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Abstract In this paper, we present that if Y is a hereditarily metacompact space and

{Xn : n ∈ ω} is a countable collection of Čech-scattered metacompact spaces, then the

followings are equivalent:

(1) Y ×
∏

n∈ω Xn is metacompact,

(2) Y ×
∏

n∈ω Xn is countable metacompact,

(3) Y ×
∏

n∈ω Xn is orthocompact.

Thereby, this result generalizes Theorem 5.4 in [Tanaka, Tsukuba. J. Math., 1993, 17: 565–

587]. In addition, we obtain that if Y is a hereditarily σ-metacompact space and {Xn :

n ∈ ω} is a countable collection of Čech-scattered σ-metacompact spaces, then the product

Y ×
∏

n∈ω Xn is σ-metacompact.
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1. Introduction

The notion of C-scattered space was introduced and investigated by Telgarsky [1]. Further-

more, utilizing it to products, he proved the following:

(A) ([1]) If X is a C-scattered paracompact space, then the product X×Y is paracompact

for each paracompact space Y .

As a generalization of C-scattered space, Čech-scattered space introduced by Hohti and Yun

[2] plays an important role in study of paracompactness in countable products. Accordingly, the

following result is obtained.

(B) ([2]) If {Xn : n ∈ ω} is a countable collection of Čech-scattered paracompact spaces,

then the product
∏

n∈ω Xn is paracompact.

In 2005, Aoki and Tanaka [3] extended the above result by proving that:

(C) ([3]) If Y is a perfect paracompact space, and {Xn : n ∈ ω} is a countable collection of

Čech-scattered paracompact spaces, then the product Y ×
∏

n∈ω Xn is paracompact.

Recently, the authors [4] investigated the weak submetacompactness in countable products

and obtained that:

(D) ([4]) If Y is hereditarily weakly submetacompact, and {Xn : n ∈ ω} is a countable

collection of Čech-scattered weakly submetacompact spaces, then the product Y ×
∏

n∈ω Xn is

weakly submetacompact.
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As well known, the following diagram is easily verified:

paracompact → metacompact → σ-metacompact → weakly submetacompact.

But the reverse is not true [5,6]. In addition, Zhu [7] showed that there is a first countable,

regular separable, Lindelöf space X such that Xn is Lindelöf for each n ∈ ω, but Xω is not

σ-metacompact. Above all, it is naturally to raise the following question.

Question 1 Let Y be a hereditarily metacompact (σ-metacompact) space. Is the product

Y ×
∏

n∈ω Xn metacompact (σ-metacompact) if {Xn : n ∈ ω} is a countable collection of Čech-

scattered metacompact (σ-metacompact) spaces?

This paper mainly discusses countable products of metacompactness. Firstly, we obtain a

group of equivalent conditions, which extend Tanaka’s result in [8], among metacompactness,

countable metacompactness and orthocompactness in countable products. Finally, we give an

affirmative answer to Question 1 for σ-metacompactness.

Throughout this paper, assume that each space is Tychonoff and ω is the set of natural

numbers.

2. Preliminaries

In the rest of this section, we stated some notation and basic facts. Undefined terminology

can be found in Engelking [9]. A space X is scattered if every nonempty closed subset S has

an isolated point s. And a space X is said to be C-scattered (Čech-scattered) if for every

nonempty closed subset S of X, there exists a point s ∈ S which has a compact (Čech-complete)

neighborhood in S. Evidently, all of the scattered spaces, locally compact spaces and C-scattered

spaces are Čech-scattered.

For a subset S of X, |S| (resp., S) denotes its cardinality (resp., closure). Assume that S is

closed. Put

S∗ = {x ∈ S : x has no Čech-complete neighborhood in S.}

Let S0=S, S(α+1)=(S(α))∗, and S(α)=
∩

β<α S(β) for a limit ordinal α. Note that each S(α) is

closed in X. Furthermore, a space X is Čech-scattered if and only if X(α) = ∅ for some ordinal α.

