Classification of Flag-Transitive Primitive Symmetric (v, k, λ) Designs with PSL $(2, q)$ as Socle

Delu TIAN ${ }^{1,2}$, Shenglin ZHOU $^{2, *}$
1. Department of Mathematics, Guangdong University of Education, Guangdong 510303, P. R. China;
2. School of Mathematics, South China University of Technology, Guangdong 510640, P. R. China

Abstract

Let \mathcal{D} be a nontrivial symmetric (v, k, λ) design, and G be a subgroup of the full automorphism group of \mathcal{D}. In this paper we prove that if G acts flag-transitively, pointprimitively on \mathcal{D} and $\operatorname{Soc}(G)=\operatorname{PSL}(2, q)$, then \mathcal{D} has parameters $(7,3,1),(7,4,2),(11,5,2)$, $(11,6,3)$ or $(15,8,4)$.

Keywords symmetric design; flag-transitive; primitive group
MR(2010) Subject Classification 05B05; 05B25; 20B25

1. Introduction

A 2- (v, k, λ) design \mathcal{D} is a set P of v points together with a set \mathcal{B} of b blocks, such that every block contains k points and every pair of points is in exactly λ blocks. The design \mathcal{D} is symmetric if $b=v$, and is non-trivial if $2<k<v-1$. In this paper we only study non-trivial symmetric $2-(v, k, \lambda)$ designs, and for brevity we call such a design a symmetric (v, k, λ) design. A flag in a design is an incident point-block pair. The complement of \mathcal{D}, denoted by $\overline{\mathcal{D}}$, is a symmetric $(v, v-k, v-2 k+\lambda)$ design whose set of points is the same as the set of points of \mathcal{D}, and whose blocks are the complements of the blocks of \mathcal{D}. The automorphism group $\operatorname{Aut}(\mathcal{D})$ of \mathcal{D} consists of all permutations of P which leave \mathcal{B} invariant. For $G \leq \operatorname{Aut}(\mathcal{D})$, the design \mathcal{D} is called point-primitive if G is primitive on P, and flag-transitive if G is transitive on the set of flags. The socle of a group G, denoted by $\operatorname{Soc}(G)$, is the subgroup generated by its minimal normal subgroups.

The classification program for symmetric (v, k, λ) designs has been studied by several researchers. In 1985, Kantor [1] classified all symmetric (v, k, λ) designs admitting 2 -transitive automorphism groups. In [2], Dempwolff determined all symmetric (v, k, λ) designs which admit an automorphism group G such that G has a nonabelian socle and is a primitive rank three group on points (and blocks). In [3,4], we classified flag-transitive point-primitive symmetric (v, k, λ) designs admitting an automorphism group G such that $\operatorname{Soc}(G)$ is a sporadic simple group. This paper is devoted to the complete classification of flag-transitive point-primitive

[^0]symmetric (v, k, λ) designs which admit an automorphism group G with $\operatorname{Soc}(G)=\operatorname{PSL}(2, q)$, and extend the result of symmetric designs with $\lambda=4$ in [5] to the general case.

Theorem 1.1 Let $\mathcal{D}=(P, \mathcal{B})$ be a symmetric (v, k, λ) design which admits a flag-transitive, point-primitive automorphism group G, and x be a point of P. If G is an almost simple group and $X=\operatorname{Soc}(G)=\operatorname{PSL}(2, q)$, where $q=p^{f}$ and p is a prime, then \mathcal{D} is one of the following:
(i) a $(7,3,1)$ design with $X=\operatorname{PSL}(2,7)$ and $X_{x}=S_{4}$;
(ii) a $(7,4,2)$ design with $X=\operatorname{PSL}(2,7)$ and $X_{x}=S_{4}$;
(iii) a $(11,5,2)$ design with $X=\operatorname{PSL}(2,11)$ and $X_{x}=A_{5}$;
(iv) a $(11,6,3)$ design with $X=\operatorname{PSL}(2,11)$ and $X_{x}=A_{5}$;
(v) a $(15,8,4)$ design with $X=\operatorname{PSL}(2,9)$ and $X_{x}=\operatorname{PGL}(2,3)$.

Corollary 1.2 For $\lambda \geq 5$, there is no symmetric (v, k, λ) design admitting a flag-transitive, point-primitive almost simple automorphism group with socle PSL $(2, q)$.

2. Preliminaries

In this section we state some preliminary results which will be needed later in this paper. From [6,7] we get the following:

Lemma 2.1 Let \mathcal{D} be a flag-transitive symmetric (v, k, λ) design. Then the following hold:
(i) $k(k-1)=\lambda(v-1)$, and in particular $k^{2}>v$;
(ii) $k \mid \lambda d_{i}$, where d_{i} is any non-trivial subdegree of G;
(iii) $\left.k\left|\left|G_{x}\right|\right.$ and $| G_{x}\right|^{3}>|G|$, where G_{x} is the stabilizer in G of a point $x \in P$.

Lemma 2.2 ([8]) Let \mathcal{D} be a symmetric (v, k, λ) design and $G \leq \operatorname{Aut}(\mathcal{D})$. Then
(i) G has as many orbits on points as on blocks;
(ii) if G is a transitive automorphism group, then G has the same rank whether considered as a permutation group on points or on blocks.

Lemma 2.3 Let $\mathcal{D}=(P, \mathcal{B})$ be a symmetric (v, k, λ) design and G be a subgroup of $\operatorname{Aut}(\mathcal{D})$. Then G is 2-transitive on P if and only if G is flag-transitive on both the design \mathcal{D} and the complement design $\overline{\mathcal{D}}$ of \mathcal{D}.

Proof Note that when G is transitive on P and $x \in P, G$ is flag-transitive on \mathcal{D} if and only if G_{x} is transitive on the set of all blocks in B containing x. Suppose G is 2-transitive on P. Then for any $x \in P, G_{x}$ has two orbits on P. By (i) of Lemma $2.2, G_{x}$ has two orbits on B. But $x \in P$ has at least 2 orbits on B, the set of blocks containing x and the set of blocks not containing x. Therefore the set of blocks containing x must be a single orbit of G_{x} on B and G is flag-transitive on \mathcal{D}. Similarly, since G is also 2-transitive on P for $\overline{\mathcal{D}}=(P, \bar{B}), G$ is also flag-transitive on $\overline{\mathcal{D}}$.

Conversely, if $\overline{\mathcal{D}}$ is flag-transitive, then G_{C} is transitive on the points of C for every block C of $\overline{\mathcal{D}}$. Let $B=P-C$. Then B is one of the blocks of \mathcal{D} and $G_{B}=G_{C}$. Since \mathcal{D} is also
flag-transitive, G_{B} is transitive on B. Thus G_{B} has two orbits acting on points, which implies that the point-stabilizer G_{x} has two orbits acting on P by Lemma 2.2. Hence G is 2-transitive on P.

Lemma 2.4 Let G be a transitive group on P, and let $X \unlhd G$. Then each orbit of G_{x} acting on P is the union of some orbits of X_{x} which have the same cardinality.

Proof This is well known, and follows from the $\frac{1}{2}$-transitivity of X_{x} since $X_{x} \unlhd G_{x}$ and G_{x} is transitive on each G_{x}-orbit.

Lemma 2.5 Let $\mathcal{D}=(P, \mathcal{B})$ be a symmetric (v, k, λ) design admitting a flag-transitive, pointprimitive automorphism group G with socle X. If the non-trivial subdegree t of X appears with multiplicity s, then $k \mid \lambda s t$.

