei(t) +

n∑
j=1

(aij + aij(t))
(
gj(ej(t) + x∗

j )− gj(x
∗
j )
)
. (11)
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Let

fi(t, e(t)) = − (ci + ci(t)) ei(t) +
n∑

j=1

(aij + aij(t))
(
gj(ej(t) + x∗

j )− gj(x
∗
j )
)
, i = 1, 2, . . . , n,

and f(t, e(t)) = (f1(t, e(t)), f2(t, e(t)), . . . , fn(t, e(t)))
T
. It can be proved that the vector function

f is Lipschitz continuous according to the assumptions (A1) and (A2). By Lemma 2.4, there

exists a unique solution of the system (11) associating with one initial value. It is easy to see

that e(t) ≡ 0 is an equilibrium point of the system (11), therefore we have ei(t)ei(0) > 0 for

t ∈ [0,+∞], i = 1, 2, . . . , n. We divide our discussion into two cases.

Case 1 If ei(0) > 0, then ei(t) > 0 for t ∈ [0,+∞]. From (7) in Lemma 2.5, we have

ei(t)

= ei(0) +
1

Γ(α)

∫ t

0

− (ci + ci(t)) ei(τ) +
∑n

j=1 (aij + aij(t))
(
gj(ej(τ) + x∗

j )− gj(x
∗
j )
)

(t− τ)
1−α dτ

≤ |ei(0)|+
1

Γ(α)

∫ t

0

− (ci −M) |ei(τ)|+
∑n

j=1 (|aij |+N)Lj |ej(τ)|
(t− τ)

1−α dτ . (12)

Hence,

n∑
i=1

|ei(t)| ≤
n∑

i=1

|ei(0)|+
1

Γ(α)

∫ t

0

∑n
i=1

(
−(ci −M) +

∑n
j=1 (|aij |+N)Li

)
|ei(τ)|

(t− τ)
1−α dτ

=
n∑

i=1

|ei(0)|+
1

Γ(α)

∫ t

0

∑n
i=1 (−λi) |ei(τ)|
(t− τ)

1−α dτ

≤
n∑

i=1

|ei(0)|+
1

Γ(α)

∫ t

0

∑n
i=1 (−λ) |ei(τ)|
(t− τ)

1−α dτ . (13)

Case 2 If ei(0) < 0, then ei(t) < 0 for t ∈ [0,+∞]. Similarly to Case 1, we have

− ei(t)

= −ei(0) +
1

Γ(α)

∫ t

0

−(ci + ci(t)) (−ei(τ)) +
∑n

j=1 (−aij − aij(t))
(
gj(ej(τ) + x∗

j )− gj(x
∗
j )
)

(t− τ)
1−α dτ

≤ |ei(0)|+
1

Γ(α)

∫ t

0

−(ci −M) |ei(τ)|+
∑n

j=1 (|aij |+N)Lj |ej(τ)|
(t− τ)

1−α dτ . (14)

Therefore,

n∑
i=1

|ei(t)| =
n∑

i=1

(−ei(t))

≤
n∑

i=1

|ei(0)|+
1

Γ(α)

∫ t

0

∑n
i=1

(
−(ci −M) |ei(τ)|+

∑n
j=1 (|aij |+N)Lj |ej(τ)|

)
(t− τ)

1−α dτ

≤
n∑

i=1

|ei(0)|+
1

Γ(α)

∫ t

0

∑n
i=1 (−λ) |ei(τ)|
(t− τ)

1−α dτ . (15)
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From Cases 1 and 2, we get the inequality

∥e(t)∥ =
n∑

i=1

|ei(t)| ≤
n∑

i=1

|ei(0)| · exp
{∫ t

0

−λ

Γ(α)(t− τ)
1−α dτ

}
= ∥e(0)∥ · exp

[
−λ

Γ(α+ 1)
tα
]
,

which shows that the system (1) is robust exponential stable.

4. Illustrative examples

In the system (1), let

α = 0.8, C =

 5 0 0

0 6 0

0 0 5

 , A =

 2 −1 −1

−1 1 3

−1 3 −4

 ,

x(0) = (x1(0), x2(0), x3(0))
T
= [1, 1, 1]

T
,

G(x) = (g1(x1), g2(x2), g3(x3))
T
=

[
1

2π
arctanx1,

1

2π
arctanx2,

1

2π
arctanx3

]T
,

∆C =

−3 sin 6t 0 0

0 3 cos t 0

0 0 −3 sin t

 ,∆A =

 cos t sin t sin t

sin t cos 2t − cos 3t

sin t − cos 3t − sin 2t

 .

Then the system (1) satisfies the condition of Theorem, therefore it is robust stable (see

Figure 1).
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Figure 1 Phase plot of the fractional order Hopfield neural networks:

(a) x1(t) plane, (b) x2(t) plane, (c) x3(t) plane.
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