Metacompactness in Countable Products

Jianjun WANG

Department of Mathematics, Sichuan Agricultural University, Sichuan 625014, P. R. China

Abstract In this paper, we present that if Y is a hereditarily metacompact space and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered metacompact spaces, then the followings are equivalent:

- (1) $Y \times \prod_{n \in \omega} X_n$ is metacompact,
- (2) $Y \times \prod_{n \in \omega} X_n$ is countable metacompact,
- (3) $Y \times \prod_{n \in \omega} X_n$ is orthocompact.

Thereby, this result generalizes Theorem 5.4 in [Tanaka, Tsukuba. J. Math., 1993, 17: 565–587]. In addition, we obtain that if Y is a hereditarily σ -metacompact space and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered σ -metacompact spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is σ -metacompact.

Keywords metacompact; σ -metacompact; Čech-scattered

MR(2010) Subject Classification 54B10; 54D15; 54D20

1. Introduction

The notion of C-scattered space was introduced and investigated by Telgarsky [1]. Furthermore, utilizing it to products, he proved the following:

(A) ([1]) If X is a C-scattered paracompact space, then the product $X \times Y$ is paracompact for each paracompact space Y.

As a generalization of C-scattered space, Čech-scattered space introduced by Hohti and Yun [2] plays an important role in study of paracompactness in countable products. Accordingly, the following result is obtained.

(B) ([2]) If $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered paracompact spaces, then the product $\prod_{n \in \omega} X_n$ is paracompact.

In 2005, Aoki and Tanaka [3] extended the above result by proving that:

(C) ([3]) If Y is a perfect paracompact space, and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered paracompact spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is paracompact.

Recently, the authors [4] investigated the weak submetacompactness in countable products and obtained that:

(D) ([4]) If Y is hereditarily weakly submetacompact, and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered weakly submetacompact spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is weakly submetacompact.

Received January 27, 2015; Accepted April 27, 2015

Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 14ZB0007). E-mail address: jianjunw55@163.com

As well known, the following diagram is easily verified:

paracompact \rightarrow metacompact \rightarrow σ -metacompact \rightarrow weakly submetacompact.

But the reverse is not true [5,6]. In addition, Zhu [7] showed that there is a first countable, regular separable, Lindelöf space X such that X^n is Lindelöf for each $n \in \omega$, but X^{ω} is not σ -metacompact. Above all, it is naturally to raise the following question.

Question 1 Let Y be a hereditarily metacompact (σ -metacompact) space. Is the product $Y \times \prod_{n \in \omega} X_n$ metacompact (σ -metacompact) if $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered metacompact (σ -metacompact) spaces?

This paper mainly discusses countable products of metacompactness. Firstly, we obtain a group of equivalent conditions, which extend Tanaka's result in [8], among metacompactness, countable metacompactness and orthocompactness in countable products. Finally, we give an affirmative answer to Question 1 for σ -metacompactness.

Throughout this paper, assume that each space is Tychonoff and ω is the set of natural numbers.

2. Preliminaries

In the rest of this section, we stated some notation and basic facts. Undefined terminology can be found in Engelking [9]. A space X is scattered if every nonempty closed subset S has an isolated point s. And a space X is said to be C-scattered (Čech-scattered) if for every nonempty closed subset S of X, there exists a point $s \in S$ which has a compact (Čech-complete) neighborhood in S. Evidently, all of the scattered spaces, locally compact spaces and C-scattered spaces are Čech-scattered.

For a subset S of X, |S| (resp., \overline{S}) denotes its cardinality (resp., closure). Assume that S is closed. Put

$$S^* = \{x \in S : x \text{ has no Čech-complete neighborhood in } S.\}$$

Let $S^0 = S$, $S^{(\alpha+1)} = (S^{(\alpha)})^*$, and $S^{(\alpha)} = \bigcap_{\beta < \alpha} S^{(\beta)}$ for a limit ordinal α . Note that each $S^{(\alpha)}$ is closed in X. Furthermore, a space X is Čech-scattered if and only if $X^{(\alpha)} = \emptyset$ for some ordinal α . Obviously, a Čech-scattered space is hereditary for its closed (open) subspace. A closed subset $S^{(\alpha)}$ of X is called topped if $S \cap X^{(\alpha(S))}$ is nonempty Čech-complete and $S \cap X^{(\alpha(S)+1)} = \emptyset$ for some ordinal $\alpha(S)$. Denote $S \cap X^{(\alpha(S))}$ by Top(S). For each $x \in X$, there is a unique ordinal α such that $x \in X^{(\alpha)} \setminus X^{(\alpha+1)}$. Let $rank(x) = \alpha$. Then, there is an open neighborhood base $\mathcal V$ of x in X such that for each $Y \in \mathcal V$, \overline{Y} is topped in X and $\alpha(\overline{Y}) = rank(x)$. A collection $\mathcal V$ of subsets of X is a refinement of $\mathcal U$ if each member of $\mathcal V$ is contained in some member of $\mathcal U$ and $\mathcal V = \bigcup \mathcal U$.

To complete our proof, the following definitions and lemmas are useful. Therefore, we briefly state it here.

Definition 2.1 A space X is said to be metacompact (σ -metacompact, metaLindelöf, orthocompact) if for every open covering \mathcal{U} of X, there is a point finite (σ -point finite, point countable, interior preserving) open refinements \mathcal{V} .