Obviously, a Čech-scattered space is hereditary for its closed (open) subspace. A closed subset S

of X is called topped if S
∩
X(α(S)) is nonempty Čech-complete and S

∩
X(α(S)+1)=∅ for some

ordinal α(S). Denote S
∩
X(α(S)) by Top(S). For each x ∈ X, there is a unique ordinal α such

that x ∈ X(α) \X(α+1). Let rank(x)=α. Then, there is an open neighborhood base V of x in X

such that for each V ∈ V, V is topped in X and α(V ) = rank(x). A collection V of subsets of X

is a refinement of U if each member of V is contained in some member of U and
∪

V=
∪
U .

To complete our proof, the following definitions and lemmas are useful. Therefore, we briefly

state it here.

Definition 2.1 A space X is said to be metacompact (σ-metacompact, metaLindelöf, ortho-

compact) if for every open covering U of X, there is a point finite (σ-point finite, point countable,

interior preserving) open refinements V.
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Recall that a space X is said to be hereditarily metacompact (hereditarily σ-metacompact,

hereditarily metaLindelöf) if every subspace G of X is metacompact (σ-metacompact, metaLin-

delöf). And by these definitions, it is easily proved that a space X is hereditarily metacompact

(hereditarily σ-metacompact, hereditarily metaLindelöf) if and only if every open subspace G of

X is metacompact (σ-metacompact, metaLindelöf).

Lemma 2.2 ([4]) The product X × Y is Čech-scattered if X and Y are Čech-scattered spaces.

Lemma 2.3 ([9]) A Tychonoff space X is Čech-complete if and only if there exists a countable

family {Ai}i∈ω of open covers of the space X with the property that any family F of closed

subsets of X, which has the finite intersection property and contains sets of diameter less than

Ai for i ∈ ω, has nonempty intersection.

Note that the intersection
∩
F is countable compact in Lemma 2.3.

Lemma 2.4 ([10]) A space X is λ-paracompact if and only if for every directed open cover U
of X with cardinality ≤ λ, there is a locally finite open cover V of X such that {V : V ∈ V}
refines U . A space X is countably paracompact if and only if λ=ω.

Lemma 2.5 ([11]) If a product space X=
∏

α∈κ Xα is orthocompact, then X is κ-metacopmact.

3. metacompactness in countable products

In [12], the authors proved that the product of a countable collection of Čech-scattered

metacompact spaces is metacompact. By Burke [13], every perfect metacompact space is hered-

itarily metacompact. Now we discuss countable products of metacompactness again.

Theorem 3.1 If Y is a hereditarily metacompact space and {Xn : n ∈ ω} is a countable

collection of Čech-scattered metacompact spaces, then the followings are equivalent.

(a) Y ×
∏

n∈ω Xn is metacompact,

(b) Y ×
∏

n∈ω Xn is countable metacompact,

(c) Y ×
∏

n∈ω Xn is orthocompact.

Proof (a)⇒ (c) holds obviously.

(c)⇒ (b). By Lemma 2.5, it is clear.

(b)⇒ (a). This proof is a modification of [8, Theorem 5.4]. Using the proof of [14, Theorem],

we may assume that for each n ∈ ω, Xn=X and Top(X)={a} for some a ∈ X. To complete our

proof, it suffices to show that Y ×Xω is metacompact.

Let G be an arbitrary open covering of Y ×Xω and closed under finite unions. We are going

to find a point finite open refinement of G.
Let B be a base of Y ×Xω, consisting of all sets of the form D=D̃ ×

∏
i∈ω Di and for each

i ∈ ω, Di is topped, i.e., Top(Di) is Čech-complete. Then, there is a sequence {Wi,m(D) : m ∈ ω}
of open covers of Top(Di), such that if F is a collection of nonempty closed subset of Top(Di) with

the finite intersection property such that for each m ∈ ω, there are Fm ∈ F and Wm ∈ Wi,m(D)
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with Fm ⊂ Wm, then the intersection
∩
F is nonempty. Let n(D) = inf{i : Dj = X, for j ≥ i}.

