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Abstract The article deals with generalizations of the inequalities for convex functions on

the triangle. The Jensen and the Hermite-Hadamard inequality are included in the study.

Considering a convex function on the triangle, we obtain a generalization of the Jensen-Mercer

inequality, and a refinement of the Hermite-Hadamard inequality.
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1. Introduction

Let X be a real linear space. A liner combination αA+βB of points A,B ∈ X and coefficients

α, β ∈ R is affine if α+β = 1. A set X ⊆ X is affine if it contains all binomial affine combinations

of its points. A function h : X → R is affine if the equality

h(αA+ βB) = αh(A) + βh(B) (1)

holds for every binomial affine combination αA+ βB of the affine set X .

Convex combinations and sets are introduced by restricting to affine combinations with

nonnegative coefficients. A function f : X → R is convex if the inequality

f(αA+ βB) ≤ αf(A) + βf(B) (2)

holds for every binomial convex combination αA+ βB of the convex set X .

Using mathematical induction, the above concept can be extended to n-membered affine or

convex combinations.

In this paper, we use the Euclidean plane X = R2. Besides planar convex and affine

combinations, we will use barycenters of the planar sets, especially triangles. If µ is a positive

measure on R2, and if X ⊆ R2 is a measurable set such that µ(X ) > 0, then the integral mean

point

M =
(∫

X xdµ

µ(X )
,

∫
X ydµ

µ(X )

)
(3)

is called the barycenter of the set X respecting the measure µ, or just the set barycenter. The

barycenter M belongs to the convex hull of the set X , as the smallest convex set containing X .
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Given the measurable set X of positive measure, every affine function h : R2 → R satisfies the

equality

h
(∫

X xdµ

µ(X )
,

∫
X ydµ

µ(X )

)
=

∫
X h(x, y)dµ

µ(X )
. (4)

If X is convex, then every integrable convex function f : X → R satisfies the inequality

f
(∫

X xdµ

µ(X )
,

∫
X ydµ

µ(X )

)
≤

∫
X f(x, y)dµ

µ(X )
. (5)

The above inequality presents the simple integral form of the Jensen inequality for planar sets.

For the purpose of the paper, the set X will be used as a triangle. Convex function on the

triangle is consequently integrable.

2. The Jensen and the Hermite-Hadamard Inequality on the Triangle

Through the paper we use triangles. The triangle with vertices A,B,C ∈ R2, that is, the

convex hull conv{A,B,C} will be denoted with ABC. We use proper triangles assuming that

its vertices do not belong to one line.

Using the triangle area, each point X ∈ ABC can be presented by the unique trinomial

convex combination

X = αA+ βB + γC, (6)

where

α =
ar(XBC)

ar(ABC)
, β =

ar(XAC)

ar(ABC)
, γ =

ar(XAB)

ar(ABC)
. (7)

The next two lemmas present the properties of a convex function f : ABC → R concerning

its supporting and secant plane.

The discrete version refers to the connection of the given convex combination of triangle

points with triangle vertices.

Lemma 2.1 Let ABC be a triangle in plane R2, and let
∑n

i=1 λiXi be a convex combination

of points Xi ∈ ABC. Let αA+ βB + γC be the unique vertices convex combination such that
n∑

i=1

λiXi = αA+ βB + γC. (8)

Then every convex function f : ABC → R satisfies the double inequality

f(αA+ βB + γC) ≤
n∑

i=1

λif(Xi) ≤ αf(A) + βf(B) + γf(C). (9)

Proof Putting M =
∑n

i=1 λiXi, we have the following three cases depending on the position of

the point M .

If M belongs to the triangle interior, then using a supporting plane y = h1(x, y) of the

convex surface z = f(x, y) at the graph point (M,f(M)), and the secant plane z = h2(x, y)

passing through the graph points (A, f(A)), (B, f(B)) and (C, f(C)), we get

f(αA+ βB + γC) = h1(M) =
n∑

i=1

λih1(Xi) ≤
n∑

i=1

λif(Xi)
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≤
n∑

i=1

λih2(Xi) = h2(M) = αf(A) + βf(B) + γf(C) (10)

because h2 and f coincide at vertices.

