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1. Introduction

Let Ω be a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. We consider the

following quasilinear elliptic boundary problem{−∆pu(x)− µ△u = lu+ f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where 2 < p < ∞, △p denotes the p-Laplacian operator defined by △pu = div(|∇u|p−2∇u), µ,

l ≥ 0 are real parameters and f(x, t) ∈ C(Ω× R).
It is known that the nontrivial solutions of problem (1.1) are equivalent to the corresponding

nonzero critical points of the C1− energy functional

I(u) =
1

p

∫
Ω

|∇u|pdx+
µ

2

∫
Ω

|∇u|2dx− l

2

∫
Ω

|u|2dx−
∫
Ω

F (x, u)dx (1.2)

for all u ∈ W 1,p
0 (Ω), where F (x, t) =

∫ t

0
f(x, s)ds.

For the case of p > 2, l = 0 and µ > 0, there has been an increasing interest in looking for

the existence of solutions of (1.1). Using the following conditions

λm < f ′(x, 0) < λm+1, F (x, t) <
µ1

p
|t|p + C, x ∈ Ω,
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where m ≥ 1 and C is a constant, the authors in [1,2] proved that (1.1) has at least two nontrivial

solutions by the three critical point theorems, here and in the sequel 0 < λ1 < λ2 < · · · ,
λi (i = 1, 2, . . .) denotes the eigenvalues of −△ in H1

0 (Ω), and µ1 is the first eigenvalue of

−△p in W 1,p
0 (Ω) (see [3]). For Eq. (1.1) with right-hand side having p-linear growth at infinity,

i.e., lim|t|→∞
f(x,t)
|t|p−2t = λ ̸∈ σ(−△p), the spectrum of −△p in W 1,p

0 (Ω), the papers [4,5] get the

existence of nontrivial solution. In [6], the author extended the results in [1,2] under the general

asymptotically linear condition (compared with the previous paper [7]).

The main purpose of this paper is to establish existence and multiplicity result for problem

(1.1) with 2 < p ≤ N when the nonlinear term f satisfies a weaker condition (a new kind of

subcritical polynomial growth or subcritical exponential growth) but not satisfying the Ambrosetti-

Rabinowitz condition. It is worth observing that the right-hand side of equation (1.1) possibly has

the resonant term. This leads us to adapt linking theorem to study problem (1.1) and obtain one

nontrivial solution. We will also obtain infinitely many nontrivial solutions by using an improved

symmetric mountain pass theorem if the nonlinearity term f is odd.

When 2 < p < N , there have been substantial amount of works to study the existence of

nontrivial solution for (1.1). Nevertheless, almost all of the works involve the nonlinear term

f(x, u) of a subcritical (polynomial) growth, say,

(SCP): There exist positive constants c1 and c2 and q0 ∈ (p− 1, p∗ − 1) such that

|f(x, t)| ≤ c1 + c2|t|q0 for all t ∈ R and x ∈ Ω,

where p∗ = Np/(N−p) denotes the critical Sobolev exponent. One of the main reasons to assume

this condition (SCP) is that they can use the Sobolev compact embedding W 1,p
0 ↪→ Lq(Ω),

1 ≤ q < p∗.

In this paper, we always assume that µ = 1 in (1.1). Under the motivation of Lam and Lu

[8], our first main results will be to study problem (1.1) in the improved subcritical polynomial

growth

(SCPI) : lim
t→∞

f(x, t)

tp∗−1
= 0 uniformly on x ∈ Ω,

which is weaker than (SCP). Note that in this case, we do not have the Sobolev compact

embedding anymore. Our work again is to study problem (1.1) without the (AR)-condition.

In fact, this condition was studied by Liu and Wang in [9] in the case of Laplacian (i.e., p = 2

and µ, l = 0) by the Nehari manifold approach. However, we will use the linking theorem (or

an improved symmetric mountain pass theorem) to get the one nontrivial solution (or infinitely

many nontrivial solutions) to problem (1.1) in the general case 2 < p < N .

Let us now state our results: Suppose that f(x, t) ∈ C(Ω× R) and satisfies:

(H1) limt→0
f(x,t)
|t|p−2t = 0 uniformly for all x ∈ Ω;

(H2) lim|t|→∞
f(x,t)
|t|p−2t = ∞ uniformly for all x ∈ Ω;

(H3) There is a constant θ ≥ 1 such that for all (x, t) ∈ Ω×R and s ∈ [0, 1],

θ(f(x, t)t− pF (x, t)) ≥ (sf(x, st)t− pF (x, st));

Theorem 1.1 Let 2 < p < N and assume that f has the improved subcritical polynomial
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growth on Ω (condition (SCPI)) and satisfies (H1)–(H3). If l = λi (i ≥ 2), then problem (1.1)

has at least a nontrivial solution.

