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Weighted Representation Asymptotic Basis of Integers
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Abstract Let ki, k2 be nonzero integers with (k1,k2) = 1 and k1ks # —1. Let Ry, k, (A4, 1)
be the number of solutions of n = kia1 + k2az, where a1,a2 € A. Recently, Xiong proved that
there is a set A C Z such that Ry, x,(A,n) =1 for alln € Z. Let f: Z — No U {co} be a
function such that f~'(0) is finite. In this paper, we generalize Xiong’s result and prove that
there exist uncountably many sets A C Z such that Ry, x,(A,n) = f(n) for all n € Z.
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1. Introduction
For sets A and B of integers and integers kq, ko, let
k1A+ kB ={kia+ keb:a € A b€ B}.
The counting function for the set A is
Aly,z) =card{a € A:y < a < z}.

For A C Z and n € Z, let Ry, 1,(A,n) be the number of solutions of n = kja; + kaag, where
ai,az € A. We call A a weighted representation asymptotic basis if Ry, x,(A,n) > 1for alln € Z
with at most finite exceptions. In 2003, Nathanson [2] constructed a family of arbitrarily sparse
bases A C Z satisfying R1 1(A,n) =1 for all n € Z. Let f : Z — No U {00} be any function
such that f~1(0) is finite. In 2004, Nathanson [3] constructed a family of arbitrarily sparse bases
A C Z satistying Ry 1(A,n) = f(n) for all n € Z. In 2005, Nathanson [4] proved that there exists
a family of arbitrarily sparse bases of A C Z such that R4 (n) = f(n) for all n € Z, where
Ran(n) =t{(ar,...,ap) € A" :n=a;+ - +an,a; <az < <ap}. In 2011, Tang et al. [5]
proved that there exists a family of bases of A C Z satisfying Ry, _1(A,n) =1 for all n # 0. In
2014, Xiong [7] proved that there exists a family of bases of A C Z satisfying Ry, ;,(A,n) =1 for
all n € Z, where I3, 15 are nonzero integers with (I1,12) = 1 and ;13 # —1. We refer to [1,6,8,9]
for related problems.

In this paper, we obtain the following result.
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Theorem 1.1 Let k1, ko be nonzero integers with (k1, k) = 1, k1ks # —1 and f : Z — NogU{oo}
such that
A = card(f71(0)) < oo.

Then there exist uncountably many weighted representation asymptotic bases A C 7 such that

Ry, iy (A,n) = f(n) forall ne€Z,

and
A(=z,2) > (5)V°,
c
where
A+1

CcC = M{16+ [T]}

and M is a constant depending on integers ki and ko.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following Lemma:

Lemma 2.1 ([3, Lemma 1]) Let f : Z — Ny U {co} be a function such that f~1(0) is finite.
Let A denote the cardinality of the set f~1(0). Then there exists a sequence U = {u;}{°, of

M]‘

integers such that, for every n € Z and |l € N, f(n) = card{l > 1: jy = n}, and || < [~

Proof of Theorem 1.1 By Lemma 2.1, we know there exists a sequence U = {y;}1°, of integers
such that
f(n) =card{i € N: u; =n} for all integers n (1)

and

|| < # forall 1 > 1. (2)

We shall construct a strictly increasing sequence {i;}7°, of positive integers and an sequence
{A;}2, of finite sets of integers such that

1) Al = 2L

(ii) there exists a positive number ¢ such that 4; C [—cl3, cl®];

(iii) Rgy ko (A1, n) < f(n) for all n € Z;

(iv) Ry ko (Ary ) = card{i < ij: p; = pj} for j=1,...,L

We shall show that the infinite set

A=A

(@

N
Il
—

is a (kq, k2)-weighted representation asymptotic basis of Z satisfying Theorem 1.1.

We construct A; by induction. Since (ki,k2) = 1, there exist integers z1, zo such that
kixi+koxo = 1. Let i3 = 1. Let Ay = {kaay + x14,, —k1a1 + x2414, }, where integer aq is chosen
to satisfy the following conditions

(a) (k1A1+ kA1) N f71(0) = 2,
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(b) kea1 + xipi, # —kiar + xapi,,

(¢) iy, (k3 — kT)ar + (kawy + krxo) s, , (k1 + ko) (ka1 + 21p,), (k1 + ko) (—kiay + @ops,)
are pairwise distinct.

The conditions (a)—(c) exclude at most 7+ 3A integers, so there exist more than one choice
for the number ay such that |a1| < 2A + 3, and a; satisfies (a)—(c).

Since |pg, | = ] < (14 A)/2 and

5A + 7

|kaar + 1, | < |k2llar| + 21 ||, | < My - 5
BA + 7
| = kiay + zops, | < |kllaa| + [w2[pi, | < My - 5

where M7 = max{|kz|, |z1|}, M2 = max{|k1], |z2|}.

It follows that Ay C [—c¢, c] for any ¢ > max{M;(5A+7)/2, Ma(5A+7)/2}, and A; satisfies
conditions (i)—(iv).