Recall that a space X is said to be hereditarily metacompact (hereditarily σ -metacompact, hereditarily metaLindelöf) if every subspace G of X is metacompact (σ -metacompact, metaLindelöf). And by these definitions, it is easily proved that a space X is hereditarily metacompact (hereditarily σ -metacompact, hereditarily metaLindelöf) if and only if every open subspace G of X is metacompact (σ -metacompact, metaLindelöf).

Lemma 2.2 ([4]) The product $X \times Y$ is Čech-scattered if X and Y are Čech-scattered spaces.

Lemma 2.3 ([9]) A Tychonoff space X is Čech-complete if and only if there exists a countable family $\{A_i\}_{i\in\omega}$ of open covers of the space X with the property that any family \mathcal{F} of closed subsets of X, which has the finite intersection property and contains sets of diameter less than A_i for $i \in \omega$, has nonempty intersection.

Note that the intersection $\bigcap \mathcal{F}$ is countable compact in Lemma 2.3.

Lemma 2.4 ([10]) A space X is λ -paracompact if and only if for every directed open cover \mathcal{U} of X with cardinality $\leq \lambda$, there is a locally finite open cover \mathcal{V} of X such that $\{\overline{V}: V \in \mathcal{V}\}$ refines \mathcal{U} . A space X is countably paracompact if and only if $\lambda = \omega$.

Lemma 2.5 ([11]) If a product space $X = \prod_{\alpha \in \kappa} X_{\alpha}$ is orthocompact, then X is κ -metacopmact.

3. metacompactness in countable products

In [12], the authors proved that the product of a countable collection of Čech-scattered metacompact spaces is metacompact. By Burke [13], every perfect metacompact space is hereditarily metacompact. Now we discuss countable products of metacompactness again.

Theorem 3.1 If Y is a hereditarily metacompact space and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered metacompact spaces, then the followings are equivalent.

- (a) $Y \times \prod_{n \in \omega} X_n$ is metacompact,
- (b) $Y \times \prod_{n \in \omega} X_n$ is countable metacompact,
- (c) $Y \times \prod_{n \in \omega} X_n$ is orthocompact.

Proof (a) \Rightarrow (c) holds obviously.

- (c) \Rightarrow (b). By Lemma 2.5, it is clear.
- (b) \Rightarrow (a). This proof is a modification of [8, Theorem 5.4]. Using the proof of [14, Theorem], we may assume that for each $n \in \omega$, $X_n = X$ and $\text{Top}(X) = \{a\}$ for some $a \in X$. To complete our proof, it suffices to show that $Y \times X^{\omega}$ is metacompact.

Let \mathcal{G} be an arbitrary open covering of $Y \times X^{\omega}$ and closed under finite unions. We are going to find a point finite open refinement of \mathcal{G} .

Let \mathcal{B} be a base of $Y \times X^{\omega}$, consisting of all sets of the form $D = \widetilde{D} \times \prod_{i \in \omega} D_i$ and for each $i \in \omega$, $\overline{D_i}$ is topped, i.e., $\text{Top}(\overline{D_i})$ is Čech-complete. Then, there is a sequence $\{W_{i,m}(D) : m \in \omega\}$ of open covers of $\text{Top}(\overline{D_i})$, such that if \mathcal{F} is a collection of nonempty closed subset of $\text{Top}(\overline{D_i})$ with the finite intersection property such that for each $m \in \omega$, there are $F_m \in \mathcal{F}$ and $W_m \in \mathcal{W}_{i,m}(D)$

with $F_m \subset W_m$, then the intersection $\bigcap \mathcal{F}$ is nonempty. Let $n(D) = \inf\{i : D_j = X, \text{ for } j \geq i\}$. And define \mathcal{C} as follows:

(*) $(D, \mathcal{W}_{i,m}(D)) \in \mathcal{C}$, $m \in \omega$, if $D = \widetilde{D} \times \prod_{i \in \omega} D_i \in \mathcal{B}$ and $\mathcal{W}_{i,m}(D)$ is an open cover of $\text{Top}(\overline{D_i})$, satisfying the conditions described above.

For each $m \in \omega$, let $(D, \mathcal{W}_{i,m}(D)) \in \mathcal{C}$. In case of that i < n(D), let m=1. Then for each $W \in \mathcal{W}_{i,1}(D)$, there is an open subset W' of $\overline{D_i}$ such that $W = W' \cap \text{Top}(\overline{D_i})$. Moreover, $\{W' : W \in \mathcal{W}_{i,1}(D)\} \cup \{\overline{D_i} - \text{Top}(\overline{D_i})\}$ covers $\overline{D_i}$, hence, it follows from [12, Lemma 2] that there is an open covering $\mathcal{A}_i(D)$ of D_i such that:

- (a) $A_i(D)$ is point finite,
- (b) for each $A \in \mathcal{A}_i(D)$, \overline{A} is topped and contained in some member of $\{W': W \in \mathcal{W}_{i,m}(D)\} \bigcup \{\overline{D_i} \text{Top}(\overline{D_i})\}$.

In case of that i = n(D), we can also take a point finite open covering $\mathcal{A}_{n(D)}(D)$ of D_i such that for each $A \in \mathcal{R}_i(D)$, \overline{A} is topped. And there exists a proper member $A_0 \in \mathcal{A}_{n(D)}(D)$ with $a \in A_0$ and for each $A^* \in \mathcal{A}_{n(D)}(D) - \{A_0\}$, $a \notin A^*$.