And define C as follows:

(∗) (D,Wi,m(D)) ∈ C, m ∈ ω, if D=D̃ ×
∏

i∈ω Di ∈ B and Wi,m(D) is an open cover of

Top(Di), satisfying the conditions described above.

For each m ∈ ω, let (D,Wi,m(D)) ∈ C. In case of that i < n(D), let m=1. Then for

each W ∈ Wi,1(D), there is an open subset W ′ of Di such that W = W ′ ∩Top(Di). Moreover,

{W ′ : W ∈ Wi,1(D)}
∪
{Di−Top(Di)} covers Di, hence, it follows from [12, Lemma 2] that there

is an open covering Ai(D) of Di such that:

(a) Ai(D) is point finite,

(b) for each A ∈ Ai(D), A is topped and contained in some member of {W ′ : W ∈
Wi,m(D)}

∪
{Di − Top(Di)}.

In case of that i = n(D), we can also take a point finite open covering An(D)(D) of Di such

that for each A ∈ Ri(D), A is topped. And there exists a proper member A0 ∈ An(D)(D) with

a ∈ A0 and for each A∗ ∈ An(D)(D)− {A0}, a /∈ A∗.

By construction of each Ai(D), let R(D) =
∏

i≤n(D) Ai(D). Clearly, R(D) is a point finite

open covering of
∏

i≤n(D) Di.

LetR =
∏

i≤n(D) Ri ∈ R(D) with Top(R)
∩
Top(

∏
i≤n(D) Di) ̸= ∅. Then, Top(Ri)

∩
Top(Di)

̸= ∅ for each i ≤ n(R). Observe that Top(Ri)
∩
Top(Di) = Ri

∩
Top(Di) = Top(Ri). Hence, by

(ii), Top(Ri) ⊂ W for some W ∈ Wi,1(D). For R ∈ R(D), define P (R) = R ×X × · · · . Then

Top(P (R)) = Top(R)×{a}× · · · . Correspondingly, define RD̃ = D̃×P (R) = D̃×
∏

i≤n(D) Ri×
X × · · · . Thereby, for each y ∈ D̃, define R̂y = {y}×Top(P (R)). Namely, R̂y is Čech-complete.

Now define R̂y satisfying (∗∗) as follows:
(∗∗) If there are some basic open subsets E1 and E2 in Y ×Xω and some G ∈ G such that

R̂y ⊂ E1 ⊂ E1 ⊂ E2 ⊂ E2 ⊂ G.

By this way, we say that R holds (∗∗) if there exists a y ∈ D̃ such that R̂y satisfies (∗∗). Fix
a y ∈ D̃. Suppose that R̂y satisfies the condition (∗∗). Let k(R, y) = inf{n(E1) : E1 and E2 are

some basic open subsets in Y ×Xω with n(E1) = n(E2) such that R̂y ⊂ E1 ⊂ E1 ⊂ E2 ⊂ E2 ⊂ G

for some G ∈ G}. Then, there are some basic open subsets E1(R, y) = ˜E1(R, y)×
∏

i∈ω E1(R, y)i

and E2(R, y) = ˜E2(R, y)×
∏

i∈ω E2(R, y)i in Y ×Xω and some G(R, y) ∈ G such that:

(1) (a) R̂y ⊂ E1(R, y) ⊂ E1(R, y) ⊂ E2(R, y) ⊂ E2(R, y) ⊂ G(R, y);

(b) k(R, y)=n(E1(R, y)).

Let r(R, y)=max{n(D) + 1, k(R, y)}. Define H(R, y) as follows:

H(R, y) = H̃(R, y)×
∏

i<r(R,y)

P (R)i
∩

E1(R, y)i ×X × · · · = H̃(R, y)×
∏
i∈ω

H(R, y)i.

