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Metacompactness in Countable Products
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Abstract In this paper, we present that if Y is a hereditarily metacompact space and
{X» : n € w} is a countable collection of Cech-scattered metacompact spaces, then the
followings are equivalent:

(1) Y x[],c0 Xn is metacompact,

(2) Y x [I,e, Xn is countable metacompact,

(3) Y x[I,e., Xn is orthocompact.
Thereby, this result generalizes Theorem 5.4 in [Tanaka, Tsukuba. J. Math., 1993, 17: 565—
587]. In addition, we obtain that if Y is a hereditarily o-metacompact space and {X, :
n € w} is a countable collection of Cech-scattered o-metacompact spaces, then the product
Y x HnEw X, is o-metacompact.
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1. Introduction

The notion of C-scattered space was introduced and investigated by Telgarsky [1]. Further-
more, utilizing it to products, he proved the following:

(A) ([1]) If X is a C-scattered paracompact space, then the product X x Y is paracompact
for each paracompact space Y.

As a generalization of C-scattered space, Cech-scattered space introduced by Hohti and Yun
[2] plays an important role in study of paracompactness in countable products. Accordingly, the
following result is obtained.

(B) ([2]) If {X, : n € w} is a countable collection of Cech-scattered paracompact spaces,
then the product ], .,

In 2005, Aoki and Tanaka [3] extended the above result by proving that:

(C) ([3]) U'Y is a perfect paracompact space, and {X,, : n € w} is a countable collection of

X,, is paracompact.

Cech-scattered paracompact spaces, then the product Y x 11 X,, is paracompact.

new
Recently, the authors [4] investigated the weak submetacompactness in countable products

and obtained that:
(D) ([4]) If Y is hereditarily weakly submetacompact, and {X, : n € w} is a countable

collection of Cech-scattered weakly submetacompact spaces, then the product Y x [Thco Xn is

weakly submetacompact.
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As well known, the following diagram is easily verified:
paracompact — metacompact — o-metacompact — weakly submetacompact.

But the reverse is not true [5,6]. In addition, Zhu [7] showed that there is a first countable,
regular separable, Lindel6f space X such that X™ is Lindel6f for each n € w, but X% is not

o-metacompact. Above all, it is naturally to raise the following question.

Question 1 Let Y be a hereditarily metacompact (o-metacompact) space. Is the product
Y x [1,,c Xn metacompact (o-metacompact) if {X, : n € w} is a countable collection of Cech-
scattered metacompact (o-metacompact) spaces?

This paper mainly discusses countable products of metacompactness. Firstly, we obtain a
group of equivalent conditions, which extend Tanaka’s result in [8], among metacompactness,
countable metacompactness and orthocompactness in countable products. Finally, we give an
affirmative answer to Question 1 for o-metacompactness.

Throughout this paper, assume that each space is Tychonoff and w is the set of natural

numbers.

2. Preliminaries

In the rest of this section, we stated some notation and basic facts. Undefined terminology
can be found in Engelking [9]. A space X is scattered if every nonempty closed subset S has
an isolated point s. And a space X is said to be C-scattered (Cech-scattered) if for every
nonempty closed subset S of X, there exists a point s € S which has a compact (Cech—complete)
neighborhood in S. Evidently, all of the scattered spaces, locally compact spaces and C-scattered
spaces are Cech-scattered.

For a subset S of X, |S| (resp., S) denotes its cardinality (resp., closure). Assume that S is
closed. Put

S* = {x € S : 2 has no Cech-complete neighborhood in S.}

Let S°=S, S+ =(S(@)* and S(a):ﬂﬁ<a S for a limit ordinal o. Note that each S(®) is
closed in X. Furthermore, a space X is Cech-scattered if and only if X () = ) for some ordinal a.
Obviously, a Cech-scattered space is hereditary for its closed (open) subspace. A closed subset S
of X is called topped if SﬂX(a(S)) is nonempty Cech-complete and SﬂX(a(S)H):@ for some
ordinal «(S). Denote S () X (%) by Top(S). For each z € X, there is a unique ordinal a such
that x € X(@\ X(@*+1_ Let rank(z)=a. Then, there is an open neighborhood base V of z in X
such that for each V € V, V is topped in X and «(V) = rank(z). A collection V of subsets of X
is a refinement of U if each member of V is contained in some member of U and |JV={JU.

To complete our proof, the following definitions and lemmas are useful. Therefore, we briefly

state it here.