By construction of each $\mathcal{A}_i(D)$, let $\mathcal{R}(D) = \prod_{i \leq n(D)} \mathcal{A}_i(D)$. Clearly, $\mathcal{R}(D)$ is a point finite open covering of $\prod_{i \leq n(D)} D_i$.

Let $R = \prod_{i \leq n(D)} R_i \in \mathcal{R}(D)$ with $\operatorname{Top}(\overline{R}) \cap \operatorname{Top}(\prod_{i \leq n(D)} \overline{D_i}) \neq \emptyset$. Then, $\operatorname{Top}(\overline{R_i}) \cap \operatorname{Top}(\overline{D_i}) \neq \emptyset$ for each $i \leq n(R)$. Observe that $\operatorname{Top}(\overline{R_i}) \cap \operatorname{Top}(\overline{D_i}) = \overline{R_i} \cap \operatorname{Top}(\overline{D_i}) = \operatorname{Top}(\overline{R_i})$. Hence, by (ii), $\operatorname{Top}(\overline{R_i}) \subset W$ for some $W \in \mathcal{W}_{i,1}(D)$. For $R \in \mathcal{R}(D)$, define $P(R) = R \times X \times \cdots$. Then $\operatorname{Top}(\overline{P(R)}) = \operatorname{Top}(\overline{R}) \times \{a\} \times \cdots$. Correspondingly, define $R_{\widetilde{D}} = \widetilde{D} \times P(R) = \widetilde{D} \times \prod_{i \leq n(D)} R_i \times X \times \cdots$. Thereby, for each $y \in \widetilde{D}$, define $\widehat{R_y} = \{y\} \times \operatorname{Top}(\overline{P(R)})$. Namely, $\widehat{R_y}$ is Čech-complete. Now define $\widehat{R_y}$ satisfying (**) as follows:

(**) If there are some basic open subsets E_1 and E_2 in $Y \times X^{\omega}$ and some $G \in \mathcal{G}$ such that $\widehat{R}_y \subset E_1 \subset \overline{E_1} \subset E_2 \subset \overline{E_2} \subset G$.

By this way, we say that R holds (**) if there exists a $y \in \widetilde{D}$ such that \widehat{R}_y satisfies (**). Fix a $y \in \widetilde{D}$. Suppose that \widehat{R}_y satisfies the condition (**). Let $k(R,y) = \inf\{n(E_1) : E_1 \text{ and } E_2 \text{ are some basic open subsets in } Y \times X^\omega \text{ with } n(E_1) = n(E_2) \text{ such that } \widehat{R}_y \subset E_1 \subset \overline{E_1} \subset E_2 \subset \overline{E_2} \subset G$ for some $G \in \mathcal{G}$. Then, there are some basic open subsets $E_1(R,y) = E_1(R,y) \times \prod_{i \in \omega} E_1(R,y)_i$ and $E_2(R,y) = E_2(R,y) \times \prod_{i \in \omega} E_2(R,y)_i$ in $Y \times X^\omega$ and some $G(R,y) \in \mathcal{G}$ such that:

- (1) (a) $\widehat{R}_y \subset E_1(R,y) \subset \overline{E_1(R,y)} \subset E_2(R,y) \subset \overline{E_2(R,y)} \subset G(R,y);$
- (b) $k(R, y) = n(E_1(R, y)).$

Let $r(R, y) = \max\{n(D) + 1, k(R, y)\}$. Define H(R, y) as follows:

$$H(R,y) = \widetilde{H(R,y)} \times \prod_{i < r(R,y)} P(R)_i \bigcap E_1(R,y)_i \times X \times \dots = \widetilde{H(R,y)} \times \prod_{i \in \omega} H(R,y)_i.$$

By the definition of H(R, y), we may assume that:

- (2) (a) for $i \in \omega$ with $k(R, y) \leq i < r(R, y)$, let $H(R, y)_i = P(R)_i$;
- (b) for $i \in \omega$ with i < k(R, y) and i < n(D), let $H(R, y)_i = P(R)_i \cap E_1(R, y)_i$;
- (c) for $i \in \omega$ with $n(D) \leq i < k(R, y)$, let $H(R, y)_i = \{a\}$;
- (d) in case of that r(R, y) = n(D) + 1, let $H(R, y)_i = X$ for each $i \ge n(D) + 1$; in case of that r(R, y) = k(R, y) > n(D) + 1, let $H(R, y)_i = X$ for $i \ge k(R, y)$;

(e)
$$\widetilde{H(R,y)} = \bigcap_{i=1}^{2} \widetilde{E_i(R,y)}$$
.

Distinctly, $H(R, y) \in \mathcal{B}$ with $\widehat{R}_y \subset H(R, y)$, and contained in some member of \mathcal{G} and for each $i \in \omega$, $\overline{H(R, y)_i}$ is topped.

For each $k \in \omega$, let $\mathcal{H}(R,k) = \{\widetilde{H(R,y)} \cap \widetilde{D} : k(R,y) \leq k\}$. For $k \in \omega$, let $L(R,k) = \{y \in \widetilde{D} : k(R,y) \leq k\}$. Clearly, $L(R,k) \subset L(R,k+1)$ and $L(R,k) = \bigcup \mathcal{H}(R,k)$. By the hereditary metacompactness of Y, there exists a collection $\mathcal{L}(R) = \bigcup_{k \in \omega} \mathcal{L}(R,k)$ of open subsets in Y such that:

- (3) (a) $L(R,k) = \bigcup \mathcal{L}(R,k)$;
- (b) $\mathcal{L}(R,k)$ refines $\mathcal{H}(R,k)$;
- (c) each $\mathcal{L}(R, k)$ is point-finite in Y.

