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Abstract In this paper, a further investigation for the number of Derangements and Bell

numbers is performed, and some new recursion formulae for the number of Derangements

and Bell numbers are established by applying the generating function methods and Padé

approximation techniques. Illustrative special cases of the main results are also presented.
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1. Introduction

Let φ(n) denote the set of permutations σ : {1, . . . , n} → {1, . . . , n} and let ϕ(n) denote

the set of permutations of φ(n) with no fixed points, the so-called derangements of φ(n). A

well-known example of this is the case of the absent-minded secretary who has to place n letters

into n addressed envelopes and puts each letter into a wrong envelope. The problem of counting

derangements was first considered and solved by Pierre Raymond de Montmort [1]. The number

of derangements of a set of n elements is denoted by D(n) = |ϕ(n)|. It is easy to see that the first

few values for the number of derangements are D(0) = 1, D(1) = 0, D(2) = 1, D(3) = 2, D(4) = 9

with D(0) = 1 being defined by convention.

It is not difficult to find a closed formula for the number of derangements. The familiar

inclusion-exclusion principle gives the explicit expression for the number of derangements, as

follows [2]

D(n) = n!
(
1− 1

1!
+

1

2!
+ · · ·+ (−1)n

n!

)
. (1.1)

From the following interesting properties of D(n) can be obtained easily,

D(n)

n!
converges quickly to e−1, (1.2)

D(n) = nD(n− 1) + (−1)n, (1.3)

D(n) = (n− 1)(D(n− 1) +D(n− 2)). (1.4)
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We refer the readers to Hassani [3] for a further exposition for (1.2) and Remmel [4] for combi-

natorial proofs of (1.3) and (1.4). If we recognize that
(
n
k

)
D(k) counts all permutations in which

exactly k elements of the set {1, 2, . . . , n} are displaced, one can get the recurrence relation for

the number of derangements:
n∑

k=0

(
n

k

)
D(k) = n!, (1.5)

which can be also obtained by applying the generating function of the number of derangements

[5,6]:

e−t

1− t
=

∞∑
n=0

D(n)
tn

n!
. (1.6)

In fact, there exists a more generalization of (1.5). For example, in probabilistic terms, Clarke

and Sved [2] showed an interesting connection between the number of derangements and the Bell

numbers, as follows,

n∑
k=0

(
n

k

)
ksD(k) = n!

s∑
k=0

(
s

k

)
(−1)kns−kB(k), n ≥ s ≥ 0, (1.7)

where B(n) is the familiar Bell numbers satisfying the generating function:

ee
t−1 =

∞∑
n=0

B(n)
tn

n!
, (1.8)

and obeying the recurrence relation:

B(0) = 1,
n∑

k=0

(
n

k

)
B(k) = B(n+ 1), n ≥ 0. (1.9)

For some interesting properties of the number of derangements and Bell numbers, one is referred

to [7–14].

Inspired by the work of Clarke and Sved, we perform a further investigation for the number

of Derangements and Bell numbers, and establish some new recursion formulae for the number

of Derangements and Bell numbers by applying the generating function methods and Padé ap-

proximation techniques. Accordingly we consider special cases including (1.1) and (1.5) as well

as immediate consequences of the main results.

This paper is organized as follows. In the second section, we recall the Padé approximation to

the exponential function. The third section is contributed to the statement of some new recursion

formulae for the number of Derangements and Bell numbers by applying the generating function

methods and Padé approximation techniques.

2. Padé approximants

As is well known, the properties of Padé approximants have played important roles in number

theory and combinatorics, for example, Hermite’s proof of the transcendency of e, Lindemann’s

proof of the transcendency of π, continued fractions, Orthogonal polynomials and so on, see

[15–17] for details. As preliminaries, we begin by recalling the definition of Padé approximation
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to general series and their expression in the case of the exponential function. Let m,n be non-

negative integers and let Pk be the set of all polynomials of degree ≤ k. Given a function f with

a Taylor expansion

f(u) =

∞∑
k=0

ckt
k (2.1)

in a neighborhood of the origin, a Padé form of type (m,n) is a pair (P,Q) satisfying that

P =
m∑

k=0

pkt
k ∈ Pm, Q =

n∑
k=0

qkt
k ∈ Pn, Q ̸≡ 0, (2.2)

and

Qf − P = O(tm+n+1) as t → 0. (2.3)

Clearly, every Padé form of type (m,n) for f(t) always exists and obeys the same rational

function. The uniquely determined rational function P/Q is called the Padé approximant of

type (m,n) for f(t), and is denoted by [m/n]f (t) or rm,n[f ; t]; see for example, [18,19].