Assume that for some I, we have constructed 4; C --- C A;_; satisfying (i)—(iv). Now we

construct A;. Let 4; > i;_1 be the least integer such that

Riy koo (Ai—1, i) < f(ps,)-
Then if n = pi,_,41,..-,pi,—1, by (iii) and (1) we have

Ry ky (Ar—1,m) = f(n) > 1. (3)
Thus by the fact that Ay C--- C A;_1 and (3), we have

I
ip — 1 < Ry gy (A1, ) + Z Z Ry, by (Aj—1,m)

J=2Zne{pi; y1apij 1}

< > Ry iy (A—1,m) < Riy iy (A121,n)

nE{H1 ey hiy—1} nez

20—1
= 212.
<2><z

Therefore i; < 212, and p;, < 12 + %. Let
Ay = A Ufkoar + z1p,, —kvag + xop, )
So
6
ki A+ ke Ay = | T,
i=1

where
Ty =k A1+ ke Ay, To = ki Aj_1 + ka(k2a; + 21p4,),
T3 =k1Aj_1 + ka(—kia; + zopi,), Ta = koAj_1 + k1 (kaay + z1p44,),
Ts5 =koAj_1 + ki (—kia; + zap,),
To ={piy» (k3 — k7 )ar + (kaa1 + kra2) i,
(k1 + ko) (k2ay + w1p03,), (k1 + ko) (—kia; + zap1s,) }-
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The set A; satisfies (i) if kaa; + 15, & A1, —k1a; + xop;, & Aj—1 and kaa; + 144, # —k1a; +
Tati,, and we exclude at most 4/ — 3 integers as possible choices a;.
The set A; satisfies (iii), (iv) if

(k1A; + k2 Ap) N f_l(O) =0

and
Rp, ko (Ar—1,m), ifne (krAi—1 + ko A1)\ {p, },
Ry ko (A1) = § Rpy ko (Ai—1,m) + 1, if n= py,
1, if n € (kidy+ ks AD\((k1 Ay + k2 Ar1) U (g }).

Since k1 A; + koA = U?Zl T;, it suffices to require that

(d) (k1 A; + ko A)) N F7H0) = @,

(&) TiNT; =2,1<4,j<5,i#7,

(f) TN (T6\{/J'iz}) =0,1<1<9,

(8) iy, (k3 —k)a; + (kawy + k1xo) iy, (k1 + ko) (kaay +x1p03)), (k1 + k2)(—k1a; + xap;, ) are
pairwise distinct.

Noting that kiks £ —1, we know that the numbers of integers excluded as possible choices
for a; satisfying conditions (d), (e), (f), and (g) are at most 8(1—1)A+3A, 32(1—1)3+24(1—1)2,
12(1 — 1)% +24(1 — 1), 6, respectively.

Case 1 [ = 2. Then it excludes at most 103+ 11A integers, so there exist more than one choice
for the number |as| < 6A + 51 to satisfy conditions (d)—(g). So there exist integers ¢ (depending
on integers k; and ko) such that Ay C [—cl?, cl?].

Case 2 [ > 3. Then
3200 —1)2+36(1 — 1) +24(1 — 1) +8(l —1)A+3A+6 441 —3
= 321 — 601% + (52 + 8A)l — 5BA — 17
<32+ )P 812 —52l(1—1) —5A —17.

Write M = max{|k1], |k2], |z1], 22|} and let

c=M{16 + [%]}

Then the number of integers a with |a| < (16 + [%])l?’ -2 - [%] is

A+1 A+1
2(16 + [T+])l3 — 2% — 2[7+

J+1> (324 A)3 -2 — A,
So there exists an integer a such that
(kaar + w1pq, | < [kellar| + a1, | < M(Ja] + [, ]) < e,
| = kva + w2p,| < [kallar] + o] |pa | < M(lar] + |ps |) < el?,

and it follows that there exists an integer a; such that the set A; satisfies conditions (i)—(iv).
Since this is true at each step of the induction, there are uncountably many sequences {A;}7°,

that satisfy conditions (i)—(iv).
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Let o > 8¢, and let [ be the unique positive integer such that cl® < ¢ < ¢(I+1)3. Conditions
(i) and (ii) imply that
A(=z,2) > A =20 > 2(5)/3 — 2 > (S8,
c c

By (iv), we have
Rkl,k2(‘4l7ﬂj) 2 llifgo CaI‘d{i Sy = :uj}v Jj= L... al' (4)

Since U = {p}72, is a sequence of integers such that f(n) = card{i € N : y; = n} for all integers
n, it follows that n € U = {1;};2,. By (4) we have

lim Ry, k,(A;,n) > lim card{i < ¢ : u; = n}. (5)
l—o00 ’ l—o00

Since
f(n) = llim card{i < : ju; = n},
— 00

by (iii) and (5), we have
Rk17k2 (Aa n) = lliglo Rk17k2 (Ala TL) = f(n)
for all n € Z. This completes the proof of Theorem 1.1. [

Acknowledgement We would like to thank the referee for his/her helpful comments.

References

[1] Yonggao CHEN. On the Erdés-Turdn conjecture, C. R. Math. Acad. Sci. Paris, 2012, 350(21-22): 933-935.

[2] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.

[3] M. B. NATHANSON. The Inverse Problem for Representation Functions of Additive Bases. Springer, New
York, 2004.

[4] M. B. NATHANSON. Every function is the representation function of an additive basis for the integers.
Port. Math. (N.S.), 2005, 62(1): 55-72.

[5] C. W. TANG, Min TANG, Lei WU. Unique difference bases of Z. J. Integer Seq., 2011, 14(1): 1-6.

[6] Min TANG, On the Erd8s-Turdn. J. Number Theory, 2015, 150(5): 74-80.

[7] Ran XIONG. Unique weighted representation basis of integers. J. Math. Res. Appl., 2014, 34(3): 332-336.

[8] Ran XIONG, Min TANG. Unique representation bi-basis for the integers. Bull. Aust. Math. Soc., 2014,

89(3): 460-465.

Quanhui YANG. A generalization of Chen’s theorem on the Erdés-Turdn conjecture. Int. J. Number Theory,

2013, 9(7): 1683-1686.

[9