Theorem 1.2 Let 2 < p < N and assume that f has the improved subcritical polynomial

growth on Ω (condition (SCPI)) and satisfies (H1)–(H3). If f(x, t) is odd in t and l = λi (i ≥ 1),

then problem (1.1) has infinitely many nontrivial solutions.

In case of p = N , we have p∗ = +∞. In this case, every polynomial growth is admitted,

but one knows easy examples that W 1,n
0 (Ω) * L∞(Ω). Hence, one is led to look for a function

g(s) : R → R+ with maximal growth such that

sup
u∈W 1,N

0 ,∥u∥≤1

∫
Ω

g(u)dx < ∞.

It was shown by Trudinger [10] and Moser [11] that the maximal growth is of exponential type.

So, we must redefine the subcritical (exponential) growth in this case as follows:

(SCE): f has subcritical (exponential) growth on Ω, i.e., limt→∞
|f(x,t)|

exp(α|t|
N

N−1 )
= 0 uniformly

on x ∈ Ω for all α > 0.

When p = N and f has the subcritical (exponential) growth (SCE), our work is still to

study problem (1.1) without the (AR)-condition. To our knowledge, this case is completely new.

Our results are as follows:

Theorem 1.3 Let p = N and assume that f has the subcritical exponential growth on Ω

(condition (SCE)) and satisfies (H1)–(H3). If l = λi (i ≥ 2), then problem (1.1) has at least a

nontrivial solution.

Theorem 1.4 Let p = N and assume that f has the subcritical exponential growth on Ω

(condition (SCE)) and satisfies (H1)–(H3). If f(x, t) is odd in t and l = λi (i ≥ 1), then problem

(1.1) has infinitely many nontrivial solutions.

2. Preliminaries and some lemmas

Let X be a Banach space with a direct sum decomposition

X = X1 ⊕X2.

Consider two sequences of subspaces:

X1
0 ⊂ X1

1 ⊂ · · · ⊂ X1, X2
0 ⊂ X2

1 ⊂ · · · ⊂ X2

such that

Xj = ∪n∈NXj
n, j = 1, 2.

For every multi-index α = (α1, α2) ∈ N2, let Xα = X1
α1

⊕X2
α2
. We know that

α ≤ β ⇔ α1 ≤ β1, α2 ≤ β2.

A sequence (αn) ⊂ N2 is admissible if for every α ∈ N2, there is m ∈ N such that n ≥ m ⇒
αn ≥ α. For every I : X → R, we denote by Iα the function I restricted on Xα.
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Definition 2.1 Let I be locally Lipschitz on X and c ∈ R. The functional I satisfies the (C)∗c

condition if every sequence (uαn) such that (αn) is admissible and

uαn ∈ Xαn , I(uαn) → c, (1 + ∥uαn∥)I ′(uαn) → 0

contains a subsequence which converges to a critical point of I.

Definition 2.2 Let I be locally Lipschitz on X and c ∈ R. The functional I satisfies the (C)∗

condition if every sequence (uαn) such that (αn) is admissible and

uαn ∈ Xαn , sup
n

I(uαn) ≤ c, (1 + ||uαn ||)I ′(uαn) → 0

contains a subsequence which converges to a critical point of I.

Remark 2.3 (1) The (C)∗ condition implies the (C)∗c condition for every c ∈ R.

(2) When the (C)∗c sequence is bounded, then the sequence is a (PS)∗c sequence [12].

(3) Without loss of generality, we assume that the norm in X satisfies

∥u1 + u2∥2 = ∥u1∥2 + ∥u2∥2, uj ∈ Xj , j = 1, 2.

Definition 2.4 Let X be a Banach space with a direct sum decomposition

X = X1 ⊕X2.

The function I ∈ C1(X,R) has a local linking at 0, with respect to (X1, X2), if , for some r > 0,

I(u) ≥ 0, u ∈ X1, ∥u∥ ≤ r,

I(u) ≤ 0, u ∈ X2, ∥u∥ ≤ r.