Definition 2.1 A space X is said to be metacompact (o-metacompact, metaLindel6f, ortho-
compact) if for every open covering U of X, there is a point finite (c-point finite, point countable,

interior preserving) open refinements V.
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Recall that a space X is said to be hereditarily metacompact (hereditarily o-metacompact,
hereditarily metaLindel6f) if every subspace G of X is metacompact (o-metacompact, metalin-
delof). And by these definitions, it is easily proved that a space X is hereditarily metacompact
(hereditarily o-metacompact, hereditarily metaLindeldf) if and only if every open subspace G of

X is metacompact (o-metacompact, metaLindelof).
Lemma 2.2 ([4]) The product X x Y is Cech-scattered if X and Y are Cech-scattered spaces.

Lemma 2.3 ([9]) A Tychonoff space X is Cech-complete if and only if there exists a countable
family {A;}ic., of open covers of the space X with the property that any family F of closed
subsets of X, which has the finite intersection property and contains sets of diameter less than
A; for i € w, has nonempty intersection.

Note that the intersection (| F is countable compact in Lemma 2.3.

Lemma 2.4 ([10]) A space X is A-paracompact if and only if for every directed open cover U
of X with cardinality < A, there is a locally finite open cover V of X such that {V : V € V}

refines U. A space X is countably paracompact if and only if A=w.

Lemma 2.5 ([11]) If a product space X =[] .. X4 is orthocompact, then X is k-metacopmact.

aER

3. metacompactness in countable products

In [12], the authors proved that the product of a countable collection of Cech-scattered
metacompact spaces is metacompact. By Burke [13], every perfect metacompact space is hered-

itarily metacompact. Now we discuss countable products of metacompactness again.

Theorem 3.1 IfY is a hereditarily metacompact space and {X,, : n € w} is a countable

collection of Cech-scattered metacompact spaces, then the followings are equivalent.
(a) Y x[],c. Xn is metacompact,
(b) Y x ]I, e, Xn is countable metacompact,
(c) Y x ]I, e, Xn is orthocompact.

Proof (a)= (c) holds obviously.

(¢)= (b). By Lemma 2.5, it is clear.

(b)= (a). This proof is a modification of [8, Theorem 5.4]. Using the proof of [14, Theorem],
we may assume that for each n € w, X,,=X and Top(X)={a} for some a € X. To complete our
proof, it suffices to show that ¥ x X* is metacompact.

Let G be an arbitrary open covering of ¥ x X“ and closed under finite unions. We are going
to find a point finite open refinement of G.

Let B be a base of Y x X“, consisting of all sets of the form D=D x 11.c., D:i and for each
i € w, D; is topped, i.e., Top(D;) is Cech-complete. Then, there is a sequence {Wim(D):m € w}

€W

of open covers of Top(D;), such that if F is a collection of nonempty closed subset of Top(D;) with
the finite intersection property such that for each m € w, there are F,,, € F and W,,, € W, ,,(D)
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with F,,, C W,,, then the intersection () F is nonempty. Let n(D) = inf{i : D; = X, for j > i}.
And define C as follows:

(*) (D,Wim(D)) € C, m € w, if D=D x []
Top(D;), satisfying the conditions described above.

For each m € w, let (D,W; (D)) € C. In case of that i < n(D), let m=1. Then for
each W € W), 1(D), there is an open subset W' of D, such that W = W’ Top(D;). Moreover,
{W": W e W;1(D)} U{D; — Top(D;)} covers D;, hence, it follows from [12, Lemma 2] that there
is an open covering A;(D) of D; such that:

(a) A;(D) is point finite,

(b) for each A € A;(D), A is topped and contained in some member of {W’' : W €
Wim(D)} U{D; — Top(D;)}.

In case of that i = n(D), we can also take a point finite open covering A,,p)(D) of D; such
that for each A € R;(D), A is topped. And there exists a proper member A, € Ay (py(D) with
a € Ap and for each A* € A, (py(D) — {Ao}, a ¢ A"

By construction of each A;(D), let R(D) = [[;<,,(p)Ai(D). Clearly, R(D) is a point finite
open covering of Hign(D) D;.