If M belongs to the side relative interior (assume that M belongs to the relative interior of

the side AB in which case γ = 0), then we can apply the previous procedure to the restriction of

the convex surface z = f(x, y) to the convex curve on the line segment AB using a supporting

line and the secant line.

If M is the triangle vertex (assume that M = A in which case β = γ = 0), then equation

(9) is reduced to the trivial double inequality f(A) ≤ f(A) ≤ f(A). �
The discrete-integral version refers to the connection of the triangle barycenter with triangle

vertices.

Lemma 2.2 Let ABC be a triangle in plane R2, and let µ be a positive measure on R2 such

that µ(ABC) > 0. Let αA+ βB + γC be the unique vertices convex combination such that(∫
ABC

xdµ

µ(ABC)
,

∫
ABC

ydµ

µ(ABC)

)
= αA+ βB + γC. (11)

Then every convex function f : ABC → R satisfies the double inequality

f(αA+ βB + γC) ≤
∫
ABC

f(x, y)dµ

µ(ABC)
≤ αf(A) + βf(B) + γf(C). (12)

Proof Assuming that M is the barycenter of the triangle ABC, the proof can be done as in

Lemma 2.1. Utilizing equation (10), we use the integral means instead of the n-membered convex

combinations. �
Using the Riemann integral in Lemma 2.2, the condition in (11) gives the barycentric point(∫

ABC
xdxdy

ar(ABC)
,

∫
ABC

ydxdy

ar(ABC)

)
=

1

3
A+

1

3
B +

1

3
C, (13)

and its use in equation (12) implies the Hermite-Hadamard inequality for convex functions on

the triangle,

f(
A+B + C

3
) ≤

∫
ABC

f(x, y)dxdy

ar(ABC)
≤ f(A) + f(B) + f(C)

3
. (14)

In fact, the above inequality holds for all integrable functions f : ABC → R that admit a

supporting plane at the barycenter M = (A+B+C)/3, and satisfy the supporting-secant plane

inequality

h1(X) ≤ f(X) ≤ h2(X), X ∈ ABC. (15)

Moreover, the inequality in equation (14) follows by integrating the inequality in equation (15)

over the triangle ABC.

Convex functions play an important role in pure and applied mathematics, and have an es-

sential place in inequalities. Among many significant results about convex functions, the Jensen

and the Hermite-Hadamard inequality are fundamental. In 1905, applying mathematical induc-

tion, Jensen [1] extended the inequality in equation (2) to n-membered convex combinations. In
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1906, Jensen [2] stated the integral form of the aforementioned extended inequality. In 1883,

studying convex functions, Hermite [3] attained the inequality in equation (14). In 1893, not

knowing Hermite’s result, Hadamard [4] got the left-hand side of equation (14). For information

as regards the Jensen and the Hermite-Hadamard inequality, one may refer to papers [5–10].

3. Main results

In Theorem 3.1, we improve the Hermite-Hadamard inequality in equation (14) by using

the convex combination of barycenters of subtriangles. In Theorem 3.8, we establish the Jensen-

Mercer inequality on the triangle by applying special affine combinations of triangle points.

The following is a refinement of the Hermite-Hadamard inequality. We use the designation

f(X)dS for f(x, y)dxdy.