Lemma 2.5 ([13]) Suppose that I ∈ C1(X,R) satisfies the following assumptions:

(B1) I has a local linking at 0 and X1 ̸= {0};
(B2) I satisfies (PS)∗;

(B3) I maps bounded sets into bounded sets;

(B4) for every m ∈ N , I(u) → −∞, ∥u∥ → ∞, u ∈ X = X1
m ⊕X2. Then I has at least two

critical points.

Remark 2.6 Assume I satisfies the (C)∗c condition. Then this theorem still holds.

Lemma 2.7 ([10,11]) Let u ∈ W 1,N
0 (Ω). Then exp(|u|

N
N−1 ) ∈ Lq(Ω) for all 1 ≤ q < ∞.Moreover,

sup
u∈W 1,N

0 (Ω),∥u∥≤1

∫
Ω

exp(α|u|
N

N−1 )dx ≤ C(Ω) for α ≤ αN .

The inequality is optimal: for any growth exp(α|u|
N

N−1 ) with α > αN the corresponding supremum

is +∞.

3. Proofs of the main results

Proof of Theorem 1.1 (1) Since p > 2, we shall apply Lemma 2.5 to the functional I(u). Let

H− = ⊕i≤m−1ker(−△− λi),



Nontrivial solutions for a class of quasilinear elliptic equations 91

H0 = ker(−△− λm),

H+ = ⊕j≥m+1ker(−△− λj).

Then we have

W 1,2
0 (Ω) = H− ⊕H0 ⊕H+.

Set X2 = H−. Since p > 2, by the regularity theory (see[14]) we have

X2 ⊂ W 1,p
0 (Ω) ∩ L∞(Ω),

and W 1,p
0 (Ω) ⊂ W 1,2

0 (Ω) continuously. Let X1 = (H+∪H0)∩W 1,p
0 (Ω). Then we get the splitting

W 1,p
0 (Ω) = X1 ⊕X2.

Now, we choose a Hilbertian basis en(n ≥ 0) for X1 and define

X1
n = span(e0, e1, . . . , en), n ∈ N ;

X2
n = X2, n ∈ N ;

X1 =
∪
n∈N

X1
n.

By the condition (H1) and the Sobolev inequalities, it is easy to see that the functional I belongs

to C1(X,R) and maps bounded sets to bounded sets.

(2) We claim that I has a local linking at 0 with respect to (X1, X2). It follows from (H1)

that, for any ϵ > 0 small enough,

|F (x, u)| ≤ ϵ|u|p, as ∥u∥ is small.

So, we have

I(u) ≤ 1

2

∫
Ω

|∇u|2dx+
1

p

∫
Ω

|∇u|pdx− l

2

∫
Ω

|u|2dx− ϵ

p

∫
Ω

|u|pdx

≤ −C∗∥u∥2 + C∗∗∥u∥p,

where C∗ and C∗∗ are positive constants. Hence, for r > 0 small enough,

I(u) ≤ 0, u ∈ X2, ∥u∥ ≤ r.

By conditions (H1) and (SCPI), for any ϵ > 0 small enough, there exists Cϵ such that

F (x, u) ≤ ϵ

p
|u|p + Cϵ|u|p

∗
, u ∈ R, x ∈ Ω.

Then for u ∈ X1 we have

I(u) =
1

2

∫
Ω

|∇u|2dx+
1

p

∫
Ω

|∇u|pdx− 1

2

∫
Ω

lu2 − ϵ

p

∫
Ω

|u|pdx− Cϵ

∫
Ω

|u|p
∗
dx

≥ C3||u||p − C4∥u∥p
∗
,

which implies that

I(u) ≥ 0, ∀u ∈ X1 with ||u|| ≤ r

for 0 < r small enough.
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(3) We claim that I satisfies (C)∗c . Consider a sequence (uαn) such that (αn) is admissible,

∥uαn∥ → ∞ and

uαn ∈ Xαn , I(uαn) → c, (1 + ||uαn ||)I ′(uαn) → 0 (3.1)

and

lim
n→∞

{
(
1

2
− 1

p
)

∫
Ω

|∇uαn |2dx+ (
l

2
− l

p
)

∫
Ω

|uαn |2dx+∫
Ω

(
1

p
f(x, uαn)uαn − F (x, uαn))dx

}
= c. (3.2)

Let wαn = ||uαn ||−1uαn . Up to a subsequence, we have

wαn ⇀ w in X, wαn → w in Lp, wαn(x) → w(x) a.e. x ∈ Ω.

If w = 0, we choose a sequence {tn} ⊂ [0, 1] such that

I(tnuαn) = max
t∈[0,1]

I(tuαn).