By the definition of H(R, y), we may assume that:

(2) (a) for i ∈ ω with k(R, y) ≤ i < r(R, y), let H(R, y)i = P (R)i;

(b) for i ∈ ω with i < k(R, y) and i < n(D), let H(R, y)i = P (R)i
∩
E1(R, y)i;

(c) for i ∈ ω with n(D) ≤ i < k(R, y), let H(R, y)i = {a};
(d) in case of that r(R, y) = n(D) + 1, let H(R, y)i = X for each i ≥ n(D) + 1; in case of

that r(R, y) = k(R, y) > n(D) + 1, let H(R, y)i = X for i ≥ k(R, y);
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(e) H̃(R, y) =
∩2

i=1 Ẽi(R, y).

Distinctly, H(R, y) ∈ B with R̂y ⊂ H(R, y), and contained in some member of G and for each

i ∈ ω, H(R, y)i is topped.

For each k ∈ ω, let H(R, k) = {H̃(R, y)
∩
D̃ : k(R, y) ≤ k}. For k ∈ ω, let L(R, k) = {y ∈

D̃ : k(R, y) ≤ k}. Clearly, L(R, k) ⊂ L(R, k + 1) and L(R, k) =
∪
H(R, k). By the hereditary

metacompactness of Y , there exists a collection L(R)=
∪

k∈ω L(R, k) of open subsets in Y such

that:

(3) (a) L(R, k)=
∪
L(R, k);

(b) L(R, k) refines H(R, k);

(c) each L(R, k) is point-finite in Y .

For each L ∈ L(R, k), there exists a y(L) ∈ L(R, k) such that L ⊂ ˜H(R, y(L))
∩
D̃. So

k(R, y(L)) ≤ k. Now, define O(R,L) as follows: O(R,L) = L ×
∏

i∈ω H(R, y(L))i. By the

definition, O(R,L) ∈ B and L× Top(P (R)) ⊂ O(L,R).

Put N (R,L)=P({0, 1, . . . , r(R, y(L)) − 1}). Fix an A ∈ N (R,L). Define DA(R,L) =

L×
∏

i∈ω DA(R,L)i as follows:

(4) (a) if i ∈ A with i < n(D), let DA(R,L)i = P (R)i − P (R)i
∩
E2(R)i;

(b) if i ∈ A with r(R, y(L)) = k(R, y(L)) > i ≥ n(D), let DA(R,L)i = X − {a};
(c) if i < r(R, y(L)) with i /∈ A, let DA(R,L)i = P (R)i

∩
E1(R, y(L))i;

(d) for each i with i ≥ r(R, y(L)), let DA(R,L)i = X.

Clearly, if i satisfies (4) (c) or (d), then DA(R,L)i is topped. And if i ∈ A with k(R, y(L)) ≤
i < r(R, y(L)), then DA(R,L)i = ∅. Now, we consider the other cases:

(i) if i ∈ A with i < min{n(D), k(R, y(L))};
(ii) if i ∈ A with r(R, y(L)) = k(R, y(L)) > i ≥ n(D);

(iii) if i = r(R, y(L)).

If i satisfies the conditions (i) or (ii), then DA(R,L)i does not need to be topped and hence,

there is an open covering B(DA(R,L)i) of DA(R,L)i such that for each B ∈ B(DA(R,L)i), B

is topped. Then there is a point finite, open refinement DA,i(R,L) of B(DA(R,L)i), covering

DA(R,L)i and for each D∗
i ∈ DA,i(R,L), D∗

i is topped. If i satisfies (iii), there is a proper point

finite, open covering DA,r(R,y(L))(R) of X and for each D∗
i ∈ DA,r(R,y(L))(R,L), D∗

i is topped.