Let R = [[;<,,(p) i € R(D) with Top(R) N Top([[;<,,(py D) # 0. Then, Top(R;) 1 Top(D;)
# () for each i < n(R). Observe that Top(R;) () Top(D;) = R; () Top(D;) = Top(R;). Hence, by
(ii), Top(R;) C W for some W € W, 1(D). For R € R(D), define P(R) = R x X x ---. Then
Top(P(R)) = Top(R) x {a} x - -. Correspondingly, define R, = D x P(R)A: D x [Li<n(p) Ri *
X x ---. Thereby, for each y € D, define R, = {y} x Top(P(R)). Namely, R, is Cech-complete.

Now define ]/%y satisfying (xx) as follows:

D; € B and W, (D) is an open cover of

€W

(#x) If there are some basic open subsets E; and Es in Y x X“ and some G € G such that
R,CE CE CE,CE,CQG.

By this way, we say that R holds () if there exists a y € D such that ﬁy satisfies (x%). Fix
ay € D. Suppose that Ey satisfies the condition (xx). Let k(R,y) = inf{n(F;) : E; and E» are
some basic open subsets in Y x X“ with n(E;) = n(Es) such that }Aly CE,CE,CEy,CFE,CG
for some G € G}. Then, there are some basic open subsets Ey (R, y) = Elf(y%,/y) X [Lico, B1(R,y)i

and Ex(R,y) = ;(—E,/y) X [lico E2(R,y)i in Y x X and some G(R,y) € G such that:
(1) (a) R, C Ei(R,y) C Ei(R,y) C E2(R,y) C B2(R.y) C G(R.y);
(b) k(R,y)=n(E1(R,y)).

Let r(R,y)=max{n(D) + 1,k(R,y)}. Define H(R,y) as follows:

HRy)=HRy)x [[ PR:(E(Ry)ix X x---=HR,y) x [[ H(Ry)..
i<r(R,y) P€Ew

€W

By the definition of H(R,y), we may assume that:

(2) (a) for i € wwith k(R,y) <i<r(R,y), let H(R,y); = P(R);;

(b) fori € w with i < k(R,y) and i < n(D), let H(R,y); = P(R); (N E1(R,y):;

(c) fori e w with n(D) <i < k(R,y), let H(R,y); = {a};
(d) in case of that r(R,y) = n(D) + 1, let H(R,y); = X for each i > n(D) + 1; in case of
that r(R,y) = k(R,y) >n(D) + 1, let H(R,y); = X for i > k(R,y);
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() H(R.y) =N Ei(Ry).

Distinctly, H(R,y) € B with R, C H(R,y), and contained in some member of G and for each
i € w, H(R,y); is topped.

For each k € w, let H(R, k) = {H/(_}\%,/y) ND : k(R,y) < k}. For k € w, let L(R,k)={y €
D : k(R,y) < k}. Clearly, L(R, k) C L(R,k+1) and L(R, k) = |JH(R, k). By the hereditary
metacompactness of Y, there exists a collection L(R)=J,c,, L(R,k) of open subsets in ¥ such
that:

(3) (a) L(RK)=UL(R, b);

(b) L(R,k) refines H(R, k);

(¢) each L(R,k) is point-finite in Y.

For each L € L(R,k), there exists a y(L) € L(R,k) such that L C H(?%_,\JL)) ND. So
kE(R,y(L)) < k. Now, define O(R, L) as follows: O(R,L) = L x [[,c, H(R,y(L));. By the
definition, O(R, L) € B and L x Top(P(R)) C O(L, R).

Put M(R,L)=P({0,1,...,7(R,y(L)) — 1}). Fix an A € N(R,L). Define Ds(R,L) =
L x]];c., Da(R,L); as follows:

(4) (a)ifi€ A with i <n(D), let Da(R, L)- P(R); — P(R); ) E2(R);;

(b) ifi € A with r(R,y(L)) = k(R,y(L)) > n(D),let Dao(R,L); = X — {a};

(¢) ifi<r(R,y(L)) withi ¢ A, let Da(R, L) = P(R);E1(R,y(L)):;

(d) for each i with ¢ > r(R,y(L)), let Da(R,L); = X.

Clearly, if i satisfies (4) (c) or (d), then D4 (R, L); is topped. And if i € A with k(R,y(L)) <
i <r(R,y(L)), then Da(R,L); = . Now, we consider the other cases:

(i) if i € A with ¢ < min{n(D), k(R,y(L))};

(i) if i € A with r(R,y(L)) = k(R,y(L)) > i > n(D);

(iii) if ¢ =r(R,y(L)).