Proof Suppose that $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{s}$ are all orbits of X_{x} with cardinality t, where $x \in P$. By Lemma 2.4, the group G_{x} acts on $\Gamma=\bigcup_{i=1}^{s} \Gamma_{i}$, and the cardinalities of orbits of G_{x} are

$$
\left(a_{1} t\right)^{s_{1}},\left(a_{2} t\right)^{s_{2}}, \ldots,\left(a_{r} t\right)^{s_{r}}
$$

where a^{b} means that a appears with multiplicity b, and $r, a_{i}, s_{i}(1 \leq i \leq r)$ are all positive integers such that $\sum_{i=1}^{r} a_{i} s_{i}=s$, and $a_{i} \neq a_{j}$ if and only if $i \neq j$ for $1 \leq i, j \leq r$. Let $c=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{r}\right)$. Then $c \mid s$. Lemma 2.1 (ii) shows that $k \mid \lambda\left(a_{i} t\right), i=1,2, \ldots, r$. So $k \mid \lambda c t$, and hence $k \mid \lambda s t$.

The subgroups of $\operatorname{PSL}(2, q)$ are well-known and given by Huppert [9].
Lemma 2.6 ([9]) The subgroups of the group $\operatorname{PSL}(2, q)\left(q=p^{f}\right)$ are as follows.
(i) An elementary abelian group C_{p}^{ℓ}, where $\ell \leq f$;
(ii) A cyclic group C_{z}, where $z \left\lvert\, \frac{p^{f} \pm 1}{d}\right.$ and $d=\operatorname{gcd}(2, q-1)$;
(iii) A dihedral group $D_{2 z}$, where z is the same as in (ii);
(iv) The alternating group A_{4} when $p>2$ or $p=2$ and $2 \mid f$;
(v) The symmetric group S_{4} when $p^{2 f} \equiv 1(\bmod 16)$;
(vi) The alternating group A_{5} when $p=5$ or $p^{2 f} \equiv 1(\bmod 5)$;
(vii) $C_{p}^{\ell}: C_{t}$, where $t \left\lvert\, \operatorname{gcd}\left(p^{\ell}-1, \frac{p^{f}-1}{d}\right)\right.$ and $d=\operatorname{gcd}(2, q-1)$;
(viii) $\operatorname{PSL}\left(2, p^{\ell}\right)$ when $\ell \mid f$ and $\operatorname{PGL}\left(2, p^{\ell}\right)$ when $2 \ell \mid f$.

The following lemma is a combination of Theorems 1.1, 2.1 and 2.2 in [10].
Lemma 2.7 Let $X=\operatorname{PSL}(2, q) \leq G \leq \operatorname{P\Gamma L}(2, q)$ and let M be a maximal subgroup of G which does not contain X. Then either $M \cap X$ is maximal in X, or G and M are given in Table 1. The maximal subgroups of X appear in Tables 2 and 3.

G	M	$\|G: M\|$
$\operatorname{PGL}(2,7)$	$N_{G}\left(D_{6}\right)=D_{12}$	28
$\operatorname{PGL}(2,7)$	$N_{G}\left(D_{8}\right)=D_{16}$	21
$\operatorname{PGL}(2,9)$	$N_{G}\left(D_{10}\right)=D_{20}$	36
$\operatorname{PGL}(2,9)$	$N_{G}\left(D_{8}\right)=D_{16}$	45
M_{10}	$N_{G}\left(D_{10}\right)=C_{5} \rtimes C_{4}$	36
M_{10}	$N_{G}\left(D_{8}\right)=C_{8} \rtimes C_{2}$	45
$\operatorname{P\Gamma L}(2,9)$	$N_{G}\left(D_{10}\right)=C_{10} \rtimes C_{4}$	36
$\operatorname{P\Gamma L}(2,9)$	$N_{G}\left(D_{8}\right)=C_{8} \cdot \operatorname{Aut}\left(C_{8}\right)$	45
$\operatorname{PGL}(2,11)$	$N_{G}\left(D_{10}\right)=D_{20}$	66
$\operatorname{PGL}(2, q), q=p \equiv \pm 11,19(\bmod 40)$	$N_{G}\left(A_{4}\right)=S_{4}$	$\frac{q\left(q^{2}-1\right)}{24}$

Table $1 G$ and M of Lemma 2.7

Structure	Conditions	Order	Index
$C_{p}^{f}: C_{(q-1) / 2}$		$\frac{q(q-1)}{2}$	$q+1$
D_{q-1}	$q \geq 13$	$q+1$	$\frac{q(q-1)}{2}$
D_{q+1}	$q \neq 7,9$	$q-1$	$\frac{q(q+1)}{2}$
$\operatorname{PGL}\left(2, q_{0}\right)$	$q=q_{0}^{2}$	$q_{0}\left(q_{0}^{2}-1\right)$	$\frac{q_{0}\left(q_{0}^{2}+1\right)}{2}$
$\operatorname{PSL}\left(2, q_{0}\right)$	$q=q_{0}^{r}, r \operatorname{odd} \operatorname{prime}$	$\frac{q_{0}\left(q_{0}^{2}-1\right)}{2}$	$\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{q_{0}^{2}-1}$
A_{5}	$q=p \equiv \pm 1(\bmod 5)$,	120	$\frac{q\left(q^{2}-1\right)}{120}$
	or $q=p^{2} \equiv-1(\bmod 5)$		
A_{4}	$q=p \equiv \pm 3(\bmod 8)$,	12	$\frac{q\left(q^{2}-1\right)}{24}$
	and $q \neq \pm 1(\bmod 10)$		
S_{4}	$q=p \equiv \pm 1(\bmod 8)$	24	$\frac{q\left(q^{2}-1\right)}{24}$

Table 2 Maximal subgroups of $\operatorname{PSL}(2, q)$ with $q=p^{f} \geq 5$, p odd prime

Structure	Conditions	Order	Index
$C_{2}^{f}: C_{q-1}$		$q(q-1)$	$q+1$
$D_{2(q-1)}$		$2(q+1)$	$\frac{q(q-1)}{2}$
$D_{2(q+1)}$		$2(q-1)$	$\frac{q(q+1)}{2}$
$\operatorname{PSL}\left(2, q_{0}\right)$	$q=q_{0}^{r}, r$ prime,$q_{0} \neq 2$	$q_{0}\left(q_{0}^{2}-1\right)$	$\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{q_{0}^{2}-1}$

Table 3 Maximal subgroups of $\operatorname{PSL}(2, q)$ with $q=2^{f} \geq 4$
Now we state the following algorithm, which will be useful to search for symmetric designs which satisfy the condition " $k \mid u$ ". The output of the algorithm is the list DESIGNS of parameter sequences (v, k, λ) of potential symmetric designs.

Algorithm 2.8 (DESIGNS)

Input: u, v.
Output: The list Designs $:=S$.
set $S:=$ an empty list;
for each k dividing u with $2<k<v-1$
$\lambda:=k *(k-1) /(v-1) ;$
if λ is an integer
Add (v, k, λ) to the list S;
return S.

3. Proof of Theorem 1.1

Let $\mathcal{D}=(P, \mathcal{B})$ be a symmetric (v, k, λ) design admitting a flag-transitive, point-primitive automorphism group G with $X \unlhd G \leq \operatorname{Aut}(X)$, where $X=\operatorname{PSL}(2, q)$ with $q=p^{f}$ and p prime. As a maximal subgroup of G, the point stabilizer G_{x} does not contain X since X is transitive on P. Thus Lemma 2.7 shows that either $X \cap G_{x}$ is maximal in X, or G and G_{x} are given in Table 1. We will prove Theorem 1.1 by the following three subsections.