For each $L \in \mathcal{L}(R,k)$, there exists a $y(L) \in L(R,k)$ such that $L \subset H(R,y(L)) \cap \widetilde{D}$. So $k(R,y(L)) \leq k$. Now, define O(R,L) as follows: $O(R,L) = L \times \prod_{i \in \omega} H(R,y(L))_i$. By the definition, $O(R,L) \in \mathcal{B}$ and $L \times \text{Top}(\overline{P(R)}) \subset O(L,R)$.

Put $\mathcal{N}(R,L) = \mathcal{P}(\{0,1,\ldots,r(R,y(L))-1\})$. Fix an $A \in \mathcal{N}(R,L)$. Define $D_A(R,L) = L \times \prod_{i \in \omega} D_A(R,L)_i$ as follows:

- (4) (a) if $i \in A$ with i < n(D), let $D_A(R, L)_i = P(R)_i \overline{P(R)_i \cap E_2(R)_i}$;
- (b) if $i \in A$ with $r(R, y(L)) = k(R, y(L)) > i \ge n(D)$, let $D_A(R, L)_i = X \{a\}$;
- (c) if i < r(R, y(L)) with $i \notin A$, let $D_A(R, L)_i = P(R)_i \cap E_1(R, y(L))_i$;
- (d) for each i with $i \geq r(R, y(L))$, let $D_A(R, L)_i = X$.

Clearly, if i satisfies (4) (c) or (d), then $\overline{D_A(R,L)_i}$ is topped. And if $i \in A$ with $k(R,y(L)) \le i < r(R,y(L))$, then $D_A(R,L)_i = \emptyset$. Now, we consider the other cases:

- (i) if $i \in A$ with $i < \min\{n(D), k(R, y(L))\}$;
- (ii) if $i \in A$ with $r(R, y(L)) = k(R, y(L)) > i \ge n(D)$;
- (iii) if i = r(R, y(L)).

If i satisfies the conditions (i) or (ii), then $\overline{D_A(R,L)_i}$ does not need to be topped and hence, there is an open covering $\mathcal{B}(\overline{D_A(R,L)_i})$ of $\overline{D_A(R,L)_i}$ such that for each $B \in \mathcal{B}(\overline{D_A(R,L)_i})$, \overline{B} is topped. Then there is a point finite, open refinement $\mathcal{D}_{A,i}(R,L)$ of $\mathcal{B}(\overline{D_A(R,L)_i})$, covering $D_A(R,L)_i$ and for each $D_i^* \in \mathcal{D}_{A,i}(R,L)$, $\overline{D_i^*}$ is topped. If i satisfies (iii), there is a proper point finite, open covering $\mathcal{D}_{A,r(R,y(L))}(R)$ of X and for each $D_i^* \in \mathcal{D}_{A,r(R,y(L))}(R,L)$, $\overline{D_i^*}$ is topped. Next, define the colletion $\mathcal{D}_A^*(R,L)$ as follows:

- (5) $D^*(L) = L \times \prod_{i \in \omega} D_i^* \in \mathcal{D}_A^*(R, L)$ if for each $i \in \omega$,
- (a) if $i \in A$ with $k(R, y(L)) \le i < n(D)$, let $D_i^* = \emptyset$;
- (b) if i satisfies one of the conditions (i), (ii) and (iii), let $D_i^* \in \mathcal{D}_{A,i}(R,L)$;
- (c) if $i \notin A$ with i < r(R, y(L)), let $D_i^* = D_{A,i}(R, L)$;
- (d) let $D_i^* = X$ for each i > r(R, y(L)).

With that, let $\mathcal{D}_A(R,L) = \{D^* \in \mathcal{D}_A^*(R,L) : D^* \neq \emptyset\}$. Thus, we infer that

(6) the collection $\mathcal{D}_A(R,L)$ is point finite in $Y \times X^{\omega}$.

Further on, let $\mathcal{D}(R, L) = \bigcup \{\mathcal{D}_A(R, L) : A \in \mathcal{N}(R, L)\}$. Therefore, by (6) and the definitions of P(R), O(R, L), collection $\mathcal{D}(R, L)$ satisfies the following:

(7) (a) collection $\mathcal{D}(R,L)$ is point finite in $Y \times X^{\omega}$ and $L \times P(R) = O(R,L) \setminus J(\bigcup \mathcal{D}(R,L))$;

for each $D^* \in \mathcal{D}(R, L)$,

- (b) $n(D^*) = r(R, y(L))$ and $n(D^*) > n(D)$;
- (c) for each $i \in \omega$, $\alpha(\overline{D_i^*}) \leq \alpha(\overline{D_i})$;
- (d) if $i \leq n(D)$ with $\alpha(\overline{D_i^*}) = \alpha(\overline{D_i})$, then $\operatorname{Top}(\overline{D_i^*}) \subset \operatorname{Top}(\overline{R_i}) \subset \operatorname{Top}(\overline{D_i})$, and $\mathcal{W}_{i,m}(D^*) = \{W \cap \overline{D_i^*} : W \in \mathcal{W}_{i,m+1}(D)\}, m \in \omega$. Thus $(D^*, \mathcal{W}_{i,m}(D^*)) \in \mathcal{C}$;
 - (e) if k(R, y(L)) < n(D), there is an i < k(R, y(L)) such that $\alpha(\overline{D_i^*}) < \alpha(\overline{D_i})$.