If i satisfies the conditions (i) or (ii), then D4 (R, L); does not need to be topped and hence,
there is an open covering B(D (R, L);) of DA(R, L); such that for each B € B(DA(R,L);), B
is topped. Then there is a point finite, open refinement Dy (R, L) of B(DA(R,L);), covering
D4(R,L); and for each D} € D4 ;(R, L), D} is topped. If i satisfies (iii), there is a proper point
finite, open covering D4 ,(r,y(r))(R) of X and for each D} € D4 (g 1)) (R, L), D is topped.
Next, define the colletion D% (R, L) as follows:

(5) D*(L) = L x [[,c,, D} € D4 (R, L) if for cach i € w,

(a) ifi € A with k(R,y(L)) <14 < n(D), let Df = {;

(b) if ¢ satisfies one of the conditions (i), (ii) and (iii), let D} € D4 (R, L);

(

(

¢) if i ¢ Awith i < r(R,y(L)), let Df = Da(R,L);

d) let Df = X for each i > r(R,y(L)).
With that, let D4(R, L) = {D* € D% (R, L) : D* # (}}. Thus, we infer that

(6) the collection Dy (R, L) is point finite in ¥ x X«.
Further on, let D(R,L) = J{Da(R,L) : A€ N(R,L)}. Therefore, by (6) and the definitions of
P(R), O(R, L), collection D(R, L) satisfies the following:

(7) (a) collection D(R, L) is point finite in Y x X* and L x P(R) = O(R, L) J(UD(R, L));
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for each D* € D(R, L),

(b) n(D*) =r(R,y(L)) and n(D*) > n(D);

(c) for each i € w, a(D}) < a(D;);

(d) ifi < n(D) with a(D}) = a(D;), then Top(Dj) C Top( ;) C Top(D;), and W, (D*) =
{WNOD;: W eW, mi1(D)}, m € w. Thus (D*, W, ,,(D*)) €

(e) if k(R,y(L)) < n(D), there is an i < k(R,y(L)) such that a(D}) < a(Dy).

By constructions above, let L(R) = [, L(R, k). And let

Z(D,R)={O(R,L): L € L(R)},D(D,R) = | AD(R,L) : L € L(R)}.

When R does not hold (x*) or Top(R) (N Top([];<,(py Di) = 0, let Z(D,R) = {0}, D(D,R) =
{D*}, where D* = R x X x ---. We can also take some proper sequence {W; ,,(D*) : m € w}
such that (D*, W; ,,(D*)) € C, m € w, as the ones described before.

Summing up discussions above, we let
2(D)=|J{2(D,R): Re R(D)},D(D) = {D(D, R) : R € R(D)}.

Thereby, the following statements are straightforward by (6) and (7).

(8) (a) Z(D) is a point finite collection of basic open subsets of ¥ x X* such that every
member of Z(D) is contained in some member of G;

(b) collection D(D) is a point finite collection of basic open subsets of Y x X*;

(©) D=UZ(D)UUD(D)):

for each D* = D* x [[,,, D} € D(D, R), R =[[;<,,(p) Ri € R(D),

(d) n(D*) > n(D) and for each i € w, a(D}) < a(D;);

(e) (D*, Wi m(D*)) € C such that for each i < n(D), if a(D}) = a(D;), then Top(D}) C
Top(R;) and for each m € w, W ,,,(D*) = {W N D : W € W; 1ni1(D)};

(f) if R satisfies () and D* = L x [, D; for some L € L(R), with k(R,y(L)) < n(D),
then there is an i < k(R, y(L)) such that a(D}) < a(D;).

Proceeding by induction on n € w, we define two families Z, and D,, as follows. Let
Zy = {0}, Dy = {D(0)}, where D(0) =Y x X*. Put W, ,,, = {{a}} for each i,m € w. Now
assume that we are given two families Z,, and D,, of basic open subsets of ¥ x X“ if n = m.
And both of families Z,, and D,, satisfy the following:

(9) (a) 2, = U{Z(D) : D € D,,_1} is a point finite collection of basic open subsets of
Y x X% such that every member of Z,, is contained in some member of G;

(b) D, =U{D(D): D € D,,_1} is a point finite collection of basic open subsets of ¥ x X*;

for each D = Dx[];c,, Di € Dn_y, D*=D*x[[,c,, Df € D(D,R), R =[I;c,y(p Bi € R(D),

1EW 1Ew

(c) (D, Wim(D))€C,

(d) D=UZ(D)UUDD)).