Next, define the colletion D∗
A(R,L) as follows:

(5) D∗(L) = L×
∏

i∈ω D∗
i ∈ D∗

A(R,L) if for each i ∈ ω,

(a) if i ∈ A with k(R, y(L)) ≤ i < n(D), let D∗
i = ∅;

(b) if i satisfies one of the conditions (i), (ii) and (iii), let D∗
i ∈ DA,i(R,L);

(c) if i /∈ A with i < r(R, y(L)), let D∗
i = DA,i(R,L);

(d) let D∗
i = X for each i > r(R, y(L)).

With that, let DA(R,L) = {D∗ ∈ D∗
A(R,L) : D∗ ̸= ∅}. Thus, we infer that

(6) the collection DA(R,L) is point finite in Y ×Xω.

Further on, let D(R,L) =
∪
{DA(R,L) : A ∈ N (R,L)}. Therefore, by (6) and the definitions of

P (R), O(R,L), collection D(R,L) satisfies the following:

(7) (a) collection D(R,L) is point finite in Y ×Xω and L×P (R) = O(R,L)
∪
(
∪
D(R,L));
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for each D∗ ∈ D(R,L),

(b) n(D∗) = r(R, y(L)) and n(D∗) > n(D);

(c) for each i ∈ ω, α(D∗
i ) ≤ α(Di);

(d) if i ≤ n(D) with α(D∗
i ) = α(Di), then Top(D∗

i ) ⊂ Top(Ri) ⊂ Top(Di), andWi,m(D∗) =

{W
∩

D∗
i : W ∈ Wi,m+1(D)}, m ∈ ω. Thus (D∗,Wi,m(D∗)) ∈ C;

(e) if k(R, y(L)) < n(D), there is an i < k(R, y(L)) such that α(D∗
i ) < α(Di).

By constructions above, let L(R) =
∪

k∈ω L(R, k). And let

Z(D,R) = {O(R,L) : L ∈ L(R)},D(D,R) =
∪

{D(R,L) : L ∈ L(R)}.

When R does not hold (∗∗) or Top(R)
∩
Top(

∏
i≤n(D) Di) = ∅, let Z(D,R) = {∅}, D(D,R) =

{D∗}, where D∗ = R ×X × · · · . We can also take some proper sequence {Wi,m(D∗) : m ∈ ω}
such that (D∗,Wi,m(D∗)) ∈ C, m ∈ ω, as the ones described before.

Summing up discussions above, we let

Z(D) =
∪

{Z(D,R) : R ∈ R(D)},D(D) =
∪

{D(D,R) : R ∈ R(D)}.

Thereby, the following statements are straightforward by (6) and (7).

(8) (a) Z(D) is a point finite collection of basic open subsets of Y ×Xω such that every

member of Z(D) is contained in some member of G;
(b) collection D(D) is a point finite collection of basic open subsets of Y ×Xω;

(c) D=
∪

Z(D)
∪
(
∪
D(D));

for each D∗ = D̃∗ ×
∏

i∈ω D∗
i ∈ D(D,R), R =

∏
i≤n(D) Ri ∈ R(D),

(d) n(D∗) > n(D) and for each i ∈ ω, α(D∗
i ) ≤ α(Di);

(e) (D∗,Wi,m(D∗)) ∈ C such that for each i ≤ n(D), if α(D∗
i ) = α(Di), then Top(D∗

i ) ⊂
Top(Ri) and for each m ∈ ω, Wi,m(D∗) = {W

∩
D∗

i : W ∈ Wi,m+1(D)};
(f) if R satisfies (∗∗) and D∗ = L×

∏
i∈ω D∗

i for some L ∈ L(R), with k(R, y(L)) < n(D),

then there is an i < k(R, y(L)) such that α(D∗
i ) < α(Di).

Proceeding by induction on n ∈ ω, we define two families Zn and Dn as follows. Let

Z0 = {∅}, D0 = {D(0)}, where D(0) = Y × Xω. Put Wi,m = {{a}} for each i,m ∈ ω. Now

assume that we are given two families Zn and Dn of basic open subsets of Y × Xω if n = m.