The study of Padé approximants to the exponential function was initiated by Hermite [20]

and then continued by Padé [21]. Considering a pair (m,n) of nonnegative integers, the Padé

approximant of type (m,n) for et is the unique rational function

Rm,n(t) =
Pm,n(t)

Qm,n(t)
, Pm,n ∈ Pm, Qm,n ∈ Pn, Qm,n(0) = 1, (2.4)

with the property that

et −Rm,n(t) = O(tm+n+1) as t → 0. (2.5)

Unlike Padé approximants to other functions, it is possible to determine explicit formulae for

Pm,n and Qm,n (see [22, p. 245] or [23]):

Pm,n(t) =
m∑

k=0

m! · (m+ n− k)!

(m+ n)! · (m− k)!
· t

k

k!
, (2.6)

Qm,n(t) =

n∑
k=0

n! · (m+ n− k)!

(m+ n)! · (n− k)!
· (−t)k

k!
, (2.7)

and

Qm,n(t)e
t − Pm,n(t) = (−1)n

tm+n+1

(m+ n)!

∫ 1

0

xn(1− x)mextdx. (2.8)

We refer to Pm,n(t) and Qm,n(t) as the Padé numerator and denominator of type (m,n) for

et, respectively. In next section, we shall make use of the above Padé approximation to the

exponential function to establish some new recursion formulae for the number of Derangements.

3. The statement of results

In this section, we shall establish some new recursion formulae for the number of Derange-

ments and Bell numbers by applying the generating function methods and Padé approximation

techniques.
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3.1. Recursion formulae for Bell numbers

We first show some connections between the number of derangements, the Bell numbers

and the r-Bell polynomials, which are analogous to the Clarke and Sved’s formula (1.7). Mezö

[24,25] studied in great detail the so-called r-Bell polynomials Bn,r(x) satisfying the following

exponential generating function:

ex(e
t−1)+rt =

∞∑
n=0

Bn,r(x)
tn

n!
. (3.1)

Obviously, the case r = 0 and x = 1 gives the Bell numbers B(n) = Bn,0(1). Making m-times

derivative for (1.8) with respect to t, we get

∂m

∂tm
(ee

t−1) =

∞∑
s=0

B(m+ s)
ts

s!
. (3.2)

By multiplying the exponential series ext =
∑∞

s=0 x
sts/s! in both sides of (3.2), with the help of

the Cauchy product, we have

e−nt ∂
m

∂tm
(ee

t−1) =
∞∑
s=0

[ s∑
k=0

(
s

k

)
(−n)s−kB(m+ k)

] ts
s!
. (3.3)

Assume that {f(n)}, {g(n)}, {h(n)}, {h(n)} are four sequences given by

F (t) =
∞∑

n=0

f(n)
tn

n!
, G(t) =

∞∑
n=0

g(n)
tn

n!
, (3.4)

and

H(t) =
∞∑

n=0

h(n)
tn

n!
, H(t) =

∞∑
n=0

h(n)
tn

n!
. (3.5)

If H(t)H(t) = 1, then one can easily obtain the inverse relation: for non-negative integer n,

f(n) =
n∑

k=0

(
n

k

)
h(k)g(n− k) ⇐⇒ g(n) =

n∑
k=0

(
n

k

)
h(k)f(n− k). (3.6)

Notice that the familiar Leibniz rule means that

∂m

∂tm
(e−nt · ee

t−1) =
m∑

k=0

(
m

k

)
(−n)m−k

{
e−nt(

∂k

∂tk
ee

t−1)
}
, (3.7)

which together with (3.6) yields

e−nt
( ∂m

∂tm
ee

t−1
)
=

m∑
k=0

(
m

k

)
nm−k

( ∂k

∂tk
e−nt · ee

t−1
)
. (3.8)