3.1. Cases in Table 1

In these cases, we may view the maximal subgroup M as the point stabilizer G_{x}. We get the 3-tuples $(|G|, u, v)$ in Table 1 where v is the index $\left|G: G_{x}\right|$ and $u=\left|G_{x}\right|$. For each case except the last one, we can obtain all potential symmetric designs using Algorithm 2.8 implemented in GAP [11]. There exists only one potential $(21,16,12)$ design with $G=\operatorname{PGL}(2,7)$ and $G_{x}=D_{16}$. The subdegrees of $\operatorname{PGL}(2,7)$ acting on the cosets of D_{16} are $1,4,8$ and 8 (Throughout this paper, we apply Magma [12] to calculate the subdegrees of G and the number of the conjugacy class of subgroups). Then by using the Magma-command Subgroups (G : OrderEqual: $=n$) where $n=|G| / v$, we obtain the fact that G has only one conjugacy class of subgroups with index 21. Thus G_{x} is conjugate to G_{B} for any $x \in \mathcal{P}, B \in \mathcal{B}$ which forces that there exists a block B_{0} such that $G_{x}=G_{B_{0}}$. The flag-transitivity of G implies that $G_{B_{0}}$ is transitive on the block B_{0}. So B_{0} should be an orbit of G_{x}, but there is no such orbit of size $k=16$, a contradiction.

Now we consider the last case. Here $G=\operatorname{PGL}(2, q)$ with $q=p \equiv \pm 11,19(\bmod 40)$, $G_{x}=S_{4}$, and $v=\frac{q\left(q^{2}-1\right)}{24}$. Since $\left|G_{x}\right|^{3}>|G|$, we have $24^{3}>q\left(q^{2}-1\right)$, and so $q=p=11$ or 19 . If $q=11$, then $v=55$. There exist two potential symmetric designs with parameters $(55,27,13)$ and $(55,28,14)$, but neither of them satisfies the condition that $k\left|\left|G_{x}\right|\right.$. If $q=19$, then $v=285$, and so $(k, \lambda)=(72,18)$ or $(213,159)$. However, every case $k>24$ contradicts the fact that k divides $\left|G_{x}\right|$.

3.2. Odd characteristic

In this subsection, we consider the cases that G has odd characteristic p and $X \cap G_{x}$ is maximal in X. The structure of $X \cap G_{x}$ comes from Table 2.

Case $1 X \cap G_{x}=C_{p}^{f}: C_{(q-1) / 2}$.

Here $v=q+1$, so $k(k-1)=\lambda(v-1)=\lambda q=\lambda p^{f}$. If $p \mid k$, then from $\operatorname{gcd}(p, k-1)=1$ we have $p^{f} \mid k$, that is, $v-1 \mid k$ which is impossible. Then $p \nmid k$, and so $p^{f} \mid k-1$ implies $v-1 \mid k-1$, which contradicts $k<v-1$.

Case $2 X \cap G_{x}=D_{q-1}(q \geq 13)$.
In this case, $v=\frac{1}{2} q(q+1)$, $|\operatorname{Out}(X)|=2 f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$ and $\left|G_{x}\right|=e(q-1)$, where e is a positive integer and $e \mid 2 f$.

From $k\left|\left|G_{x}\right|\right.$ we get $\left.k\right| e(q-1)$. So there exists a positive integer m such that $k=\frac{e(q-1)}{m}$. The equality $k(k-1)=\lambda(v-1)$ implies that $\frac{e(q-1)}{m}\left(\frac{e(q-1)}{m}-1\right)=\frac{1}{2} \lambda(q+2)(q-1)$, and hence

$$
\left(2 e^{2}-m^{2} \lambda\right) q=2 m^{2} \lambda+2 e^{2}+2 e m>0
$$

This implies that $m<2 e$. From $p^{f}=q=\frac{2 m^{2} \lambda+2 e^{2}+2 e m}{2 e^{2}-m^{2} \lambda}=\frac{6 e^{2}+2 e m}{2 e^{2}-m^{2} \lambda}-2$, we get

$$
p^{f}<6 e^{2}+2 e m<6 e^{2}+(2 e)^{2}=10 e^{2} \leq 40 f^{2}
$$

It follows that the 3 -tuples (q, p, f) are

$$
\begin{array}{llllll}
(27,3,3), & (81,3,4), & (243,3,5), & (729,3,6), & (25,5,2), & (125,5,3), \\
(625,5,4), & (49,7,2), & (343,7,3), & (121,11,2), & (13,13,1), & (17,17,1), \\
(19,19,1), & (23,23,1), & (29,29,1), & (31,31,1), & (37,37,1) . &
\end{array}
$$

We call each of these 3-tuples a subcase. Since $k \mid e(q-1)$ and $e \mid 2 f$, it follows that $k \mid u$, where $u=2 f(q-1)$. It is easy to compute the values of u and v for every subcase. However, for every subcase, there is no such symmetric design satisfying the condition that $k \mid u$ by Algorithm 2.8 calculated with GAP.

Case $3 X \cap G_{x}=D_{q+1}(q \neq 7,9)$.
Now $v=\frac{1}{2} q(q-1)$, $|\operatorname{Out}(X)|=2 f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$, and $\left|G_{x}\right|=e(q+1)$, where e is a positive integer and $e \mid 2 f$.

Since $k\left|\left|G_{x}\right|=e(q+1)\right.$, it follows that there exists a positive integer m such that $k=\frac{e(q+1)}{m}$. Then $\frac{e(q+1)}{m}\left(\frac{e(q+1)}{m}-1\right)=\frac{1}{2} \lambda(q-2)(q+1)$. So we have

$$
\left(m^{2} \lambda-2 e^{2}\right) q=2 e^{2}-2 e m+2 m^{2} \lambda=2\left(e-\frac{1}{2} m\right)^{2}+\left(2 \lambda-\frac{1}{2}\right) m^{2}>0 .
$$

Thus $p^{f}=q=\frac{2 e^{2}-2 e m+2 m^{2} \lambda}{m^{2} \lambda-2 e^{2}}=\frac{6 e^{2}-2 e m}{m^{2} \lambda-2 e^{2}}+2$ which gives

$$
p^{f}<6 e^{2}+2 \leq 24 f^{2}+2 .
$$

Combining this with $q \neq 7,9$, we obtain all possible 3 -tuples (q, p, f) :

$$
\begin{array}{lllllll}
(27,3,3), & (81,3,4), & (243,3,5), & (729,3,6), & (5,5,1), & (25,5,2), & (125,5,3), \\
(49,7,2), & (11,11,1), & (13,13,1), & (17,17,1), & (19,19,1), & (23,23,1) . &
\end{array}
$$

Since $k \mid e(q+1)$ and $e|2 f, k| u=2 f(q+1)$. The values of v and u can be calculated easily for each 3-tuple (p, q, f). In fact, we get no such symmetric design satisfying $k \mid u$ by Algorithm 2.8 calculated with GAP.

Case $4 X \cap G_{x}=\operatorname{PGL}\left(2, q^{\frac{1}{2}}\right)=\operatorname{PGL}\left(2, q_{0}\right)$.

Here $v=\frac{q_{0}\left(q_{0}^{2}+1\right)}{2},\left|X_{x}\right|=\left|X \cap G_{x}\right|=q_{0}\left(q_{0}^{2}-1\right),|\operatorname{Out}(X)|=2 f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$, and $\left|G_{x}\right|=e q_{0}\left(q_{0}^{2}-1\right)$, where $e \mid 2 f$ and f is even.