By constructions above, let $\mathcal{L}(R) = \bigcup_{k \in \omega} \mathcal{L}(R, k)$. And let

$$\mathcal{Z}(D,R) = \{ O(R,L) : L \in \mathcal{L}(R) \}, \mathcal{D}(D,R) = \bigcup \{ \mathcal{D}(R,L) : L \in \mathcal{L}(R) \}.$$

When R does not hold (**) or $\text{Top}(\overline{R}) \cap \text{Top}(\prod_{i \leq n(D)} \overline{D_i}) = \emptyset$, let $\mathcal{Z}(D, R) = \{\emptyset\}$, $\mathcal{D}(D, R) = \{D^*\}$, where $D^* = R \times X \times \cdots$. We can also take some proper sequence $\{W_{i,m}(D^*) : m \in \omega\}$ such that $(D^*, W_{i,m}(D^*)) \in \mathcal{C}$, $m \in \omega$, as the ones described before.

Summing up discussions above, we let

$$\mathcal{Z}(D) = \bigcup \{\mathcal{Z}(D,R) : R \in \mathcal{R}(D)\}, \mathcal{D}(D) = \bigcup \{\mathcal{D}(D,R) : R \in \mathcal{R}(D)\}.$$

Thereby, the following statements are straightforward by (6) and (7).

- (8) (a) $\mathcal{Z}(D)$ is a point finite collection of basic open subsets of $Y \times X^{\omega}$ such that every member of $\mathcal{Z}(D)$ is contained in some member of \mathcal{G} ;
 - (b) collection $\mathcal{D}(D)$ is a point finite collection of basic open subsets of $Y \times X^{\omega}$;
 - (c) $D = \bigcup \mathcal{Z}(D) \bigcup (\bigcup \mathcal{D}(D));$

for each
$$D^* = \widetilde{D^*} \times \prod_{i \in \omega} D_i^* \in \mathcal{D}(D, R), R = \prod_{i < n(D)} R_i \in \mathcal{R}(D),$$

- (d) $n(D^*) > n(D)$ and for each $i \in \omega$, $\alpha(\overline{D_i^*}) \le \alpha(\overline{D_i})$;
- (e) $(D^*, \mathcal{W}_{i,m}(D^*)) \in \mathcal{C}$ such that for each $i \leq n(D)$, if $\alpha(\overline{D_i^*}) = \alpha(\overline{D_i})$, then $\text{Top}(\overline{D_i^*}) \subset \text{Top}(\overline{R_i})$ and for each $m \in \omega$, $\mathcal{W}_{i,m}(D^*) = \{W \cap \overline{D_i^*} : W \in \mathcal{W}_{i,m+1}(D)\}$;
- (f) if R satisfies (**) and $D^* = L \times \prod_{i \in \omega} D_i^*$ for some $L \in \mathcal{L}(R)$, with k(R, y(L)) < n(D), then there is an i < k(R, y(L)) such that $\alpha(\overline{D_i^*}) < \alpha(\overline{D_i})$.

Proceeding by induction on $n \in \omega$, we define two families \mathcal{Z}_n and \mathcal{D}_n as follows. Let $\mathcal{Z}_0 = \{\emptyset\}$, $\mathcal{D}_0 = \{D(0)\}$, where $D(0) = Y \times X^{\omega}$. Put $\mathcal{W}_{i,m} = \{\{a\}\}$ for each $i, m \in \omega$. Now assume that we are given two families \mathcal{Z}_n and \mathcal{D}_n of basic open subsets of $Y \times X^{\omega}$ if n = m. And both of families \mathcal{Z}_n and \mathcal{D}_n satisfy the following:

- (9) (a) $\mathcal{Z}_n = \bigcup \{\mathcal{Z}(D) : D \in \mathcal{D}_{n-1}\}$ is a point finite collection of basic open subsets of $Y \times X^{\omega}$ such that every member of \mathcal{Z}_n is contained in some member of \mathcal{G} ;
 - (b) $\mathcal{D}_n = \bigcup \{\mathcal{D}(D) : D \in \mathcal{D}_{n-1}\}$ is a point finite collection of basic open subsets of $Y \times X^{\omega}$; for each $D = \widetilde{D} \times \prod_{i \in \omega} D_i \in \mathcal{D}_{n-1}$, $D^* = \widetilde{D^*} \times \prod_{i \in \omega} D_i^* \in \mathcal{D}(D, R)$, $R = \prod_{i \leq n(D)} R_i \in \mathcal{R}(D)$,
 - (c) $(D, \mathcal{W}_{i,m}(D)) \in \mathcal{C}$,
 - (d) $D = \bigcup \mathcal{Z}(D) \bigcup (\bigcup \mathcal{D}(D)),$
 - (e) $n(D^*) > n(D)$,
 - (f) for each $i \in \omega$, $\alpha(\overline{D_i^*}) \leq \alpha(\overline{D_i})$,
- (g) $(D^*, \mathcal{W}_{i,m}(D^*)) \in \mathcal{C}$ such that for each $i \leq n(D)$, if $\alpha(\overline{D_i^*}) = \alpha(\overline{D_i})$, then $\text{Top}(\overline{D_i^*}) \subset \text{Top}(\overline{R_i})$ and for each $m \in \omega$, $\mathcal{W}_{i,m}(D^*) = \{W \cap \overline{D_i^*} : W \in \mathcal{W}_{i,m+1}(D)\}$,

(h) $Y(D,R)=\{y\in \widetilde{D}: \widehat{R}_y \text{ satisfies } (**)\} \text{ for } R\in \mathcal{R}(D) \text{ and } Y(n-1)=\bigcup \{Y(D,R): D\in \mathcal{D}_{n-1}, R\in \mathcal{R}(D)\}.$

(i) if $y \in Y(D, R)$, $R \in \mathcal{R}(D)$ with k(R, y) < n(D), then there is an i < k(R, y) such that $\alpha(\overline{D_i^*}) < \alpha(\overline{D_i})$.