It follows from (3.1) and (3.8) that

e−nt
( ∂m

∂tm
ee

t−1
)
=

∞∑
s=0

( m∑
k=0

(
m

k

)
nm−kBs+k,−n(1)

) ts
s!
. (3.9)

Thus, equating (3.3) and (3.9) and comparing the coefficients of ts/s! gives the following result.
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Theorem 3.1 Let m,n, s be non-negative integers. Then

m∑
k=0

(
m

k

)
nm−kBs+k,−n(1) =

s∑
k=0

(
s

k

)
(−n)s−kB(m+ k). (3.10)

It becomes obvious that setting m = 0 in Theorem 3.1 gives the connection between the

Bell numbers and the r-Bell polynomials: for non-negative integers n, s,

Bs,−n(1) =

s∑
k=0

(
s

k

)
(−n)s−kB(k). (3.11)

It follows from (1.7) and (3.11) that we state the relation between the number of Derangements

and the r-Bell polynomials:

n∑
k=0

(
n

k

)
(−k)sD(k) = n! ·Bs,−n(1), (3.12)

where n, s are non-negative integers with n ≥ s.

3.2. Recursion formulae for the number of Derangements

We next present some generalizations of (1.1) and (1.5), which are different from the Clarke

and Sved’s formula (1.7). We rewrite (1.6) as follows,

et
( ∞∑

j=0

D(j)
tj

j!

)
=

1

1− t
. (3.13)

If we denote the right hand side of (2.8) by Sm,n(t), we get the following expression of Padé

approximant for the exponential function et,

et =
Pm,n(t) + Sm,n(t)

Qm,n(t)
. (3.14)

By applying (3.14) to (3.13), we obtain

(Pm,n(t) + Sm,n(t))

∞∑
j=0

D(j)
tj

j!
=

1

1− t
Qm,n(t). (3.15)

If we apply the exponential series ext =
∑∞

k=0 x
ktk/k! in the right hand side of (2.8), with the

help of the familiar Beta function, we get

Sm,n(t) = (−1)n
tm+n+1

(m+ n)!

∞∑
k=0

tk

k!

∫ 1

0

xn+k(1− x)mdx

=
∞∑
k=0

(−1)nm! · (n+ k)!

(m+ n)! · (m+ n+ k + 1)!
· t

m+n+k+1

k!
. (3.16)

For convenience, we consider the coefficients pm,n;k, qm,n;k and sm,n;k of the polynomials Pm,n(t), Qm,n(t)

and Sm,n(t) such that

Pm,n(t) =
m∑

k=0

pm,n;kt
k, Qm,n(t) =

n∑
k=0

qm,n;kt
k, (3.17)
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and

Sm,n(t) =

∞∑
k=0

sm,n;kt
m+n+k+1. (3.18)

Clearly, the coefficients pm,n;k, qm,n;k and sm,n;k satisfy

pm,n;k =
m! · (m+ n− k)!

(m+ n)! · k! · (m− k)!
, qm,n;k =

(−1)kn! · (m+ n− k)!

(m+ n)! · k! · (n− k)!
, (3.19)

and

sm,n;k =
(−1)nm! · (n+ k)!

(m+ n)! · k! · (m+ n+ k + 1)!
, (3.20)

respectively. By applying (3.17) and (3.18) to (3.15), we discover( m∑
k=0

pm,n;kt
k
) ∞∑

j=0

D(j)
tj

j!
+
( ∞∑

k=0

sm,n;kt
m+n+k+1

) ∞∑
j=0

D(j)
tj

j!
=

1

1− t

( n∑
k=0

qm,n;kt
k
)
, (3.21)

which means
∞∑
l=0

tl
∑

k+j=l
k≥0,j≥0

pm,n;k
D(j)

j!
+

∞∑
l=0

tl
∑

k+j=l−m−n−1
k≥0,j≥0

sm,n;k
D(j)

j!
=

∞∑
l=0

tl
∑

k+j=l
k≥0,j≥0

qm,n;k. (3.22)

By comparing the coefficients of tl in (3.22), we get that for 0 ≤ l ≤ m+ n,∑
k+j=l

k≥0,j≥0

pm,n;k
D(j)

j!
=

∑
k+j=l

k≥0,j≥0

qm,n;k. (3.23)

It follows from (3.19) and (3.23) that we state the following recursion formula for the number of

Derangements.