The subdegrees of $\operatorname{PSL}(2, q)$ on the cosets of $\operatorname{PGL}\left(2, q_{0}\right)$ are

$$
1, \frac{q_{0}\left(q_{0}-\varepsilon\right)}{2}, q_{0}^{2}-1,\left(q_{0}\left(q_{0}-1\right)\right)^{\frac{q_{0}-4-\varepsilon}{4}},\left(q_{0}\left(q_{0}+1\right)\right)^{\frac{q_{0}-2+\varepsilon}{4}},
$$

where $q_{0} \equiv \varepsilon(\bmod 4)$ with $\varepsilon= \pm 1$ (see [13]). Recall that here a^{b} means the subdegree a appears with multiplicity b. We consider two subcases in the following.

Subcase 4.1 $\varepsilon=-1$. Then there exists a positive integer s such that $q_{0}=4 s-1$, and the subdegrees here are: $1, \frac{q_{0}\left(q_{0}+1\right)}{2}, q_{0}^{2}-1,\left(q_{0}\left(q_{0}-1\right)\right)^{\frac{q_{0}-3}{4}},\left(q_{0}\left(q_{0}+1\right)\right)^{\frac{q_{0}-3}{4}}$. By Lemma 2.5, we get

$$
k \left\lvert\, \lambda \operatorname{gcd}\left(\frac{q_{0}\left(q_{0}+1\right)}{2}, q_{0}^{2}-1, \frac{q_{0}\left(q_{0}-1\right)\left(q_{0}-3\right)}{4}, \frac{q_{0}\left(q_{0}+1\right)\left(q_{0}-3\right)}{4}\right)\right.
$$

Since $q_{0}=4 s-1$, it follows that $k \mid 2 \lambda$. Then from $k>\lambda$ we get $k=2 \lambda$. By Lemma 2.1 (i), $\lambda=\frac{v+1}{4}=\frac{q_{0}^{3}+q_{0}+2}{8}$ and $k=\frac{q_{0}^{3}+q_{0}+2}{4}$. Since $k\left|\left|G_{x}\right|\right.$ and $\left.e\right| 2 f, k \mid u=2 f q_{0}\left(q_{0}^{2}-1\right)$. It follows that $q_{0}^{3}+q_{0}+2 \mid 8 f q_{0}\left(q_{0}^{2}-1\right)$. Note that $\operatorname{gcd}\left(q_{0}^{3}+q_{0}+2, q_{0}\right)=1$ and $\operatorname{gcd}\left(q_{0}^{2}-q_{0}+2, q_{0}-1\right)=2$, we get $q_{0}^{2}-q_{0}+2 \mid 16 f$. So $q_{0}^{2}-q_{0}+2 \leq 16 f$, i.e., $\left(p^{\frac{1}{2} f}\right)^{2}-p^{\frac{1}{2} f}+2 \leq 16 f$. It follows that $(f, p)=(2,3)$ or $(2,5)$ because f is even. If $(f, p)=(2,5)$, then q_{0} is equal to p which contradicts $q_{0}=4 s-1$. Suppose that $(f, p)=(2,3)$. Then \mathcal{D} has parameters $(15,8,4)$ with $X=\operatorname{PSL}(2,9) \cong A_{6}$, $X_{x}=\mathrm{PGL}(2,3) \cong S_{4}$. The existence of this design has been discussed in [5].

Subcase $4.2 \varepsilon=1$. Then $q_{0}=4 s+1$ for some positive integer s. Let $q_{0}=p^{a}$. Then $f=2 a$. The subdegrees are: $1, \frac{q_{0}\left(q_{0}-1\right)}{2}, q_{0}^{2}-1,\left(q_{0}\left(q_{0}-1\right)\right)^{\frac{q_{0}-5}{4}},\left(q_{0}\left(q_{0}+1\right)\right)^{\frac{q_{0}-1}{4}}$. Lemma 2.5 shows that

$$
k \left\lvert\, \lambda \operatorname{gcd}\left(\frac{q_{0}\left(q_{0}-1\right)}{2}, q_{0}^{2}-1, \frac{q_{0}\left(q_{0}-1\right)\left(q_{0}-5\right)}{4}, \frac{q_{0}\left(q_{0}+1\right)\left(q_{0}-1\right)}{4}\right)\right.
$$

Since $\operatorname{gcd}\left(\frac{q_{0}\left(q_{0}-1\right)}{2}, q_{0}^{2}-1\right)=\frac{1}{2}\left(q_{0}-1\right)$, it follows that $k \left\lvert\, \frac{1}{2} \lambda\left(q_{0}-1\right)\right.$. Combining this with $k(k-1)=\lambda(v-1)=\frac{1}{2} \lambda\left(q_{0}-1\right)\left(q_{0}^{2}+q_{0}+2\right)$, we get

$$
q_{0}^{2}+q_{0}+2 \mid k-1
$$

which implies that k is odd.
The flag-transitivity of G implies that G_{x} acts transitively on $P(x)$, the set of all blocks which are incident with the point x. Therefore G_{x} has some subgroup L with index k. Since $X_{x} \unlhd G_{x}$, we have $L /\left(L \cap X_{x}\right) \cong L X_{x} / X_{x}$. Let $H=L \cap X_{x}$, and $\left|L X_{x}: X_{x}\right|=c$ for some integer c. Then $c \mid e$ and $|H|=\frac{e q_{0}\left(q_{o}^{2}-1\right)}{c k}$, and hence

$$
k=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{|H|}
$$

where $e_{0}=\frac{e}{c}$. The fact $e \mid 2 f=4 a$ yields $e_{0} \mid 4 a$.
Since $\operatorname{PSL}\left(2, q_{0}\right)$ is the normal subgroup of $\operatorname{PGL}\left(2, q_{0}\right)$ with index 2 , and $H \leq X_{x}=$ $\operatorname{PGL}\left(2, q_{0}\right)$, we get $\left|H: H \cap \operatorname{PSL}\left(2, q_{0}\right)\right|=\left|\operatorname{PSL}\left(2, q_{0}\right) H: \operatorname{PSL}\left(2, q_{0}\right)\right|=1$ or 2. Lemma 2.6 gives all the subgroups of $\operatorname{PSL}\left(2, q_{0}\right)$, and hence $|H|$ must be one of the following:
(i) p^{ℓ} or $2 p^{\ell}$, where $\ell \leq a$;
(ii) z or $2 z$, where $z \left\lvert\, \frac{q_{0} \pm 1}{2}\right.$;
(iii) $2 z$ or $4 z$, where $z \left\lvert\, \frac{q_{0} \pm 1}{2}\right.$;
(iv) 12 or 24 ;
(v) 24 or 48 when $p^{2 a} \equiv 1(\bmod 16)$;
(vi) 60 or 120 when $p=5$ or $p^{2 a} \equiv 1(\bmod 5)$;
(vii) $t p^{\ell}$ or $2 t p^{\ell}$, where $t \left\lvert\, \operatorname{gcd}\left(p^{\ell}-1, \frac{p^{a}-1}{2}\right)\right.$;
(viii) $\frac{1}{2} p^{\ell}\left(p^{2 \ell}-1\right)$ or $p^{\ell}\left(p^{2 \ell}-1\right)$ when $\ell \mid a$, and $p^{\ell}\left(p^{2 \ell}-1\right)$ or $2 p^{\ell}\left(p^{2 \ell}-1\right)$ when $2 \ell \mid a$.

Recall that $q_{0}=4 s+1$, and so $8 \mid q_{0}^{2}-1$. Combining this with the fact that $k=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{|H|}$ is odd, gives $8||H|$. It follows that $| H \mid \neq p^{\ell}, 2 p^{\ell}, z, 12$ and 60 , and we deal with the remaining possible values of $|H|$ in turn.

If $|H|=2 z$ where $z \left\lvert\, \frac{q_{0} \pm 1}{2}\right.$ as in (ii) or (iii), then it is easily known from $k=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{2 z}$ that k is even, a contradiction.