Theorem 3.1 Let ABC be a triangle in plane R2. Then every convex function f : ABC → R
satisfies the series of inequalities

f(
A+B + C

3
) ≤ 1

3
f(

4A+ 4B + C

9
) +

1

3
f(

4A+B + 4C

9
) +

1

3
f(

A+ 4B + 4C

9
)

≤
∫
ABC

f(X)dS

ar(ABC)
≤ 1

3
f(

A+B + C

3
) +

2

3

f(A) + f(B) + f(C)

3

≤ f(A) + f(B) + f(C)

3
. (16)

Proof Denoting the barycenter of the triangle ABC with M , we have the vertices convex

combination

M =
A+B + C

3
, (17)

and the barycenters (of triangles MAB, MAC and MBC) convex combination

M =
1

3
(
M +A+B

3
) +

1

3
(
M +A+ C

3
) +

1

3
(
M +B + C

3
). (18)

Applying the Jensen inequality to the above convex combination, and the Hermite-Hadamard

inequality to each subtriangle barycenter, we get

f(
A+B + C

3
) ≤ 1

3
f(

M +A+B

3
) +

1

3
f(

M +A+ C

3
) +

1

3
f(

M +B + C

3
)

≤
∫
MAB

f(X)dS

3 ar(MAB)
+

∫
MAC

f(X)dS

3 ar(MAC)
+

∫
MBC

f(X)dS

3 ar(MBC)

≤ 3f(M) + 2f(A) + 2f(B) + 2f(C)

9

=
1

3
f(

A+B + C

3
) +

2

3

f(A) + f(B) + f(C)

3

≤ f(A) + f(B) + f(C)

3
. (19)

Since ar(MAB) = ar(MAC) = ar(MBC) = (1/3) ar(ABC), it follows that∫
MAB

f(X)dS

3 ar(MAB)
+

∫
MAC

f(X)dS

3 ar(MAC)
+

∫
MBC

f(X)dS

3 ar(MBC)
=

∫
ABC

f(X)dS

ar(ABC)
. (20)
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Inserting the right side of equation (20) into equation (19), we cover the inequality in

equation (16). �

Corollary 3.2 Let ABC be a triangle in plane R2. Then every convex function f : ABC → R
satisfies the double inequality

f(
A+B + C

3
) ≤ 1

3

(∫
AB

f(X)ds

d(A,B)
+

∫
AC

f(X)ds

d(A,C)
+

∫
BC

f(X)ds

d(B,C)

)
≤ f(A) + f(B) + f(C)

3
. (21)

Proof Applying the Jensen inequality to the convex combination

M =
1

3
(
A+B

2
) +

1

3
(
A+ C

2
) +

1

3
(
B + C

2
), (22)

we get

f(M) ≤ 1

3
f(

A+B

2
) +

1

3
f(

A+ C

2
) +

1

3
f(

B + C

2
), (23)

and using the classic Hermite-Hadamard inequality for the line segment, we obtain the inequality

in equation (21). �
Combining the inequalities in equations (16) and (21), we can take out the inequality∫

ABC
f(X)dS

ar(ABC)
≤1

3

(∫
AB

f(X)ds

3d(A,B)
+

∫
AC

f(X)ds

3d(A,C)
+

∫
BC

f(X)ds

3d(B,C)

)
+

2

3

f(A) + f(B) + f(C)

3
. (24)

Conjecture 3.3 Let ABC be a triangle in plane R2. Then every convex function f : ABC → R
satisfies the inequality∫

ABC
f(X)dS

ar(ABC)
≤ 1

3

(∫
AB

f(X)ds

d(A,B)
+

∫
AC

f(X)ds

d(A,C)
+

∫
BC

f(X)ds

d(B,C)

)
. (25)

Now, we replace the barycenter M by a triangle PQR containing in the interior of the

triangle ABC, and satisfying the barycenter equality

P +Q+R

3
=

A+B + C

3
. (26)

Such two triangles are presented in Figure 1. Applying the right-hand side of the inequality in

equation (9) to the above assumption, and multiplying by 3, we obtain the simple inequality

f(P ) + f(Q) + f(R) ≤ f(A) + f(B) + f(C) (27)

that will be used in this section.