For any m > 0, let vαn = (2pm)
1
pwαn . By the Sobolev imbedded theory, we have

lim
n→∞

∫
Ω

F (x, vαn
)dx = 0.

So for n large enough, (2pm)
1
p ||uαn ||−1 ∈ (0, 1), we have

I(tnuαn) ≥ I(vαn) ≥ 2m− ϵ ≥ m, (3.3)

where ϵ is a small enough constant. That is, I(tnuαn) → ∞. Now, I(0) = 0, I(uαn) → c, we

know that tn ∈ [0, 1] and∫
Ω

|∇(tnuαn
)|pdx+

∫
Ω

|∇(tnuαn
)|2dx+

∫
Ω

|tnuαn
|2dx−

∫
Ω

f(x, tnuαn
)tnuαn

dx

= tn
d

dt
|t=tnI(tuαn) = 0. (3.4)

Therefore, using (H3), we have

(
1

2
− 1

p
)

∫
Ω

|∇uαn |2dx+ (
l

2
− l

p
)

∫
Ω

|uαn |2dx+

∫
Ω

1

p
f(x, uαn)uαn − F (x, uαn)dx

≥ (
1

2
− 1

p
)

∫
Ω

|∇uαn |2dx+ (
l

2
− l

p
)

∫
Ω

|uαn |2dx+

1

θ

∫
Ω

(
1

p
f(x, tnuαn)tnuαn − F (x, tnuαn))dx → +∞.

This contradicts (3.2). If w ̸= 0, then the set ⊖ = {x ∈ Ω : w(x) ̸= 0} has a positive Lebesgue

measure. For x ∈ ⊖, we have |uαn(x)| → ∞. Hence, by (H3), we have

f(x, uαn(x))uαn(x)

|uαn(x)|p
|wαn(x)|pdx → ∞. (3.5)

From (3.1), we obtain

1− ◦(1) ≥
(∫

w ̸=0

+

∫
w=0

)f(x, uαn(x))uαn(x)

|uαn(x)|p
|wαn(x)|pdx. (3.6)
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By (3.5), the right-hand side of (3.6) → +∞. This is a contradiction.

In any case, we obtain a contradiction. Therefore, {uαn} is bounded.

Now, we prove that {un} (= {uαn}) has a convergence subsequence. In fact, we can suppose

that

un ⇀ u in W 1,p
0 (Ω),

un → u in Lq(Ω), ∀1 ≤ q < p∗,

un(x) → u(x) a.e. x ∈ Ω.

Now, since f has the subcritical growth on Ω, for every ϵ > 0, we can find a constant C(ϵ) > 0

such that

f(x, s) ≤ C(ϵ) + ϵ|s|p
∗−1, ∀(x, s) ∈ Ω× R,

then ∣∣∣ ∫
Ω

f(x, un)(un − u)dx
∣∣∣

≤ C(ϵ)

∫
Ω

|un − u|dx+ ϵ

∫
Ω

|un − u||un|p
∗−1dx

≤ C(ϵ)

∫
Ω

|un − u|dx+ ϵ
(∫

Ω

(|un|p
∗−1)

p∗
p∗−1 dx

) p∗−1
p∗

(∫
Ω

|un − u|p
∗
) 1

p∗

≤ C(ϵ)

∫
Ω

|un − u|dx+ ϵC(Ω).

Similarly, since un ⇀ u in W 1,p
0 (Ω),

∫
Ω
|un − u|dx → 0. Since ϵ > 0 is arbitrary, we can conclude

that ∫
Ω

(f(x, un)− f(x, u))(un − u)dx → 0 as n → ∞. (3.10)

By (3.2), we have

⟨I ′(un)− I ′(u), (un − u)⟩ → 0 as n → ∞. (3.11)

From (3.10) and (3.11), we obtain∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u) → 0 as n → ∞.

Using an elementary inequality

22−p|b− a|p ≤ ⟨|b|p−2b− |a|p−2a, b− a⟩, ∀a, b ∈ RN ,

we can get

∇un → ∇u in Lp(Ω).

So we have un → u in W 1,p
0 (Ω) which means that I satisfies (C)∗c .

Finally, we claim that for every m ∈ N ,

I(u) → −∞ as ∥u∥ → ∞, u ∈ X1
m ⊕X2.

