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1. Introduction

Let us consider the general linear regression models:

y = Xβ + ϵ, ϵ ∼ N(0, σ2In), (1)

where y shows an n × 1 vector of observation, X defines an n × p known matrix of rank p, β

denotes a p × 1 vector of unknown parameters, ϵ denotes an n × 1 vector of disturbances with

expectation E(ϵ) = 0 and variance-covariance matrix Cov(ϵ) = σ2In.

The ordinary least squares estimator (OLSE) is presented as follows:

β̂OLSE = (X ′X)−1X ′y. (2)

In addition to the sample model (1), we give some prior information about β in the form of

a set of j independent stochastic linear restrictions as follows:

r = Rβ + e, e ∼ (0, σ2W ). (3)

where R shows a j × p known matrix with rank(R) = j, e shows a j × 1 vector of disturbances,

W is supposed to be known and positive definite, the j × 1 vector, r can be interpreted as a

stochastic known vector. Further suppose that ε is stochastically independent of e.
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Durbin [1], Theil and Goldberger [2] and Theil [3] proposed the mixed estimator which is

presented as follows:

β̂ME = (X ′X +R′W−1R)−1(X ′y +R′W−1r).

When the sample information presented by (1) and the prior information depicted by (3)

is to be assigned not necessarily equal weights on the basis of some extraneous considerations in

the estimation of regression parameters [4], Schaffrin and Toutenburg [5] presented the weighted

mixed estimator (WME), which is

β̂(w) = (X ′X + wR′W−1R)−1(X ′y + wR′W−1r), 0 ≤ w ≤ 1. (4)

We can easily see that the ordinary least squares estimator (OLSE) and the weighted mixed

estimator are unbiased estimator of β, and we can obtain:

Cov(β̂OLSE) = σ2(X ′X)−1,

Cov(β̂(w)) = σ2(X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1.

And

Cov(β̂(w)) = σ2(X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)× (X ′X + wR′W−1R)−1

≤ σ2(X ′X + wR′W−1R)−1 ≤ σ2(X ′X)−1 = Cov(β̂OLSE). (5)

That is in the sense of “loẅner”, the WME has smaller covariance matrix than the OLSE.

In practice, the matrix W may be unknown, so we use ordinary least squares estimator to

replace the weighted mixed estimator. However, if we use the OLSE to replace the WME, this

may lose some efficiency. In order to define the loss, the authors introduce the relative efficiency.

Many authors have discussed the relative efficiency, such as, Liu [6], Wang and Yang [7], Yang

and Wang [8], Wang and Yang [9], Wang and Pan [10].

Wu and Yang [11] define two relative efficiencies:

g1 =
|Cov(β̂(w))|
|Cov(β̂OLSE)|

,

g2 =
tr(Cov(β̂(w)))

tr(Cov(β̂OLSE))
.

They also obtained the lower and upper bounds of gi, i = 1, 2. By the definition of gi, i = 1, 2,

we know that the two relative efficiencies only relate to diagonal element of Cov(β̂(w)) and

Cov(β̂OLSE) and the other elements will not affect the gi, i = 1, 2. In order to overcome this

problem, we present two new relative efficiencies:

u1 =
∥Cov(β̂(w))∥F
∥Cov(β̂OLSE)∥F

, (6)

u2 =
∥Cov(β̂(w))∥2
∥Cov(β̂OLSE)∥2

, (7)
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where ∥A∥F and ∥A∥2 define the F norm and Spectrum norm of matrix A, respectively. And

∥A∥F =
√
tr(A′A), ∥A∥2 = (λmax(A

′A))
1
2 .

It is easy to see that all the elements of Cov(β̂(w)) and Cov(β̂OLSE) will affect the values of u!.

The main purpose of the paper is to give the lower and upper bounds of the two relative

efficiencies.

The rest of the paper is organized as follows. In Section 2, we give the lower and bounds

of u1 and u2. And a numerical example is presented to show the theoretical results. Some

conclusion remarks are presented in Section 4.

2. The lower and upper bounds of u1 and u2

In this section we will present the lower and upper bounds of u1 and u2. Firstly, we list

some lemmas and notations which are needed in the following discussions.

Let A be an n× n nonnegative definite matrix and λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) stand for

the ordered eigenvalues of matrix A.

Lemma 2.1 ([12]) Let A be an n×n nonnegative definite matrix, and B be an n×n nonnegative

definite matrix. Then we have

λn(A)λi(B) ≤ λi(AB) ≤ λ1(A)λi(B), i = 1, 2, . . . , n.

Lemma 2.2 ([12]) Let A be a nonnegative definite matrix and B be a positive definite matrix.

Then we have
tr(A)

λ1(B)
≤ tr(AB−1) ≤ tr(A)

λn(B)
.

Firstly, we state the following theorem.

Theorem 2.3 Let u1 and u2 be defined in Equs. (6) and (7). Then we have 0 ≤ ui ≤ 1, i = 1, 2.