By above all constructions, we can easily check that the families \mathcal{Z}_{n+1} and \mathcal{D}_{n+1} satisfy the consequents of (9) (a) \sim (i). Let $\mathcal{Z} = \bigcup_{n \in \omega} \mathcal{Z}_n$. Our proof will be completed if the following claim is true.

Claim \mathcal{Z} is a σ -point finite open refinement of \mathcal{G} .

- By (9) (a), (b) and the induction, \mathcal{Z} is a σ -point finite collection of open sets in $Y \times X^{\omega}$. It suffices to show that \mathcal{Z} covers $Y \times X^{\omega}$. To show this, assume the contrary. Let $(y, (x_k)) \in Y \times X^{\omega} \bigcup \mathcal{Z}$. By (8) and (9) repeatedly, there are some collections $\{R(m) : m \geq 1\}$, $\{D(m) : m \geq 1\}$, where $D(0)=Y \times X^{\omega}$, $\{y(m) : m \geq 1\}$ satisfying for each $m \geq 1$,
- (10) (a) $(y,(x_k)) \in D(m) = D(m) \times \prod_{i \in \omega} D(m)_i \in \mathcal{D}(D(m-1), R(m))$, and $R(m) = \prod_{i < n(D(m-1))} R(m)_i \in \mathcal{R}(D(m-1))$, $y(m-1) \in Y(m-1)$,
 - (b) n(D(m)) > n(D(m-1)) and $\alpha(\overline{D(m)_i}) \le \alpha(\overline{D(m-1)_i})$,
- (c) for $i \leq n(D(m-1))$, if $\alpha(\overline{D(m)_i}) = \alpha(\overline{D(m-1)_i})$, then $\operatorname{Top}(\overline{D(m)_i}) \subset \operatorname{Top}(\overline{R(m-1)_i})$ and for each $j \in \omega$, $\mathcal{W}_{i,j}(D(m)) = \{W \cap \overline{D(m)_i} : W \in \mathcal{W}_{i,j+1}(D(m-1))\}$,
- (d) if $R(m-1)_{y(m-1)}$ satisfies (**) with k(R(m-1),y(m-1)) < n(D(m-1)), then there is an i < k(R(m-1),y(m-1)) such that $\alpha(\overline{D(m)_i}) < \alpha(\overline{D(m-1)_i})$.

Fix an $i \in \omega$. By (10) (b), n(D(m)) > n(D(m-1)) for each $m \ge 1$. Then there is an $s_i \in \omega$ such that $i < n(D(s_i))$. Let $s_i^* = \inf\{m \in \omega : i < n(D(m))\}$. And then, n(D(m)) > i for each $m \ge s_i^*$. In addition, by (10) (b), $\alpha(\overline{D(m)_i}) \le \alpha(\overline{D(m-1)_i})$ for each $m \ge 1$. So, there is a $t_i \in \omega$ such that $\alpha(\overline{D(t)_i}) = \alpha(\overline{D(t_i)_i})$ for each $t \ge t_i$. Let $m_i^* = \max\{s_i^*, t_i\} + 1$. Thus, i < n(D(m)) and $\alpha(\overline{D(m)_i}) = \alpha(\overline{D(m_i^*)_i})$ for $m \ge m_i^*$. Moreover, by (10) (c), $\operatorname{Top}(\overline{D(m)_i}) \subset \operatorname{Top}(\overline{R(m-1)_i})$ for $m \ge m_i^*$. Then there is a sequence $\{W(m-1) : m \ge m_i^*\}$ of open subsets of X such that for each $m \ge m_i^*$, $W(m-1) \in \mathcal{W}_{i,m-m_i^*+1}(D(m_i^*-1))$ and $\operatorname{Top}(\overline{R(m-1)_i}) \subset W(m-1)$.

Let $K_i = \bigcap_{m \geq m_i^*} \operatorname{Top}(\overline{D(m)_i})$. Clearly $K_i \subset \bigcap_{m \geq m_i^*} \operatorname{Top}(\overline{R(m-1)_i})$. It follows from Lemma 2.3 that K_i is nonempty and compact. And then, define $K = \{y\} \times \prod_{i \in \omega} K_i$. Obviously, K_i is compact. By Wallace theorem in Engelking [9], there exists some $G \in \mathcal{G}$ such that $K \subset G$. Let $p = \inf\{n(V) : K \subset V \subset \overline{V} \subset G\}$, where $V = \widetilde{V} \times \prod_{i \in \omega} V_i$ is an open subset of $Y \times X^\omega$. Then, there exists an $m_0 \in \omega$ such that $p < n(D(m_0))$. Again let $m_1 = \max\{m_i^* : i < p\}$ and $m^* = \max\{m_0, m_1\}$. Therefore, we infer that $p < n(D(m^*)) < n(D(m^*))$ and for each i < p, $m_i^* \leq m^*$ and $\operatorname{Top}(\overline{D(m^*)_i}) \subset V_i$. So, $\operatorname{Top}(\overline{R(m^*)_i}) \subset V_i$. Thus $\widehat{R(m^*)}_y \subset V$. Namely, $\widehat{R(m^*)}_y$ satisfies (**). Again by (10) (d), since $k(R(m^*), y(m^*)) = k(R(m^*), y) \leq p < n(D(m^*))$, there is an $i < k(R(m^*), y(m^*))$ such that $\alpha(\overline{D(m^*+1)_i}) < \alpha(\overline{D(m^*)_i})$. This is a contradiction.