Corollary 3.4 Let ABC be a triangle in plane R2, and let PQR ⊂ ABC be a subtriangle

contained in the interior of ABC, and sharing the common barycenter with ABC. Then every

convex function f : ABC → R satisfies the series of inequalities

f(
A+B + C

3
) ≤ 1

3
f(M) +

1

9

6∑
i=1

f(Mi) ≤
1

3

∫
△0

f(X)dX

ar(△0)
+

1

9

6∑
i=1

∫
△i

f(X)dX

ar(△i)
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≤ 2

3

f(P ) + f(Q) + f(R)

3
+

1

3

f(A) + f(B) + f(C)

3

≤ f(A) + f(B) + f(C)

3
, (28)

where

M =
P +Q+R

3
,M1 =

A+ P +Q

3
, . . . ,M6 =

B + C +R

3
(29)

and

△0 = PQR,△1 = APQ, . . . ,△6 = BCR. (30)

Proof Applying the Hermite-Hadamard inequality to the barycenter of the triangle PQR written

as

M =
1

3
P +

1

3
Q+

1

3
R, (31)

we have

f(M) = f(
P +Q+R

3
) ≤

∫
PQR

f(X)dX

ar(PQR)
≤ f(P ) + f(Q) + f(R)

3
. (32)

Figure 1 Triangles ABC and PQR with the common barycenter

Applying the same procedure to the convex combination of the barycenters (A+P +Q)/3,

(B + P +R)/3 and (C +Q+R)/3 given as

M =
1

3
(
A+ P +Q

3
) +

1

3
(
B + P +R

3
) +

1

3
(
C +Q+R

3
), (33)

we get

f(M) ≤ 1

3
f(

A+ P +Q

3
) +

1

3
f(

B + P +R

3
) +

1

3
f(

C +Q+R

3
)

≤
∫
APQ

f(X)dX

3 ar(APQ)
+

∫
BPR

f(X)dX

3 ar(BPR)
+

∫
CQR

f(X)dX

3 ar(CQR)

≤ 2f(P ) + 2f(Q) + 2f(R) + f(A) + f(B) + f(C)

9
. (34)

Similarly, using the convex combination

M =
1

3
(
A+B + P

3
) +

1

3
(
A+ C +Q

3
) +

1

3
(
B + C +R

3
), (35)

we get

f(M) ≤ 1

3
f(

A+B + P

3
) +

1

3
f(

A+ C +Q

3
) +

1

3
f(

B + C +R

3
)
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≤
∫
ABP

f(X)dX

3 ar(ABP )
+

∫
ACQ

f(X)dX

3 ar(ACQ)
+

∫
BCR

f(X)dX

3 ar(BCR)

≤ f(P ) + f(Q) + f(R) + 2f(A) + 2f(B) + 2f(C)

9
. (36)

Taking the arithmetic means of the inequalities in equations (32), (34) and (36), using

equation (27) and rearranging, we obtain the inequality in equation (28). �
One variant of Jensen’s inequality is interesting for more than ten years. The variant states

that every convex function f on the line segment [a, b] satisfies the inequality

f
(
a+ b−

n∑
i=1

λici

)
≤ f(a) + f(b)−

n∑
i=1

λif(ci) (37)

for all convex combinations
∑n

i=1 λici of points ci ∈ [a, b]. This inequality is obtained in [11],

and it is usually called the Jensen-Mercer inequality. Some generalizations can be found in [9]

and [12].

What is the basis of the inequality in equation (37). Taking one point c ∈ [a, b], we have

the initial inequality

f(a+ b− c) ≤ f(a) + f(b)− f(c). (38)

If c ∈ [a, b], then d = a+ b− c ∈ [a, b], and the intervals [a, b] and [c, d] have the same barycenter

(a+ b)/2.

We want to transfer the inequality in equation (37) to convex functions on the triangle. At

first, an example is given to indicate the difference in relation to the line segment.

Example 3.5 We take the triangle ABC with vertices A(0, 0), B(6, 0) and C(0, 6), and points

P (1, 0) and Q(0, 1) which belong to ABC. The point

R = A+B + C − P −Q = (5, 5) (39)

does not belong to the triangle ABC. Triangles ABC and PQR share the common barycenter

M(2, 2).