If $|H|=4 z$ as in (iii), and in addition $z \left\lvert\, \frac{q_{0}+1}{2}\right.$, then k is even, a contradiction. Next suppose that $z \left\lvert\, \frac{q_{0}-1}{2}\right.$. Since $q_{0}^{2}+q_{0}+2 \mid k-1, q_{0}^{2}+q_{0}+2$ divides

$$
z(k-1)=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{4}-z=\frac{e_{0}\left(q_{0}-1\right)}{4}\left(q_{0}^{2}+q_{0}+2\right)-\frac{e_{0}\left(q_{0}-1\right)}{2}-z,
$$

which implies that $q_{0}^{2}+q_{0}+2 \left\lvert\, \frac{e_{0}\left(q_{0}-1\right)}{2}+z\right.$. Therefore, $q_{0}^{2}+q_{0}+2 \leq \frac{e_{0}\left(q_{0}-1\right)}{2}+z$. It follows that $p^{2 a}+p^{a}+2 \leq 2 a\left(p^{a}-1\right)+\frac{p^{a}-1}{2}$ because $e_{0} \leq 4 a$ and $z \leq \frac{q_{0}-1}{2}$, and hence $2 p^{2 a}+2 a+5 \leq(2 a-1) p^{a}$ which is a contradiction.

If $|H|=24$, then $k=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{24}$. The fact that $q_{0}^{2}+q_{0}+2 \mid k-1$ implies that $q_{0}^{2}+q_{0}+2$ divides

$$
6(k-1)=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{4}-6=\frac{e_{0}\left(q_{0}-1\right)}{4}\left(q_{0}^{2}+q_{0}+2\right)-\frac{e_{0}\left(q_{0}-1\right)}{2}-6 .
$$

Thus $q_{0}^{2}+q_{0}+2 \left\lvert\, \frac{e_{0}\left(q_{0}-1\right)}{2}+6\right.$, and so $q_{0}^{2}+q_{0}+2 \leq \frac{e_{0}\left(q_{0}-1\right)}{2}+6$. Since $e_{0} \mid 4 a$, we have $p^{2 a}+p^{a}+2 \leq$ $\frac{e_{0}\left(q_{0}-1\right)}{2}+6 \leq 2 a\left(p^{a}-1\right)+6$, which is impossible since $p \geq 3$.

The case (v) $|H|=48$, or (vi) $|H|=120$ can be ruled out similarly.
For (vii), if $|H|=t p^{\ell}$ or $2 t p^{\ell}$, then $k=\frac{e_{0} q_{0}\left(q_{0}^{2}-1\right)}{i t p^{\ell}}$ where $i=1$ or 2 , and hence k is even because $t \left\lvert\, \frac{p^{a}-1}{2}\right.$, a contradiction.

For (viii), suppose first that $\ell \mid a$ and $|H|=p^{\ell}\left(p^{2 \ell}-1\right)$ or $\frac{1}{2} p^{\ell}\left(p^{2 \ell}-1\right)$. Then $k=\frac{i e_{0} p^{a}\left(p^{2 a}-1\right)}{p^{\ell}\left(p^{2 \ell}-1\right)}$ where $i=1$ or 2 . If $\ell=a$, then $k=i e_{0}$. From $v<k^{2}$ and $e_{0} \mid 4 a$, we see $\frac{p^{a}\left(p^{2 a}+1\right)}{2}<\left(i e_{0}\right)^{2} \leq$ $16 i^{2} a^{2}$. It follows that $(p, a)=(3,1)$, and so $q_{0}=3$, contradicting $q_{0}=4 s+1$. Thus $\ell<a$, and so $a \geq 2$. It is easy to see that $p^{\ell}-1 \mid p^{a}-1$ because $\ell \mid a$. Since $q_{0}^{2}+q_{0}+2 \mid k-1$, we obtain that $q_{0}^{2}+q_{0}+2$ divides

$$
\begin{aligned}
p^{\ell}\left(p^{\ell}+1\right)(k-1) & =\frac{i e_{0} p^{a}\left(p^{2 a}-1\right)}{p^{\ell}-1}-p^{\ell}\left(p^{\ell}+1\right) \\
& =\frac{i e_{0}\left(p^{a}-1\right)}{p^{\ell}-1}\left(p^{2 a}+p^{a}+2\right)-\frac{2 i e_{0}\left(p^{a}-1\right)}{p^{\ell}-1}-p^{\ell}\left(p^{\ell}+1\right) .
\end{aligned}
$$

Thus $p^{2 a}+p^{a}+2 \left\lvert\, \frac{2 i e_{0}\left(p^{a}-1\right)}{p^{\ell}-1}+p^{\ell}\left(p^{\ell}+1\right)\right.$. Since $\ell \mid a$ and $\ell<a$, we have $2 \ell \leq a$, and so $p^{2 \ell} \leq p^{a}$. Then $p^{2 a}+p^{a}+2<8 i a\left(p^{a}-1\right)+2 p^{a}$. Combining this with $q_{0}=p^{a}=4 s+1$ and $a \geq 2$, gives $(p, a)=(3,2)$ when $i=1$, and $(p, a)=(3,2)$ or $(5,2)$ when $i=2$. It follows that $\ell=1$ and
$e_{0}=1,2,4$ or 8 . For all these parameters e_{0}, p, a and ℓ, we can get all possible values of v and k. It is not hard to check that for all these pairs (v, k), there are no integer values of λ satisfying equation $k(k-1)=\lambda(v-1)$, a contradiction.

Now suppose that $2 \ell \mid a$ and $|H|=p^{\ell}\left(p^{2 \ell}-1\right)$. Then $a \geq 2$ and $k=\frac{e_{0} p^{a}\left(p^{a}+1\right)\left(p^{a}-1\right)}{p^{\ell}\left(p^{2 \ell}-1\right)}$ is even since $p^{2 \ell}-1 \mid p^{a}-1$, a contradiction. Finally suppose that $2 \ell \mid a$ and $|H|=2 p^{\ell}\left(p^{2 \ell}-1\right)$ so that $k=\frac{e_{0} p^{a}\left(p^{2 a}-1\right)}{2 p^{\ell}\left(p^{2 \ell}-1\right)}$ and $a \geq 2$. Then by $q_{0}^{2}+q_{0}+2 \mid k-1$, we get that $q_{0}^{2}+q_{0}+2$ divides

$$
\begin{aligned}
p^{\ell}\left(p^{\ell}+1\right)(k-1) & =\frac{e_{0} p^{a}\left(p^{2 a}-1\right)}{2\left(p^{\ell}-1\right)}-p^{\ell}\left(p^{\ell}+1\right) \\
& =\frac{e_{0}\left(p^{a}-1\right)}{2\left(p^{\ell}-1\right)}\left(p^{2 a}+p^{a}+2\right)-\frac{e_{0}\left(p^{a}-1\right)}{p^{\ell}-1}-p^{\ell}\left(p^{\ell}+1\right)
\end{aligned}
$$

which yields $p^{2 a}+p^{a}+2 \left\lvert\, \frac{e_{0}\left(p^{a}-1\right)}{p^{\ell}-1}+p^{\ell}\left(p^{\ell}+1\right)\right.$. By $p^{2 \ell} \leq p^{a}$, we have $p^{2 a}+p^{a}+2<4 a\left(p^{a}-1\right)+2 p^{a}$. It follows that $p^{2 a}<(4 a+1)\left(p^{a}-1\right)-1<(4 a+1) p^{a}$, and then $p^{a}<4 a+1$. This is impossible.