Thereby the Claim is true.

For each $n \in \omega$, let $Z_n = \bigcup \mathcal{Z}_n$. Then $\{Z_n : n \in \omega\}$ is a countable covering of $Y \times X^{\omega}$. By the countable metacompactness of $Y \times X^{\omega}$, there is a point finite open refinements $\{G_n : n \in \omega\}$ of $\{Z_n : n \in \omega\}$. Observe that the collection $\{G_n \cap Z : Z \in \mathcal{Z}_n, n \in \omega\}$ is a point finite refinements of \mathcal{G} . Hence, $Y \times X^{\omega}$ is metacompact.

4. Countable products of σ -metacompact spaces

By the definitions of Čech-scattered and σ -metacompact space, the following lemma can be easily checked.

Lemma 4.1 If X is a Čech-scattered σ -metacompact space, then for every open cover \mathcal{U} of X, there exists a σ -point finite open cover $\mathcal{V} = \bigcup_{n \in \omega} \mathcal{V}_n$ of X such that for each $V \in \mathcal{V}$, \overline{V} is topped and is contained in some element of \mathcal{U} .

Since point finite is σ -point finite, we are wandering σ -metacompactness in countable products. The following theorem is a modification of [15, Theorem 3.4], and for completeness, we briefly state its proof here.

Theorem 4.2 If Y is a hereditarily σ -metacompact space and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered σ -metacompact spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is σ -metacompact.

Proof Let \mathcal{G} be an arbitrary open covering of $Y \times X^{\omega}$ and closed under finite unions. We are going to find a σ -point finite open refinement of \mathcal{G} .

Let \mathcal{B} , $D = \widetilde{D} \times \prod_{i \in \omega} D_i$, n(D), \mathcal{C} , $\mathcal{R}(D)$ and $\mathcal{W}_{i,m}(D)$, $m \in \omega$ be the same ones described in Theorem 3.1. By the same manners as Theorem 3.1, we can construct two collections $\mathcal{Z}_i(D)$ and $\mathcal{D}_i(D)$, $i \in \omega$, such that:

- (1') (a) $\mathcal{Z}(D) = \bigcup_{i \in \omega} \mathcal{Z}_i(D)$ is a σ -point finite collection of basic open subsets of $Y \times X^{\omega}$ such that every member of $\mathcal{Z}(D)$ is contained in some member of \mathcal{G} ,
 - (b) $\mathcal{D}(D) = \bigcup_{i \in \omega} \mathcal{D}_i(D)$ is a σ -point finite collection of basic open subsets of $Y \times X^{\omega}$,
 - (c) $D = \bigcup \mathcal{Z}(D) \bigcup (\bigcup \mathcal{D}(D)),$
 - for each $D^* = \widetilde{D^*} \times \prod_{i \in \omega} D_i^* \in \mathcal{D}(D, R), R = \prod_{i \leq n(D)} R_i \in \mathcal{R}(D),$
 - (d) $n(D^*) > n(D)$ and for each $i \in \omega$, $\alpha(\overline{D_i^*}) \le \alpha(\overline{D_i})$,
- (e) $(D^*, \mathcal{W}_{i,m}(D^*)) \in \mathcal{C}$ such that for each $i \leq n(D)$, if $\alpha(\overline{D_i^*}) = \alpha(\overline{D_i})$, then $\text{Top}(\overline{D_i^*}) \subset \text{Top}(\overline{R_i})$ and for each $m \in \omega$, $\mathcal{W}_{i,m}(D^*) = \{W \cap \overline{D_i^*} : W \in \mathcal{W}_{i,m+1}(D)\}$,
- (f) if R satisfies (**) of Theorem 3.1 and $D^* = L \times \prod_{i \in \omega} D_i^*$ for some $L \in \mathcal{L}(R)$, with k(R, y(L)) < n(D), then there is an i < k(R, y(L)) such that $\alpha(\overline{D_i^*}) < \alpha(\overline{D_i})$.