By (H2), there exists an M large enough such that

F (x, t) ≥ Mtp − C5, x ∈ Ω, t ∈ R.
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So, for any u ∈ X1
m ⊕X2, we have

I(tu) ≤ tp

p

∫
Ω

|∇u|pdx+
t2

2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, tu)dx

≤ 1

p
tp
∫
Ω

|∇u|pdx+
t2

2

∫
Ω

|∇u|2dx−Mtp
∫
Ω

|u|pdx+ C5|Ω| → −∞ as t → +∞.

Hence, our claim holds. �

Proof of Theorem 1.2 Let X = W 1,p
0 (Ω). It follows from the assumptions that I is even.

Obviously, I ∈ C1(X,R) and I(0) = 0. By the proof of Theorem 1.1, we easily prove that I(u)

satisfies the Cerami condition (C)c (c > 0) (see [15]). Now, we can prove the theorem by using

the symmetric mountain pass Theorem in [15,16].

Step 1. We claim that condition (i) holds in [16, Theorem 9.12]. Let V1 = Eλ1 ⊕Eλ2 ⊕ · · ·⊕
Eλm−1 , V2 = X \ V1. For all u ∈ V2, by (SCPI) and (H1), similarly to the proof of the step 2 in

Theorem 1.1, we have

I(u) ≥ α

for ∥u∥ = ρ small enough, where α > 0.

Step 2. We claim condition (ii) holds in [16, Theorem 9.12]. By the last proof of Theorem

1.1, for every finite dimension subspace Ẽ ⊂ E, there exists R = R(Ẽ) such that

I(u) ≤ 0, u ∈ Ẽ\BR(Ẽ)

and our claim holds. �

Proof of Theorem 1.3 Similarly to the proof of Theorem 1.1, we only need to prove that

I(u) ≥ 0 for u ∈ X1 with ∥u∥ ≤ r and r > 0 small enough and bounded sequence {un} has a

strong convergence subsequence.

First, we we claim that I(u) ≥ 0 for u ∈ X1 with ||u|| ≤ r and r > 0 small enough. By

(SCE) and (H1), for any ε > 0, there exist A1 = A1(ε), κ > 0 and q > N such that for all

(x, s) ∈ Ω× R,
F (x, s) ≤ 1

N
(ϵ)|s|N +A1 exp(κ|s|

N
N−1 )|s|q.

Choose ε > 0 such that ε < λ1. By above inequality, the Hölder inequality and the Moser-

Trudinger embedding inequality, we get

I(u) ≥ 1

N
∥u∥N − ϵ

N
|u|NN −A1

∫
Ω

exp(κ|u|
N

N−1 )|u|qdx

≥ 1

N

(
1− ϵ

λ1

)
∥u∥N −A1

(∫
Ω

exp(κr∥u∥
N

N−1 (
|u|
∥u∥

)
N

N−1 )dx
) 1

r
(∫

Ω

|u|r
′qdx

) 1
r′

≥ 1

N

(
1− ϵ

λ1

)
∥u∥N − C6∥u∥q,

where r > 1 sufficiently close to 1, ∥u∥ ≤ σ and κrσ
N

N−1 < αN . So, we get

I(u) ≥ 0, ∀u ∈ X1 with ∥u∥ ≤ r

for 0 < r small enough.
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Next, we show that bounded sequence {un} has a strong convergence subsequence. Without

loss of generality, suppose that

∥un∥ ≤ β,

un ⇀ u in W 1,N
0 (Ω),

un → u in Lq(Ω), ∀q ≥ 1,

un(x) → u(x) a.e. x ∈ Ω.

Now, since f has the subcritical exponential growth (SCE) on Ω, we can find a constant Cβ > 0

such that

|f(x, t)| ≤ Cβ exp(
αN

2β
N

N−1

|t|
N

N−1 ), ∀(x, t) ∈ Ω× R.

Thus, by the Moser-Trudinger inequality (see Lemma 2.7),∣∣∣ ∫
Ω

f(x, un)(un − u)dx
∣∣∣ ≤ C7

(∫
Ω

exp(
αN

β
N

N−1

|un|
N

N−1 )dx
) 1

2 |un − u|2

≤ C7

(∫
Ω

exp(
αN

β
N

N−1

∥un∥
N

N−1 | un

∥un∥
|

N
N−1 )dx

) 1
2 |un − u|2

≤ C8|un − u|2 → 0.

Similarly to the last proof of Theorem 1.1, we have un → u in W 1,N
0 (Ω) which means that I

satisfies (C)c. �

Proof of Theorem 1.4 Combining the proofs of Theorems 1.2 and 1.3, we easily prove it. We

omit it here. �
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