And both of families Zn and Dn satisfy the following:

(9) (a) Zn =
∪
{Z(D) : D ∈ Dn−1} is a point finite collection of basic open subsets of

Y ×Xω such that every member of Zn is contained in some member of G;
(b) Dn =

∪
{D(D) : D ∈ Dn−1} is a point finite collection of basic open subsets of Y ×Xω;

for eachD = D̃×
∏

i∈ω Di ∈ Dn−1, D
∗=D̃∗×

∏
i∈ω D∗

i ∈ D(D,R), R =
∏

i≤n(D) Ri ∈ R(D),

(c) (D,Wi,m(D)) ∈ C,
(d) D=

∪
Z(D)

∪
(
∪
D(D)),

(e) n(D∗) > n(D),

(f) for each i ∈ ω, α(D∗
i ) ≤ α(Di),

(g) (D∗,Wi,m(D∗)) ∈ C such that for each i ≤ n(D), if α(D∗
i ) = α(Di), then Top(D∗

i ) ⊂
Top(Ri) and for each m ∈ ω, Wi,m(D∗) = {W

∩
D∗

i : W ∈ Wi,m+1(D)},
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(h) Y (D,R)={y ∈ D̃ : R̂y satisfies (∗∗)} for R ∈ R(D) and Y(n− 1) =
∪
{Y (D,R) : D ∈

Dn−1, R ∈ R(D)}.
(i) if y ∈ Y (D,R), R ∈ R(D) with k(R, y) < n(D), then there is an i < k(R, y) such that

α(D∗
i ) < α(Di).

By above all constructions, we can easily check that the families Zn+1 and Dn+1 satisfy the

consequents of (9) (a) ∼ (i). Let Z =
∪

n∈ω Zn. Our proof will be completed if the following

claim is true.

Claim Z is a σ-point finite open refinement of G.
By (9) (a), (b) and the induction, Z is a σ-point finite collection of open sets in Y ×Xω.

It suffices to show that Z covers Y × Xω. To show this, assume the contrary. Let (y, (xk)) ∈
Y ×Xω −

∪
Z. By (8) and (9) repeatedly, there are some collections {R(m) : m ≥ 1}, {D(m) :

m ≥ 1}, where D(0)=Y ×Xω, {y(m) : m ≥ 1} satisfying for each m ≥ 1,

(10) (a) (y, (xk)) ∈ D(m)=D̃(m)×
∏

i∈ω D(m)i ∈ D(D(m− 1), R(m)), and R(m)=∏
i≤n(D(m−1)) R(m)i ∈ R(D(m− 1)), y(m− 1) ∈ Y (m− 1),

(b) n(D(m)) > n(D(m− 1)) and α(D(m)i) ≤ α(D(m− 1)i),

(c) for i ≤ n(D(m−1)), if α(D(m)i) = α(D(m− 1)i), then Top(D(m)i) ⊂ Top(R(m− 1)i)

and for each j ∈ ω, Wi,j(D(m))={W
∩
D(m)i : W ∈ Wi,j+1(D(m− 1))},

(d) if ̂R(m− 1)y(m−1) satisfies (∗∗) with k(R(m− 1), y(m− 1)) < n(D(m− 1)), then there

is an i < k(R(m− 1), y(m− 1)) such that α(D(m)i) < α(D(m− 1)i).

Fix an i ∈ ω. By (10) (b), n(D(m)) > n(D(m−1)) for each m ≥ 1. Then there is an si ∈ ω

such that i < n(D(si)). Let s∗i = inf{m ∈ ω : i < n(D(m))}. And then, n(D(m)) > i for each

m ≥ s∗i . In addition, by (10) (b), α(D(m)i) ≤ α(D(m− 1)i) for each m ≥ 1. So, there is a ti ∈ ω

such that α(D(t)i) = α(D(ti)i) for each t ≥ ti. Let m∗
i = max{s∗i , ti}+1. Thus, i < n(D(m))

and α(D(m)i) = α(D(m∗
i )i) for m ≥ m∗

i . Moreover, by (10) (c), Top(D(m)i) ⊂ Top(R(m− 1)i)

for m ≥ m∗
i . Then there is a sequence {W (m− 1) : m ≥ m∗

i } of open subsets of X such that for

each m ≥ m∗
i , W (m− 1) ∈ Wi,m−m∗

i +1(D(m∗
i − 1)) and Top(R(m− 1)i) ⊂ W (m− 1).