Case $5 X \cap G_{x}=\operatorname{PSL}\left(2, q_{0}\right)$, for $q=q_{0}^{r}$ where r is an odd prime.
Here $v=\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{q_{0}^{2}-1},\left|X_{x}\right|=\frac{1}{2} q_{0}\left(q_{0}^{2}-1\right),|\operatorname{Out}(X)|=2 f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$, and $\left|G_{x}\right|=$ $\frac{1}{2} e q_{0}\left(q_{0}^{2}-1\right)$, where $e \mid 2 f$. Let $q_{0}=p^{a}$. Then $f=r a$.

From $\left|G_{x}\right|^{3}>|G|$, that is, $\left(\frac{1}{2} e q_{0}\left(q_{0}^{2}-1\right)\right)^{3}>\frac{1}{2} e q\left(q^{2}-1\right)=\frac{1}{2} e q_{0}^{r}\left(q_{0}^{2 r}-1\right)$, we obtain

$$
4 f^{2} \geq e^{2}>4 q_{0}^{r-3} \frac{q_{0}^{2 r}-1}{q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1}
$$

For an odd prime r, if $r \geq 5$, then

$$
f^{2}>q_{0}^{r-3} \frac{q_{0}^{2 r}-1}{q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1} \geq q_{0}^{r-3} \frac{q_{0}^{10}-1}{q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1}>q_{0}^{r}=q=p^{f}
$$

where the third inequality holds because $q_{0}^{10}-1>q_{0}^{3}\left(q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1\right)=q_{0}^{9}-3 q_{0}^{5}\left(q_{0}^{2}-1\right)-q_{0}^{3}$. But it is easy to see that $\frac{p^{f}}{f^{2}}>1$ when $p \geq 3$ and $f \geq r \geq 5$, a contradiction. Hence $r=3$, and so $v=q_{0}^{2}\left(q_{0}^{4}+q_{0}^{2}+1\right)$ and $f=3 a$.

The subdegrees of $\operatorname{PSL}\left(2, q_{0}^{3}\right)$ on the cosets of $\operatorname{PSL}\left(2, q_{0}\right)$ are as follows [13]:

$$
1,\left(\frac{q_{0}^{2}-1}{2}\right)^{2\left(q_{0}+1\right)},\left(q_{0}\left(q_{0}-1\right)\right)^{\frac{q_{0}\left(q_{0}-1\right)}{2}},\left(q_{0}\left(q_{0}+1\right)\right)^{\frac{q_{0}\left(q_{0}+1\right)}{2}},\left(\frac{q_{0}\left(q_{0}^{2}-1\right)}{2}\right)^{2\left(q_{0}^{3}+q_{0}-1\right)}
$$

By Lemma 2.5, we know that k divides λ times the greatest common divisor of the above nontrivial subdegrees, so that $k \mid 2 \lambda$. Thus $k=2 \lambda$ follows from $k>\lambda$. The equation $k(k-1)=$ $\lambda(v-1)$ forces $v=4 \lambda-1$. Therefore $\lambda=\frac{v+1}{4}=\frac{q_{0}^{6}+q_{0}^{4}+q_{0}^{2}+1}{4}$ and $k=2 \lambda=\frac{q_{0}^{6}+q_{0}^{4}+q_{0}^{2}+1}{2}$. Then by Lemma 2.1 (iii), $k\left|\left|G_{x}\right|=\frac{1}{2} e q_{0}\left(q_{0}^{2}-1\right)\right.$. This together with $\left.e\right| 2 f=6 a$ and $q_{0}=p^{a}$, implies $\frac{p^{6 a}+p^{4 a}+p^{2 a}+1}{2} \leq 3 a p^{a}\left(p^{2 a}-1\right)$ and so that $p^{6 a}<6 a \cdot p^{a} \cdot p^{2 a}$, i.e., $p^{3 a}<6 a$, which is impossible.

Case $6 X \cap G_{x}=A_{5}$, where $q=p \equiv \pm 1(\bmod 5)$ or $q=p^{2} \equiv-1(\bmod 5)$.
Here $v=\frac{q\left(q^{2}-1\right)}{120},\left|X_{x}\right|=\left|X \cap G_{x}\right|=60,|\operatorname{Out}(X)|=2 f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$ and $\left|G_{x}\right|=60 e$, where $e \mid 2 f$ and $f=1$ or 2 .

From the inequality $\left|G_{x}\right|^{3}>|G|$ we have $(60 e)^{3}>\frac{1}{2} e q\left(q^{2}-1\right)$. This together with $e \mid 2 f$, implies $2 \cdot 60^{3} \cdot(2 f)^{2} \geq p^{f}\left(p^{2 f}-1\right)$, i.e.,

$$
120^{3} f^{2} \geq p^{f}\left(p^{2 f}-1\right)
$$

If $f=1$, then $q=p \equiv \pm 1(\bmod 5)$ and $120^{3} \geq p\left(p^{2}-1\right)$, which force $q=11,19,29,31,41,59$, $61,71,79,89,101$ or 109 . Now we compute the values of v by $v=\frac{q\left(q^{2}-1\right)}{120}$, and from $k\left|\left|G_{x}\right|\right.$, $e=1$ or 2 we get $k \mid u=120$. We then check all possibilities for v by using Algorithm 2.8, and obtain three potential parameters: $(11,5,2),(11,6,3)$ and $(57,8,1)$. If $(v, k, \lambda)=(57,8,1)$, then $X=\operatorname{PSL}(2,19)$. The subdegrees of X on the cosets of A_{5} are $1,6,20$ and 30. By Lemma 2.4, the subdegrees of G are also $1,6,20$ and 30, contradicting Lemma 2.1 (ii). If $(v, k, \lambda)=$ $(11,5,2)$, then $X=\operatorname{PSL}(2,11)$, and so $G=\operatorname{PSL}(2,11)$ or $\operatorname{PGL}(2,11)$. The GAP-command Transitivity (G, Ω) returns the degree t of transitivity of the action implied by the arguments; that is, the largest integer t such that the action is t-transitive. Thus we know that G acts as 2-transitive permutation group on the set P of 11 points by GAP. Then Lemma 2.3 shows that \mathcal{D} is flag-transitive, as required. In fact, this design has been found in [6]. If $(v, k, \lambda)=(11,6,3)$, then Lemma 2.3 shows that \mathcal{D} is also flag-transitive, as described in [7].

If $f=2$, then $q=p^{2} \equiv-1(\bmod 5)$ and $120^{3} \cdot 4^{2} \geq p^{2}\left(p^{4}-1\right)$. Hence, the possible pairs (p, v) are $(3,6),(7,980)$ and $(13,40222)$. Since $k \mid 60 e$ and $e \mid 2 f=4$, we have $k \mid u=240$. Running Algorithm 2.8 with $u=240$ and $v=6,980$ or 40222, returns an empty list Designs for every case, a contradiction.

Case $7 X \cap G_{x}=A_{4}, q=p \equiv \pm 3(\bmod 8)$ and $q \not \equiv \pm 1(\bmod 10)$.
Here $v=\frac{q\left(q^{2}-1\right)}{24},\left|X_{x}\right|=\left|X \cap G_{x}\right|=12,|\operatorname{Out}(X)|=2,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$ and $\left|G_{x}\right|=12 e$, where $e=1$ or 2 .