The following are conditions which ensure that the point R belongs to the triangle.

Lemma 3.6 Let ABC be a triangle in plane R2, and let P,Q ∈ ABC be points given as the

convex combinations

P = α1A+ β1B + γ1C, Q = α2A+ β2B + γ2C. (40)

Then the point

R = A+B + C − P −Q (41)

belongs to the triangle ABC if, and only if,

α1 + α2 ≤ 1, β1 + β2 ≤ 1, γ1 + γ2 ≤ 1. (42)

Proof The affine combination

R = (1− α1 − α2)A+ (1− β1 − β2)B + (1− γ1 − γ2)C (43)



58 Zlatko PAVIĆ

is convex if and only if the coefficients condition in equation (42) is valid. �
Leaving out the convex combinations of points P and Q, below we simply assume that the

point R belongs to the triangle.

Lemma 3.7 Let ABC be a triangle in plane R2, and let P,Q ∈ ABC be points such that the

point A+B + C − P −Q belongs to ABC. Then every convex function f : ABC → R satisfies

the inequality

f(A+B + C − P −Q) ≤ f(A) + f(B) + f(C)− f(P )− f(Q). (44)

Proof Taking the point R = A+B + C − P −Q, we have the convex combinations equality

1

3
P +

1

3
Q+

1

3
R =

1

3
A+

1

3
B +

1

3
C (45)

which can be taken as the condition in equation (8). So, applying the right-hand side of the

inequality in equation (9), we get

1

3
f(P ) +

1

3
f(Q) +

1

3
f(R) ≤ 1

3
f(A) +

1

3
f(B) +

1

3
f(C), (46)

and rearranging, we obtain the inequality in equation (44). �
The following is an extension of the Jensen-Mercer inequality in equation (37) to the triangle.

Theorem 3.8 Let ABC be a triangle in plane R2, and let
∑n

i=1 λiPi and
∑n

i=1 λiQi be convex

combinations of points Pi, Qi ∈ ABC such that the points A+B+C −Pi −Qi belong to ABC.

Then every convex function f : ABC → R satisfies the inequality

f
(
A+B + C −

n∑
i=1

λiPi −
n∑

i=1

λiQi

)
≤ f(A) + f(B) + f(C)−

n∑
i=1

λif(Pi)−
n∑

i=1

λif(Qi). (47)

Proof We have the equality

A+B + C −
n∑

i=1

λiPi −
n∑

i=1

λiQi =
n∑

i=1

λi(A+B + C − Pi −Qi) (48)

whose right side is a convex combination. Using the above equality, applying Jensen’s inequality,

and the inequality in equation (28), we get

f
(
A+B + C −

n∑
i=1

λiPi −
n∑

i=1

λiQi

)
= f

( n∑
i=1

λi(A+B + C + Pi −Qi)
)

≤
n∑

i=1

λif(A+B + C − Pi −Qi) ≤
n∑

i=1

λi(f(A) + f(B) + f(C)− f(Pi)− f(Qi))

= f(A) + f(B) + f(C)−
n∑

i=1

λif(Pi)−
n∑

i=1

λif(Qi) (49)

concluding the proof. �

4. Generalization

Theorems 3.1 and 3.8 can be generalized to convex functions on the simplex.
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Let A1, . . . , Am+1 ∈ Rm be points such that A1−Am+1, . . . , Am−Am+1 are linearly indepen-

dent. The convex hull conv{A1, . . . , Am+1} is called the m-simplex with vertices A1, . . . , Am+1.

In accordance with the previous section, we use the designation A1, . . . , Am+1.

Every convex function f : A1, . . . , Am+1 → R satisfies the double inequality

f
(∑m+1

k=1 Ak

m+ 1

)
≤

∫
A1,...,Am+1

f(X)dV

vol(A1, . . . , Am+1)
≤

∑m+1
k=1 f(Ak)

m+ 1
, (50)

known as the Hermite-Hadamard inequality on the m-simplex. The designations vol and dV

refer to the volume in space Rm. Variants like this can be found in [13–15].