Let Ki=
∩

m≥m∗
i
Top(D(m)i). Clearly Ki ⊂

∩
m≥m∗

i
Top(R(m− 1)i). It follows from Lem-

ma 2.3 that Ki is nonempty and compact. And then, define K = {y} ×
∏

i∈ω Ki. Obviously, K

is compact. By Wallace theorem in Engelking [9], there exists some G ∈ G such that K ⊂ G.

Let p = inf{n(V ) : K ⊂ V ⊂ V ⊂ G}, where V = Ṽ ×
∏

i∈ω Vi is an open subset of Y × Xω.

Then, there exists an m0 ∈ ω such that p < n(D(m0)). Again let m1 = max{m∗
i : i < p} and

m∗ = max{m0,m1}. Therefore, we infer that p < n(D(m∗)) < n(D(m∗)) and for each i < p,

m∗
i ≤ m∗ and Top(D(m∗)i) ⊂ Vi. So, Top(R(m∗)i) ⊂ Vi. Thus R̂(m∗)y ⊂ V . Namely, R̂(m∗)y

satisfies (∗∗). Again by (10) (d), since k(R(m∗), y(m∗)) = k(R(m∗), y) ≤ p < n(D(m∗)), there

is an i < k(R(m∗), y(m∗)) such that α(D(m∗ + 1)i) < α(D(m∗)i). This is a contradiction.

Thereby the Claim is true.

For each n ∈ ω, let Zn =
∪
Zn. Then {Zn : n ∈ ω} is a countable covering of Y ×Xω. By the

countable metacompactness of Y ×Xω, there is a point finite open refinements {Gn : n ∈ ω} of

{Zn : n ∈ ω}. Observe that the collection {Gn

∩
Z : Z ∈ Zn, n ∈ ω} is a point finite refinements

of G. Hence, Y ×Xω is metacompact.
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4. Countable products of σ-metacompact spaces

By the definitions of Čech-scattered and σ-metacompact space, the following lemma can be

easily checked.

Lemma 4.1 If X is a Čech-scattered σ-metacompact space, then for every open cover U of X,

there exists a σ-point finite open cover V =
∪

n∈ω Vn of X such that for each V ∈ V, V is topped

and is contained in some element of U .
Since point finite is σ-point finite, we are wandering σ-metacompactness in countable prod-

ucts. The following theorem is a modification of [15, Theorem 3.4], and for completeness, we

briefly state its proof here.

Theorem 4.2 If Y is a hereditarily σ-metacompact space and {Xn : n ∈ ω} is a countable collec-
tion of Čech-scattered σ-metacompact spaces, then the product Y ×

∏
n∈ω Xn is σ-metacompact.

Proof Let G be an arbitrary open covering of Y ×Xω and closed under finite unions. We are

going to find a σ-point finite open refinement of G.
Let B, D = D̃×

∏
i∈ω Di, n(D), C, R(D) and Wi,m(D), m ∈ ω be the same ones described

in Theorem 3.1. By the same manners as Theorem 3.1, we can construct two collections Zi(D)

and Di(D), i ∈ ω, such that:

(1’) (a) Z(D) =
∪

i∈ω Zi(D) is a σ-point finite collection of basic open subsets of Y ×Xω

such that every member of Z(D) is contained in some member of G,
(b) D(D) =

∪
i∈ω Di(D) is a σ-point finite collection of basic open subsets of Y ×Xω,

(c) D =
∪
Z(D)