The inequality $\left|G_{x}\right|^{3}>|G|$ gives $(12 e)^{3}>\frac{1}{2} e q\left(q^{2}-1\right)$. Since $q \geq 5, q=p \equiv \pm 3(\bmod 8)$ and $q \not \equiv \pm 1(\bmod 10)$, we get $q=5$ or 13 . Thus $v=5$ or 91 , respectively. It is not hard to see that there is no symmetric (v, k, λ) design with $v=5$. If $v=91$, then all possible parameters of (k, λ) are

$$
(10,1),(36,14),(45,22),(46,23),(55,33) \text { and }(81,72) .
$$

However, by $k \mid 12 e$ and $e=1$ or 2 , we have $k \mid 24$, the desired contradiction.
Case $8 X \cap G_{x}=S_{4}, q=p \equiv \pm 1(\bmod 8)$.
Now $v=\frac{q\left(q^{2}-1\right)}{48},\left|X_{x}\right|=\left|X \cap G_{x}\right|=24,|\operatorname{Out}(X)|=2,|G|=\frac{1}{2} e q\left(q^{2}-1\right),\left|G_{x}\right|=24 e$, where $e=1$ or 2 .

Since $q=p, e \leq 2$ and $\left|G_{x}\right|^{3}>|G|$, that is, $(24 e)^{3}>\frac{1}{2} e q\left(q^{2}-1\right)$, we get

$$
q\left(q^{2}-1\right)<2 \cdot 24^{3} \cdot e^{2} \leq 48^{3}
$$

Since $q \equiv \pm 1(\bmod 8)$, we obtain that the possible pairs (q, v) are $(7,7),(17,102),(23,253),(31,620)$, $(41,1435)$ and $(47,2162)$. Since $k\left|\left|G_{x}\right|=24 e\right.$ and $e=1$ or 2 , we get $\left.k\right| u=48$. Thus Algorithm 2.8 gives only two parameters: $(7,3,1)$ and $(7,4,2)$. If $(v, k, \lambda)=(7,3,1)$, then $X=\operatorname{PSL}(2,7)$, and so $G=\operatorname{PSL}(2,7)$ or $\operatorname{PGL}(2,7)$. Hence G acts as a 2 -transitive permutation group on the set P of 7 points by GAP. Thus Lemma 2.3 shows that \mathcal{D} is flag-transitive. If $(v, k, \lambda)=(7,4,2)$, then \mathcal{D} is also flag-transitive by Lemma 2.3. This design has been discussed in [6].

3.3. Characteristic two

In this subsection, we suppose that G is of characteristic 2 and $X \cap G_{x}$ is maximal in X. The structure of $X \cap G_{x}$ is given in Table 2.

Case $1 X \cap G_{x}=C_{2}^{f}: C_{q-1}$.
This can be ruled out as Case 1 of Section 3.2.
Case $2 X \cap G_{x}=D_{2(q-1)}$.
Now $v=\frac{1}{2} q(q+1)$, $|\operatorname{Out}(X)|=f,|G|=e q\left(q^{2}-1\right)$ and $\left|G_{x}\right|=2 e(q-1)$, where $e \mid f$.
From $q=2^{f} \geq 4$ we know that $v=\frac{1}{2} q(q+1)$ is even. So λ is also even since $k(k-1)=$ $\lambda(v-1)$. Lemma 2.1 (iii) shows $k \mid 2 e(q-1)$. Then there exists a positive integer m such that $k=\frac{2 e(q-1)}{m}$. Again by $k(k-1)=\lambda(v-1)$, we have $\frac{2 e(q-1)}{m}\left(\frac{2 e(q-1)}{m}-1\right)=\lambda\left(\frac{1}{2} q(q+1)-1\right)$, and so $\left(8 e^{2}-m^{2} \lambda\right) q=2 m^{2} \lambda+8 e^{2}+4 e m$, which forces $8 e^{2}-m^{2} \lambda>0$ and so $m<2 e$. The fact that λ is even implies that $8 e^{2}-m^{2} \lambda \geq 2$. So we have

$$
2^{f}=q=\frac{24 e^{2}+4 e m}{8 e^{2}-m^{2} \lambda}-2 \leq \frac{24 e^{2}+4 e \cdot 2 e}{2} \leq 16 f^{2}
$$

Hence $2 \leq f \leq 10$. Since $k \mid 2 e(q-1)$ and $e \mid f$, we get $k \mid u=2 f(q-1)$. The pairs (v, u), for $2 \leq f \leq 10$, are $(10,12),(36,42),(136,120),(528,310),(2080,756),(8256,1778),(32896,4080)$, $(131328,9198)$ and $(524800,20460)$. Then Algorithm 2.8 gives only one possible set of parameters $(36,21,12)$. Suppose $(v, k, \lambda)=(36,21,12)$. Then $G=\operatorname{PSL}(2,8)$ or $\operatorname{P\Gamma L}(2,8)$. When $G=$ $\operatorname{PSL}(2,8)$, the subdegrees of G are $1,7^{3}$ and 14 , and G has only one conjugacy class of subgroups of index 36 . Thus for any $B \in \mathcal{B}, G_{x}$ is conjugate to G_{B}. Without loss of generality, let $G_{x}=G_{B_{0}}$ for some block B_{0}. The flag-transitivity of G forces $G_{B_{0}}$ to act transitively on the points of B_{0}. Hence the points of B_{0} form an orbit of G_{x}, which implies that a subdegree of G is $k=21$, a contradiction. Now assume $G=\mathrm{P} Г \mathrm{~L}(2,8)$. Then the subdegrees of G are 1,14 and 21, and G has only one conjugacy class of subgroups of index 36 . So let $G_{x}=G_{B_{0}}$ for some block B_{0} as above. Then B_{0} is an orbit of size 21 of G_{x}. By using MAGMA, we obtain that $|\mathcal{B}|=\left|B^{G}\right|=36$, but $\left|B_{i} \cap B_{j}\right|=10$ or 15 for any two distinct blocks B_{i} and B_{j}. This is a contradiction since in our situation any two distinct blocks should have $\lambda=12$ common points.

Case $3 X \cap G_{x}=D_{2(q+1)}$.
Here $v=\frac{1}{2} q(q-1)$, $|\operatorname{Out}(X)|=f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$ and $\left|G_{x}\right|=2 e(q+1)$, where $e \mid f$.
Since $k\left|\left|G_{x}\right|\right.$, there exists a positive integer m such that $k=\frac{2 e(q+1)}{m}$. Thus Lemma 2.1 (i) yields $\frac{2 e(q+1)}{m}\left(\frac{2 e(q+1)}{m}-1\right)=\lambda\left(\frac{1}{2} q(q-1)-1\right)$, and so $\left(m^{2} \lambda-8 e^{2}\right) q=8 e^{2}-4 e m+2 m^{2} \lambda=$ $8\left(e-\frac{1}{2} m\right)^{2}+2(\lambda-1) m^{2}>0$. We then have

$$
2^{f}=q=\frac{8 e^{2}-4 e m+2 m^{2} \lambda}{m^{2} \lambda-8 e^{2}}=\frac{24 e^{2}-4 e m}{m^{2} \lambda-2 e^{2}}+2
$$

which implies $2^{f}<24 e^{2}+2 \leq 24 f^{2}+2$. Hence $2 \leq f \leq 11$. Since $k \mid 2 e(q+1)$ and $e \mid f$, we have $k \mid u=2 f(q+1)$. For $2 \leq f \leq 11$, the pairs (v, u) are as follows:
$(6,20)$,
$(28,54)$,
$(120,136), \quad(496,330)$,
(2016, 780),
$(8128,1806), \quad(32640,4112), \quad(130816,9234), \quad(523776,20500), \quad(2096128,45078)$.

Applying Algorithm 2.8 to these pairs (v, u), we obtain $(v, k, \lambda)=(496,55,6)$ or $(2016,156,12)$.