Now, proceeding by induction on $n \in \omega$, we define two families \mathcal{Z}_n and \mathcal{D}_n as follows. Let $\mathcal{Z}_0 = \{\emptyset\}$, $\mathcal{D}_0 = \{D(0)\}$, where $D(0) = Y \times X^{\omega}$. Put $\mathcal{W}_{i,m} = \{\{a\}\}$ for each $i, m \in \omega$. Now assume that when n = m, both of the families \mathcal{Z}_n and \mathcal{D}_n of basic open subsets of $Y \times X^{\omega}$ are given and satisfy the following:

- (2') (a) $\mathcal{Z}_n = \bigcup \{\mathcal{Z}(D) : D \in \mathcal{D}_{n-1}\}$ is a σ -point finite collection of basic open subsets of $Y \times X^{\omega}$ such that every member of \mathcal{Z}_n is contained in some member of \mathcal{G} ,
- (b) $\mathcal{D}_n = \bigcup \{\mathcal{D}(D) : D \in \mathcal{D}_{n-1}\}$ is a σ -point finite collection of basic open subsets of $Y \times X^{\omega}$,

for each $D = \widetilde{D} \times \prod_{i \in \omega} D_i \in \mathcal{D}_{n-1}$, $D^* = \widetilde{D^*} \times \prod_{i \in \omega} D_i^* \in \mathcal{D}(D, R)$, $R = \prod_{i \leq n(D)} R_i \in \mathcal{R}(D)$,

- (c) $(D, \mathcal{W}_{i,m}(D)) \in \mathcal{C}$
- (d) $D = \bigcup \mathcal{Z}(D) \bigcup \bigcup \bigcup \mathcal{D}(D)$,

- (e) $n(D^*) > n(D)$,
- (f) for each $i \in \omega$, $\alpha(\overline{D_i^*}) \le \alpha(\overline{D_i})$,
- (g) $(D^*, \mathcal{W}_{i,m}(D^*)) \in \mathcal{C}$ such that for each $i \leq n(D)$, if $\alpha(\overline{D_i^*}) = \alpha(\overline{D_i})$, then $\text{Top}(\overline{D_i^*}) \subset \text{Top}(\overline{R_i})$ and for each $m \in \omega$, $\mathcal{W}_{i,m}(D^*) = \{W \cap \overline{D_i^*} : W \in \mathcal{W}_{i,m+1}(D)\}$,
- (h) $Y(D,R) = \{y \in \widetilde{D} : \widehat{R}_y \text{ satisfies } (**)\}$ of Theorem 3.1 for $R \in \mathcal{R}(D)$ and $Y(n-1) = \bigcup \{Y(D,R) : D \in \mathcal{D}_{n-1}, R \in \mathcal{R}(D)\}.$
- (i) if $y \in Y(D, R)$, $R \in \mathcal{R}(D)$ with k(R, y) < n(D), then there is an i < k(R, y) such that $\alpha(\overline{D_i^*}) < \alpha(\overline{D_i})$.

By above constructions, we infer that the families \mathcal{Z}_{n+1} and \mathcal{D}_{n+1} satisfy the consequents of (2') (a) \sim (i). Let $\mathcal{Z} = \bigcup_{n \in \omega} \mathcal{Z}_n$. By the analogous way of proof of Claim in Theorem 3.1, we have that \mathcal{Z} is a σ -point finite open refinement of \mathcal{G} . And hence the proof is completed. \square Similarly, the following theorem is direct.

Theorem 4.3 If Y is a hereditary metaLindelöf space and $\{X_n : n \in \omega\}$ is a countable collection of Čech-scattered metaLindelöf spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is metaLindelöf.

Consequently, combining Theorems 4.2 and 4.3, we have the following result.

Corollary 4.4 If Y is a hereditarily σ -metacompact (metaLindelöf) space and $\{X_n : n \in \omega\}$ is a countable collection of C-scattered σ -metacompact (metaLindelöf) spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is σ -metacompact (metaLindelöf).

Acknowledgements The authors are very grateful to the referees for their helpful comments and suggestions.

References

- [1] R. TELGARSKY. C-scattered and paracompact spaces. Fund. Math., 1971, 73(1): 59-74.
- A. HOHTI, Ziqiu YUN. Countable products of Čech-scattered supercomplete spaces. Czechoslovak Math. J., 1999, 49(3): 569-583.
- [3] E. AOKI, N. MORI, H. TANAKA. Paracompactness and the Lindelöf property in countable products. Topology Appl., 2005, 146/147: 57-66.
- [4] H. TANAKA. Submetacompactness and weak submetacompactness in countable products (II). Tsukuba J. Math., 2008, 32(1): 139–154.
- [5] E. K. VAN DOUWEN, H. H. WICKE. A real, weird topology on the reals. Houston J. Math., 1977, 3(1): 141–152.
- [6] Peiyong ZHU. The product theorems on three kinds of spaces. Northeast. Math. J., 1993, 9(3): 395-402.
- [7] Peiyong ZHU. Hereditarily σ -metacompact space and its products poperties. Acta. Math. Sinica, 1998, 41: 531–538. (in Chinese)
- [8] H. TANAKA. Covering properties in countable products. Tsukuba J. Math., 1993, 17(2): 565–587.
- [9] R. ENGLEKONG. General Topology. Heldermann, Berlin, 1989.
- [10] J. MACK. Directed cover and paracompact spaces. Canad. J. Math., 1967, 19: 649-654.
- [11] N. KEMOTO, Y. YAJIMA. Orthocompcatness in finite propduct spaces. Proc. Amer. Math. Soc., 1994, 2: 591–596.
- [12] S. HGUCHI, H. TANAKA. Covering properties in countable products (II). Comment. Math. Univ. Carolin., 2006, 47(3): 491–502.
- [13] D. K. BURKE. Covering Properties. North-Holland, Amsterdam, 1984.
- [14] K. ALSTER. On the product of a perfect paracompact space and a countable product of scattered paracompact spaces. Fund. Math., 1987, 127(3): 241–246.
- [15] Jianjun WANG. A remark on screenableness in countable products. Topology Proc., 2015, 45: 53-61.