Theorem 4.1 Let A1, . . . , Am+1 be an m-simplex in space Rm. Then every convex function

f : A1, . . . , Am+1 → R satisfies the series of inequalities

f
(∑m+1

k=1 Ak

m+ 1

)
≤ 1

m+ 1

m+1∑
k=1

f
(Ak + (m+ 2)(A1 + · · ·+Ak−1 +Ak+1 + · · ·+Am+1)

(m+ 1)2

)
≤

∫
A1,...,Am+1

f(X)dV

vol(A1, . . . , Am+1)
≤ 1

m+ 1
f
(∑m+1

k=1 Ak

m+ 1

)
+

m

m+ 1

∑m+1
k=1 f(Ak)

m+ 1

≤
∑m+1

k=1 f(Ak)

m+ 1
. (51)

Proof We use the barycenter

M =

∑m+1
k=1 Ak

m+ 1
(52)

as the convex combination

M =
1

m+ 1

m+1∑
k=1

(M +A1 + · · ·+Ak−1 +Ak+1 + · · ·+Am+1

m+ 1

)
. (53)

Applying the Jensen inequality, and the Hermite-Hadamard inequality in equation (50), we can

prove the inequality in equation (51). �

Corollary 4.2 Let A1, . . . , Am+1 be an m-simplex in space Rm. Then every convex function

f : A1, . . . , Am+1 → R satisfies the double inequality

f
(∑m+1

k=1 Ak

m+ 1

)
≤ 1

m+ 1

m+1∑
k=1

∫
A1,...,Ak−1Ak+1,...,Am+1

f(X)dV ′

vol′(A1, . . . , Ak−1Ak+1, . . . , Am+1)

≤
∑m+1

k=1 f(Ak)

m+ 1
, (54)

where the designations vol′ and dV ′ refer to the volume in space Rm−1.

Conjecture 4.3 Let A1, . . . , Am+1 be an m-simplex in space Rm. Then every convex function

f : A1, . . . , Am+1 → R satisfies the inequality∫
A1,...,Am+1

f(X)dV

vol(A1, . . . , Am+1)
≤ 1

m+ 1

m+1∑
k=1

∫
A1,...,Ak−1Ak+1,...,Am+1

f(X)dV ′

vol′(A1, . . . , Ak−1Ak+1, . . . , Am+1)
. (55)
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In the case m = 1, the above conjecture inequality can be read as∫ b

a
f(x)dx

b− a
≤ f(a) + f(b)

2
, (56)

that is, the right-hand side of the classic Hermite-Hadamard inequality.

Theorem 4.4 Let A1, . . . , Am+1 be an m-simplex in space Rm, and let
∑n

i=1 λiPij be convex

combinations of points Pij ∈ A1, . . . , Am+1 such that the points
∑m+1

k=1 Ak −
∑m

j=1 Pij belong to

A1, . . . , Am+1. Then every convex function f : A1, . . . , Am+1 → R satisfies the inequality

f
(m+1∑

k=1

Ak −
m∑
j=1

n∑
i=1

λiPij

)
≤

m+1∑
k=1

f(Ak)−
m∑
j=1

n∑
i=1

λif(Pij). (57)

Proof The basis of the proof is the equality

m+1∑
k=1

Ak −
m∑
j=1

n∑
i=1

λiPij =
n∑

i=1

λi

(m+1∑
k=1

Ak −
m∑
j=1

Pij

)
(58)

whose right side is the convex combination of points Pi =
∑m+1

k=1 Ak−
∑m

j=1 Pij belonging to the

m-simplex A1, . . . , Am+1. �
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1906, 30: 175–193.

[3] CH. HERMITE. Sur deux limites d’une intégrale définie. Mathesis, 1883, 3: 82.
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