(&) n(D*) > n(D),

(f) for each i € w, a(D}) < a(D;),

(g) (D7 m(D*)) € C such that for each i < n(D), if a(D}) = «(D;), then Top(
Top(R;) and for each m € w, Wi m(D*) = {WNDf: W €W, mi1(D)},

i) C
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(h) Y(D,R)={y € D : R, satisfies (%)} for R € R(D) and Y(n —1) = [J{Y(D,R) : D €
Dn-1,R€ R(D)}.

(i) ify € Y(D,R), R € R(D) with k(R,y) < n(D), then there is an ¢ < k(R,y) such that
a(D}) < a(Dy).

By above all constructions, we can easily check that the families Z,,,1 and D,, 1 satisfy the
consequents of (9) (a) ~ (i). Let Z = |J

claim is true.

Z,. Our proof will be completed if the following

new

Claim Z is a o-point finite open refinement of G.

By (9) (a), (b) and the induction, Z is a o-point finite collection of open sets in ¥ x X¥.
It suffices to show that Z covers Y x X“. To show this, assume the contrary. Let (y, (xx)) €
Y x X¥ —JZ. By (8) and (9) repeatedly, there are some collections {R(m) : m > 1}, {D(m) :
m > 1}, where D(0)=Y x X, {gL(_T\nl m > 1} satisfying for each m > 1,

(10) (a) (y; (z)) € D(m)=D(m) x [I;c,, D(m)i € D(D(m — 1), R(m)), and R(m)=
[Li<n(pim-1y) B(m)i € R(D(m —1)), y(m —1) € Y(m — 1),

(b) n(D(m)) >n(D(m —1)) and a(D(m);) < a(D(m — 1)),

(¢) fori < n(D(m—1)), if a(D(m);) = a(D(m — 1);), then Top(D(m);) C Top(R(m — 1);)
and for each j € w, W, j(D(m))={W (N D(m); : W € W; j41(D(m — 1))},

(d) if R{m — 1),,,_,, satisfies () with k(R(m — 1), y(m — 1)) < n(D(m — 1)), then there
isan i < k(R(m — 1),y(m — 1)) such that a(D(m);) < a(D(m — 1);).

Fix an i € w. By (10) (b), n(D(m)) > n(D(m —1)) for each m > 1. Then thereis an s; € w
such that i < n(D(s;)). Let sf = inf{m € w :i < n(D(m))}. And then, n(D(m)) > i for each
m > s¥. In addition, by (10) (b), a(D(m);) < a(D(m — 1);) for each m > 1. So, thereisat; € w
such that a(D(t);) = a(D(t;);) for each t > ;. Let m; = max{s},t;}+1. Thus, i < n(D(m))
and a(D(m);) = a(D(m?);) for m > m}. Moreover, by (10) (c), Top(D(m);) C Top(R(m — 1);)
for m > m7. Then there is a sequence {W(m — 1) : m > m}} of open subsets of X such that for
each m > mj, W(m —1) € Wi m—m:+1(D(m; — 1)) and Top(R(m — 1);) € W(m — 1).

Let K;=N . Top(D(m);). Clearly K; C . Top(R(m — 1);). Tt follows from Lem-
ma 2.3 that K is nc;nempty and compact. And then, déﬁne K ={y} x[I,c, Ki- Obviously, K
is compact. By Wallace theorem in Engelking [9], there exists some G € G such that K C G.
Let p = inf{n(V) : K C V C V C G}, where V = V x [Tico
Then, there exists an mg € w such that p < n(D(myp)). Again let m; = max{m} : i < p} and

m>m m>m

1€EwW
V; is an open subset of Y x X“.

m* = max{mg, m1}. Therefore, we infer that p < n(D(m*)) < n(D(m™*)) and for each i < p,
m# < m* and Top(D(m*);) C Vi. So, Top(R(m*);) C V;. Thus W)y C V. Namely, W)y
satisfies (xx). Again by (10) (d), since k(R(m*),y(m*)) = k(R(m*),y) < p < n(D(m™*)), there
is an i < k(R(m*),y(m*)) such that a(D(m* + 1);) < a(D(m*);). This is a contradiction.

Thereby the Claim is true.

For eachn € w, let Z,, = J Z,. Then {Z,, : n € w} is a countable covering of Y x X“. By the
countable metacompactness of Y x X¢, there is a point finite open refinements {G,, : n € w} of
{Z, : n € w}. Observe that the collection {G,,(\Z : Z € Z,,n € w} is a point finite refinements

of G. Hence, Y x X“ is metacompact.
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4. Countable products of o-metacompact spaces

By the definitions of Cech-scattered and o-metacompact space, the following lemma can be

easily checked.