Proof Let A = Cov(β̂(w)) and B = Cov(β̂OLSE). Then by (5), we have 0 ≤ A ≤ B. Let

ζ1 ≥ · · · ≥ ζp be the ordered eigenvalues of matrix A. Then there exists an orthogonal matrix

such that Q′AQ = diag(ζ1, . . . , ζp). And we let η1 ≥ · · · ≥ ηp be the ordered eigenvalues of

matrix B. Since B ≥ A ≥ 0, we obtain ηi ≥ ζi > 0 (i = 1, . . . , p).

By the definition of the F norm, we obtain:

∥ A ∥2F= tr(A′A) = tr(Q′A′QQ′AQ) =

p∑
i=1

ζ2i ,

∥ B ∥2F=
p∑

i=1

η2i ≥
p∑

i=1

ζ2i =∥ A ∥2F .

So

0 ≤ u1 =
∥Cov(β̂(w))∥F
∥Cov(β̂OLSE)∥F

≤ 1.
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Since B ≥ A > 0, we get

∥ B ∥22= λmax(B
′B) = λ2

max(B) ≥ λ2
max(A) =∥ A ∥22 .

Thus 0 ≤ u2 ≤ 1. �
By Theorem 2.3, we can conclude that if the values of ui, i = 1, 2 are closer to 1, then using

β̂OLSE to replace β̂(w) will have smaller loss, instead, if the values of ui, i = 1, 2 are closer to 0,

it is included that using β̂OLSE to replace β̂(w) will have bigger loss. In the following theorem,

we will present more accurate lower and upper bounds of the two relative efficiencies.

Theorem 2.4 Let β̂OLSE and β̂(w) be defined in Equs. (2) and (4), and u1 be given in Eq. (7).

Then we have

max{

√∑p
i=1(1 + wζp−i+1)−4(1 + w2ζi)2∑p

i=1 θ
−2
i θ21

,

√√√√ (
∑p

i=1
(1+wζp−i+1)−2(1+w2ζi)

θi
)2

p
∑p

i=1 θ
−2
i

}

≤ u1 ≤

√∑p
i=1(1 + wζp−i+1)−4(1 + w2ζi)2∑p

i=1 θ
−2
i θ2p

where θ1 ≥ · · · ≥ θp > 0 denote the ordered eigenvalues of X ′X, ζ1 ≥ · · · ≥ ζp define the ordered

eigenvalues of R′W−1R(X ′X)−1.

Proof First, we have

∥Cov(β̂OLSE)∥2F = σ4tr((X ′X)−2), (8)

∥Cov(β̂(w))∥2F = σ4tr{(X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)×

(X ′X + wR′W−1R)−1}. (9)

Since X ′X > 0, there exists an orthogonal matrix H1, such that

X ′X = H ′
1ΘH1, Θ = diag(θ1, . . . , θp),

where θ1 ≥ · · · ≥ θp > 0 denote the ordered eigenvalues of X ′X. Then we can obtain

(X ′X)−1 = H ′
1Θ

−1H1 = H ′
1ΓH1, Γ = diag(θ−1

p , . . . , θ−1
1 ),

where θ−1
p ≥ · · · ≥ θ−1

1 > 0 denote the ordered eigenvalues of (X ′X)−1.

On the other hand, it is easy to know that Q = R′W−1R ≥ 0 and rank(Q) = j. Define

Q̃ = (X ′X)−1/2Q(X ′X)−1/2, then Q̃ ≥ 0, so there exists an orthogonal matrix H2, such that

Q̃ = H ′
2ΩH2, Ω = diag(ζ1, . . . , ζp),

where ζ1 ≥ · · · ≥ ζp are the ordered eigenvalues of Q̃. Then (8) becomes

∥ Cov(β̂OLSE) ∥2F= σ4

p∑
i=1

θ−2
i ,

λi(Cov(β̂(w)) =λi((X
′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1)

=λi((X
′X)−1/2(I + wQ̃)−1(I + w2Q̃)(I + wQ̃)−1(X ′X)−1/2)
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=λi((I + wQ̃)−1(I + w2Q̃)(I + wQ̃)−1(X ′X)−1)

=λi((I + wΩ)−1(I + w2Ω)(I + wΩ)−1H2H
′
1ΓH

′
1H2)

=λi(ΦK
′ΓK), (10)

where K = H ′
1H2 is an orthogonal matrix.

Φ =(I + wΩ)−1(I + w2Ω)(I + wΩ)−1

=diag((1 + wζp)
−2(1 + w2ζ1), . . . , (1 + wζ1)

−2(1 + w2ζp))

=diag(ε1, . . . , εp),

where εi = (1 + wζp−i+1)
−2(1 + w2ζi), ε1 ≥ · · · ≥ εp.

Now by using Lemma 2.1, we obtain

λp(Γ)λi(Φ) ≤ λi(ΦK
′ΓK) ≤ λ1(Γ)λi(Φ).