Theorem 3.2 Let l,m, n be non-negative integers. Then, for positive integer l with 0 ≤ l ≤
m+ n,

l∑
k=0

(
m

k

)
(m+ n− k)!

D(l − k)

(l − k)!
=

l∑
k=0

(
n

k

)
(−1)k(m+ n− k)!. (3.24)

We now discuss some special cases of Theorem 3.2. Setting l = m + n in Theorem 3.2, we

obtain that for non-negative integers m,n,
m∑

k=0

(
m

k

)
D(n+ k) =

n∑
k=0

(
n

k

)
(−1)n−k(m+ k)!. (3.25)

It is trivial to see that the case m = 0 and n = 0 in (3.25) gives the formula (1.1) and (1.5),

respectively.

If we compare the coefficients of tl in (3.22) for l ≥ m+ n+ 1, then∑
k+j=l

k≥0,j≥0

pm,n;k
D(j)

j!
+

∑
k+j=l−m−n−1

k≥0,j≥0

sm,n;k
D(j)

j!
=

∑
k+j=l

k≥0,j≥0

qm,n;k. (3.26)

Hence, by applying (3.19) and (3.20) to (3.26), we get

m∑
k=0

(
m

k

)
(m+ n− k)!

D(l − k)

(l − k)!
+ (−1)n

m! · n!
l!

l−m−n−1∑
k=0

(
l −m− k − 1

n

)(
l

k

)
D(k)
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=

n∑
k=0

(
n

k

)
(−1)k(m+ n− k)!. (3.27)

If we set l = m + n + r in (3.27), we obtain that for non-negative integers m,n and positive

integer r,

m∑
k=0

(
m

k

)
(n+ k)!

D(n+ k + r)

(n+ k + r)!
+ (−1)n

m! · n!
(m+ n+ r)!

r−1∑
k=0

(
n+ r − k − 1

n

)(
m+ n+ r

k

)
D(k)

=
n∑

k=0

(
n

k

)
(−1)n−k(m+ k)!. (3.28)

Thus, multiplying both sides of (3.28) by r! gives the following result.

Theorem 3.3 Let m,n be non-negative integers. Then, for positive integer r,

m∑
k=0

(
m
k

)(
n+k+r

r

)D(n+ k + r) + (−1)nr
r−1∑
k=0

(
r−1
k

)(
m+n+r−k−1

m

) · D(k)

m+ n+ r − k

= r! ·
n∑

k=0

(
n

k

)
(−1)n−k(m+ k)!. (3.29)

It follows that we show some special cases of Theorem 3.3. By taking r = 1 in Theorem 3.3,

in view of D(0) = 1, we obtain that for non-negative integers m,n,

m∑
k=0

(
m

k

)
D(n+ k + 1)

n+ k + 1
=

n∑
k=0

(
n

k

)
(−1)n−k(m+ k)!− (−1)nm! · n!

(m+ n+ 1)!
. (3.30)

If we set n = 0 and substitute n for m in (3.30), we get that for non-negative integer n,

n∑
k=0

(
n

k

)
D(k + 1)

k + 1
= n!− 1

n+ 1
. (3.31)

On the other hand, by setting m = 0 in Theorem 3.3, we get that for non-negative integer n and

positive integer r,

n!

(n+ r)!
D(n+ r) +

(−1)n

(r − 1)!

r−1∑
k=0

(
r − 1

k

)
D(k)

n+ r − k
=

n∑
k=0

(
n

k

)
(−1)n−kk!. (3.32)

It is obvious that the case r = 1 and n = 0 in (3.32) gives the formula (1.1) and (1.5), respec-

tively.
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