Lemma 4.1 If X is a Cech-scattered o-metacompact space, then for every open cover U of X,

there exists a o-point finite open cover V = | V,, of X such that for each V €V, V is topped

new
and is contained in some element of U.

Since point finite is o-point finite, we are wandering o-metacompactness in countable prod-
ucts. The following theorem is a modification of [15, Theorem 3.4], and for completeness, we

briefly state its proof here.

Theorem 4.2 IfY is a hereditarily o-metacompact space and {X,, : n € w} is a countable collec-

tion of Cech-scattered o-metacompact spaces, then the product Y x 11 X,, is o-metacompact.

new

Proof Let G be an arbitrary open covering of Y x X* and closed under finite unions. We are
going to find a o-point finite open refinement of G.

Let B, D = D x [Le, Di, n(D), C, R(D) and W, ,,(D), m € w be the same ones described
in Theorem 3.1. By the same manners as Theorem 3.1, we can construct two collections Z;(D)
and D;(D), i € w, such that:

(1) (a) Z2(D) = U, Zi(D) is a o-point finite collection of basic open subsets of ¥ x X¢
such that every member of Z(D) is contained in some member of G,

(b) D(D) = U,c,, Di(D) is a o-point finite collection of basic open subsets of ¥ x X,

(©) D=UZ(D)UUDD)),

for each D* = D* x [[,,, D} € D(D, R), R =[[;<,,(p) Bi € R(D),

(d) n(D*) > n(D) and for each i € w, a(D}) < a(D;),

(e) (D*,Wim(D*)) € C such that for each i < n(D), if a(D}) = a(D;), then Top(D}) C
Top(R;) and for each m € w, Wj ,,(D*) = {W N\ D : W € W; 1ni1(D)},

(f) if R satisfies (+*) of Theorem 3.1 and D* = L x [[,.,, D; for some L € L(R), with
kE(R,y(L)) < n(D), then there is an ¢ < k(R,y(L)) such that (D) < a(D;).

Now, proceeding by induction on n € w, we define two families Z,, and D,, as follows. Let
Zy = {0}, Dy = {D(0)}, where D(0) =Y x X*. Put W, ,,, = {{a}} for each i,m € w. Now

assume that when n = m, both of the families Z,, and D,, of basic open subsets of ¥ x X“ are
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given and satisfy the following:

(2) (a) 2, =U{Z(D): D € D,,_1} is a o-point finite collection of basic open subsets of
Y x X“ such that every member of Z,, is contained in some member of G,

(b) D, = U{DD) : D € D,_1} is a o-point finite collection of basic open subsets of
Y x Xv,

for each D = D x []
R(D),

(c) (D,Wim(D))€C

d) D=Uz2D)UUD(D)),

D; € Dp_y, D* = D* x [, Df € D(D,R), R = ], (p) Ri €
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e) n(D*)>n(D),
) for each i € w, a(D}) < a(D;),
g) (D*, W;m(D*)) € C such that for each i < n(D), if a(D}) = a(D;), then Top(D) C

(h) Y(D,R)={yeD: fiy satisfies (xx)} of Theorem 3.1 for R € R(D) and Y(n — 1) =
A{Y(D,R): D e D,_1,Re R(D)}.

(i) ify € Y(D,R), R € R(D) with k(R,y) < n(D), then there is an ¢ < k(R,y) such that
a(D}) < a(D;).

By above constructions, we infer that the families 2,1 and D, satisfy the consequents

of (2') (a) ~ (i). Let Z = U, ., Zn- By the analogous way of proof of Claim in Theorem 3.1, we
have that Z is a o-point finite open refinement of G. And hence the proof is completed. (]
Similarly, the following theorem is direct.

Theorem 4.3 IfY is a hereditary metaLindelof space and {X,, : n € w} is a countable collection
X, is metaLindelof.

Consequently, combining Theorems 4.2 and 4.3, we have the following result.

of Cech-scattered metaLindelof spaces, then the product Y x 11

new

Corollary 4.4 IfY is a hereditarily o-metacompact (metaLindeléf) space and {X,, : n € w}
is a countable collection of C-scattered o-metacompact (metaLindel6f) spaces, then the product

Y x [],c., Xn is o-metacompact (metaLindelof).
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