∪
(
∪

D(D)),

for each D∗ = D̃∗ ×
∏

i∈ω D∗
i ∈ D(D,R), R =

∏
i≤n(D) Ri ∈ R(D),

(d) n(D∗) > n(D) and for each i ∈ ω, α(D∗
i ) ≤ α(Di),

(e) (D∗,Wi,m(D∗)) ∈ C such that for each i ≤ n(D), if α(D∗
i ) = α(Di), then Top(D∗

i ) ⊂
Top(Ri) and for each m ∈ ω, Wi,m(D∗) = {W

∩
D∗

i : W ∈ Wi,m+1(D)},
(f) if R satisfies (∗∗) of Theorem 3.1 and D∗ = L ×

∏
i∈ω D∗

i for some L ∈ L(R), with

k(R, y(L)) < n(D), then there is an i < k(R, y(L)) such that α(D∗
i ) < α(Di).

Now, proceeding by induction on n ∈ ω, we define two families Zn and Dn as follows. Let

Z0 = {∅}, D0 = {D(0)}, where D(0) = Y × Xω. Put Wi,m = {{a}} for each i,m ∈ ω. Now

assume that when n = m, both of the families Zn and Dn of basic open subsets of Y ×Xω are

given and satisfy the following:

(2’) (a) Zn =
∪
{Z(D) : D ∈ Dn−1} is a σ-point finite collection of basic open subsets of

Y ×Xω such that every member of Zn is contained in some member of G,
(b) Dn =

∪
{D(D) : D ∈ Dn−1} is a σ-point finite collection of basic open subsets of

Y ×Xω,

for each D = D̃ ×
∏

i∈ω Di ∈ Dn−1, D
∗ = D̃∗ ×

∏
i∈ω D∗

i ∈ D(D,R), R =
∏

i≤n(D) Ri ∈
R(D),

(c) (D,Wi,m(D)) ∈ C
(d) D =

∪
Z(D)

∪
(
∪
D(D)),
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(e) n(D∗) > n(D),

(f) for each i ∈ ω, α(D∗
i ) ≤ α(Di),

(g) (D∗,Wi,m(D∗)) ∈ C such that for each i ≤ n(D), if α(D∗
i ) = α(Di), then Top(D∗

i ) ⊂
Top(Ri) and for each m ∈ ω, Wi,m(D∗) = {W

∩
D∗

i : W ∈ Wi,m+1(D)},
(h) Y (D,R) = {y ∈ D̃ : R̂y satisfies (∗∗)} of Theorem 3.1 for R ∈ R(D) and Y(n − 1) =∪

{Y (D,R) : D ∈ Dn−1, R ∈ R(D)}.
(i) if y ∈ Y (D,R), R ∈ R(D) with k(R, y) < n(D), then there is an i < k(R, y) such that

α(D∗
i ) < α(Di).

By above constructions, we infer that the families Zn+1 and Dn+1 satisfy the consequents

of (2’) (a) ∼ (i). Let Z =
∪

n∈ω Zn. By the analogous way of proof of Claim in Theorem 3.1, we

have that Z is a σ-point finite open refinement of G. And hence the proof is completed. �
Similarly, the following theorem is direct.

Theorem 4.3 If Y is a hereditary metaLindelöf space and {Xn : n ∈ ω} is a countable collection
of Čech-scattered metaLindelöf spaces, then the product Y ×

∏
n∈ω Xn is metaLindelöf.

Consequently, combining Theorems 4.2 and 4.3, we have the following result.

Corollary 4.4 If Y is a hereditarily σ-metacompact (metaLindelöf) space and {Xn : n ∈ ω}
is a countable collection of C-scattered σ-metacompact (metaLindelöf) spaces, then the product

Y ×
∏

n∈ω Xn is σ-metacompact (metaLindelöf).

Acknowledgements The authors are very grateful to the referees for their helpful comments

and suggestions.

References

[1] R. TELGARSKY. C-scattered and paracompact spaces. Fund. Math., 1971, 73(1): 59–74.
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