Thus

σ2 εi
θ1

≤ λi(Cov(β̂(w)) ≤ σ2 εi
θp

, i = 1, . . . , p. (11)

Then by (9) and (11), we obtain

σ4

p∑
i=1

ε2i
θ21

≤∥ Cov(β̂(w)) ∥2F≤ σ4

p∑
i=1

ε2i
θ2p

,

σ4

p∑
i=1

(1 + wζp−i+1)
−4(1 + w2ζi)

2

θ21

≤∥ Cov(β̂(w)) ∥2F≤ σ4

p∑
i=1

(1 + wζp−i+1)
−4(1 + w2ζi)

2

θ2p
.

So we obtain√∑p
i=1(1 + wζp−i+1)−4(1 + w2ζi)2∑p

i=1 θ
−2
i θ21

≤ u1 ≤

√∑p
i=1(1 + wζp−i+1)−4(1 + w2ζi)2∑p

i=1 θ
−2
i θ2p

.

On the other hand, by (10), we can get

tr((X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1)

= tr(ΦK ′ΓK).

Since Φ and KΦK ′ have same eigenvalues, using the Neumann equality [12], we may have

tr((X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1) ≥
p∑

i=1

εi
θi
.

Then by the equality [tr((X′X+wR′W−1R)−1(X′X+w2R′W−1R)(X′X+wR′W−1R)−1)]2

tr((X′X+wR′W−1R)−2(X′X+w2R′W−1R)2(X′X+wR′W−1R)−2 ≤ p, we can have

tr((X ′X + wR′W−1R)−2(X ′X + w2R′W−1R)2(X ′X + wR′W−1R)−2)

≥ 1

p
[tr((X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1)]2
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≥ 1

p
(

p∑
i=1

εi
θi
)2.

So

∥ Cov(β̂(w)) ∥2F≥ σ4 1

p
(

p∑
i=1

εi
θi
)2 = σ4 1

p
(

p∑
i=1

(1 + wζp−i+1)
−2(1 + w2ζi)

θi
)2.

Thus

max
{√∑p

i=1(1 + wζp−i+1)−4(1 + w2ζi)2∑p
i=1 θ

−2
i θ21

,

√√√√ (
∑p

i=1
(1+wζp−i+1)−2(1+w2ζi)

θi
)2

p
∑p

i=1 θ
−2
i

}
≤ u1 ≤

√∑p
i=1(1 + wζp−i+1)−4(1 + w2ζi)2∑p

i=1 θ
−2
i θ2p

. �

In the following theorem, we give the lower and upper bounds of the relative efficiency u2.

Theorem 2.5 Let β̂OLSE and β̂(w) be defined in Equs. (2) and (4), and u2 be defined in Eq. (7).

Then we have

(1 + w2ζ1)θp
(1 + wζp)2θ1

≤ u2 ≤ 1 + w2ζ1
(1 + wζp)2

,

where θ1 ≥ · · · ≥ θp > 0 are the ordered eigenvalues of X ′X, ζ1 ≥ · · · ≥ ζp are the ordered

eigenvalues of R′W−1R(X ′X)−1.

Proof Firstly, we have

∥ (X ′X)−1 ∥2=
√
λmax((X ′X)−2) =

√
λ2
max((X

′X)−1) = λ−1
p (X ′X) = θ−1

p

and

∥ (X ′X + wR′W−1R)−2(X ′X + w2R′W−1R)2(X ′X + wR′W−1R)−2 ∥2
=

√
λmax((X ′X + wR′W−1R)−2(X ′X + w2R′W−1R)2(X ′X + wR′W−1R)−2)

= λ−1
p ((X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1).

Then using Eq. (11), we get

ε1
θ1

≤ λ−1
p ((X ′X + wR′W−1R)−1(X ′X + w2R′W−1R)(X ′X + wR′W−1R)−1) ≤ ε1

θp
.

Thus
ε1θp
θ1

≤ u2 ≤ ε1. That is

(1 + wζp)
−2(1 + w2ζ1)θp
θ1

≤ u2 ≤ (1 + wζp)
−2(1 + w2ζ1). �

3. Numerical example

In this section, we will present a numerical example to illustrate the theoretical results. The
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data is given as follows, and the data was studied by Wu and Yang [11]

X =



1.9 2.2 1.9 3.7

1.8 2.2 2.0 3.8

1.8 2.4 2.1 3.6

1.8 2.4 2.2 3.8

2.0 2.5 2.3 3.8

2.1 2.6 2.4 3.7

2.1 2.6 2.6 3.8

2.2 2.6 2.6 4.0

2.3 2.8 2.8 3.7

2.3 2.7 2.8 3.8



, y =



2.3

2.2

2.2

2.3

2.4

2.5

2.6

2.6

2.7

2.7



.

Consider the following matrix restriction r = Rβ+e, where R = (1,−2,−2,−2)′. The estimated

relative efficiencies are presented in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.6
0.7

0.8
0.9

1.0

w

u

u1
u2

Figure 1 The estimated relative efficiencies values of u1 and u2 when 0 < w < 1

4. Concluding remarks

In this paper, we define two new relative efficiencies and we also give a lower and upper

bounds of the relative efficiencies.
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