If $(v, k, \lambda)=(496,55,6)$, then $G=\operatorname{PSL}\left(2,2^{5}\right)$ or $\operatorname{P\Gamma L}\left(2,2^{5}\right)$. Let $G=\operatorname{PSL}\left(2,2^{5}\right)\left(\right.$ or $\left.\operatorname{P\Gamma L}\left(2,2^{5}\right)\right)$. Then the subdegrees of G are 1 and 33^{15} (or 1 and 165^{3}), and G has only one conjugacy class of subgroups of index 496. Thus there exists a block-stabilizer $G_{B_{0}}$ such that $G_{x}=G_{B_{0}}$, which implies that B_{0} should be an orbit of G_{x}. But this is impossible because $\left|B_{0}\right|=55$. Now suppose $(v, k, \lambda)=(2016,156,12)$. Then $G=\operatorname{PSL}\left(2,2^{6}\right), \operatorname{PSL}\left(2,2^{6}\right): i(i=2,3)$ or $\operatorname{P\Sigma L}\left(2,2^{6}\right)$. By the fact that G has only one conjugacy class of subgroups of index 2016, similar to the analysis above, there exists a block B_{0} such that B_{0} is an orbit of G_{x}. Thus G_{x} should have an orbit of size 156 . The subdegrees of G, however, are as follows:
(i) 1 , and 65^{31} when $G=\operatorname{PSL}\left(2,2^{6}\right)$;
(ii) $1,65^{7}$ and 130^{12} when $G=\operatorname{PSL}\left(2,2^{6}\right): 2$;
(iii) 1,65 and 195^{10} when $G=\operatorname{PSL}\left(2,2^{6}\right): 3$;
(iv) $1,65,195^{2}$ and 390^{4} when $G=\mathrm{P} \Sigma \mathrm{L}\left(2,2^{6}\right)$.

Case $4 X \cap G_{x}=\operatorname{PSL}\left(2, q_{0}\right)=\operatorname{PGL}\left(2, q_{0}\right)$, where $q=q_{0}^{r}$ for some prime r and $q_{0} \neq 2$.
Here $v=\frac{q_{0}^{r-1}\left(q_{0}^{2}-1\right)}{q_{0}^{2}-1},\left|X_{x}\right|=\left|X \cap G_{x}\right|=q_{0}\left(q_{0}^{2}-1\right),|\operatorname{Out}(X)|=f,|G|=\frac{1}{2} e q\left(q^{2}-1\right)$ and $\left|G_{x}\right|=e q_{0}\left(q_{0}^{2}-1\right)$, where $e \mid f$. Let $q_{0}=2^{a}$, so that $f=r a$.

From $\left|G_{x}\right|^{3}>|G|, q=q_{0}^{r}$ and $e \mid f$, we get

$$
f^{2} \geq e^{2}>q_{0}^{r-3} \frac{q_{0}^{2 r}-1}{q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1}
$$

If $r \geq 5$, then

$$
f^{2}>q_{0}^{r-3} \frac{q_{0}^{2 r}-1}{q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1} \geq q_{0}^{r-3} \frac{q_{0}^{10}-1}{q_{0}^{6}-3 q_{0}^{4}+3 q_{0}^{2}-1}>q_{0}^{r}=q=2^{f}
$$

But for $f \geq r \geq 5$ the inequality $f^{2}>2^{f}$ is not satisfied. Hence $r=2$ or 3 .
Suppose first that $r=3$, so that $q=q_{0}^{3}=2^{3 a}, v=q_{0}^{2}\left(q_{0}^{4}+q_{0}^{2}+1\right)$ and $f=3 a$. The subdegrees of $\operatorname{PSL}\left(2, q_{0}^{3}\right)$ on the cosets of $\operatorname{PSL}\left(2, q_{0}\right)$ are as follows [13]:

$$
1,\left(q_{0}^{2}-1\right)^{q_{0}+1},\left(q_{0}\left(q_{0}-1\right)\right)^{\frac{q_{0}\left(q_{0}-1\right)}{2}},\left(q_{0}\left(q_{0}+1\right)\right)^{\frac{q_{0}\left(q_{0}+1\right)}{2}},\left(q_{0}\left(q_{0}^{2}-1\right)\right)^{q_{0}^{3}+q_{0}-1}
$$

By Lemma 2.5, we have

$$
k \left\lvert\, \lambda \operatorname{gcd}\left(\left(q_{0}+1\right)^{2}\left(q_{0}-1\right), \frac{q_{0}^{2}\left(q_{0}-1\right)^{2}}{2}, \frac{q_{0}^{2}\left(q_{0}+1\right)^{2}}{2}, q_{0}\left(q_{0}^{2}-1\right)\left(q_{0}^{3}+q_{0}-1\right)\right)\right.
$$

So $k \mid 2 \lambda$. This forces $k=2 \lambda$ since $k>\lambda$. Thus $v=4 \lambda-1$ by equation $k(k-1)=\lambda(v-1)$. Then $\lambda=\frac{v+1}{4}=\frac{q_{0}^{6}+q_{0}^{4}+q_{0}^{2}+1}{4}$ and $k=2 \lambda=\frac{q_{0}^{6}+q_{0}^{4}+q_{0}^{2}+1}{2}$. By $k\left|\left|G_{x}\right|=\frac{1}{2} e q_{0}\left(q_{0}^{2}-1\right)\right.$ and $\left.e\right| f=3 a$, we get $\frac{2^{6 a}+2^{4 a}+2^{2 a}+1}{2} \leq \frac{3 a}{2} \cdot 2^{a}\left(2^{2 a}-1\right)$, and so $2^{6 a} \leq 3 a \cdot 2^{a} \cdot 2^{2 a}$, i.e., $2^{3 a} \leq 3 a$, which is impossible.

Now suppose $r=2$. Then $q=q_{0}^{2}=2^{2 a}, v=q_{0}\left(q_{0}^{2}+1\right)$ and $f=2 a$. The subdegrees of $\operatorname{PSL}\left(2, q_{0}^{2}\right)$ on the cosets of $\operatorname{PGL}\left(2, q_{0}\right)$ are as follows [13]:

$$
1, q_{0}^{2}-1,\left(q_{0}\left(q_{0}-1\right)\right)^{\frac{q_{0}-2}{2}},\left(q_{0}\left(q_{0}+1\right)\right)^{\frac{q_{0}}{2}}
$$

By Lemma 2.5, we have

$$
k \left\lvert\, \lambda \operatorname{gcd}\left(q_{0}^{2}-1, \frac{q_{0}\left(q_{0}-1\right)\left(q_{0}-2\right)}{2}, \frac{q_{0}^{2}\left(q_{0}+1\right)}{2}\right)\right.
$$

and so $k \mid 3 \lambda$. Now, $k>\lambda$ implies that $k=3 \lambda$ or $\frac{3 \lambda}{2}$.

If $k=3 \lambda$, then $v=9 \lambda-2$ by $k(k-1)=\lambda(v-1)$. So $\lambda=\frac{v+2}{9}=\frac{q_{0}^{3}+q_{0}+2}{9}$ and $k=3 \lambda=$ $\frac{q_{0}^{3}+q_{0}+2}{3}$. From $k\left|\left|G_{x}\right|=e q_{0}\left(q_{0}^{2}-1\right)\right.$ and $\left.e\right| f=2 a$, we have $k \mid 2 a q_{0}\left(q_{0}^{2}-1\right)$. By the facts that $\operatorname{gcd}\left(q_{0}^{3}+q_{0}+2, q_{0}\right)=2$ and $\operatorname{gcd}\left(q_{0}^{3}+q_{0}+2, q_{0}-1\right)=\operatorname{gcd}\left(4, q_{0}-1\right)=1$, we get $\left.\frac{q_{0}^{2}-q_{0}+2}{3} \right\rvert\, 4 a$, and so $\frac{2^{2 a}-2^{a}+2}{3} \leq 4 a$, which implies that $a=1$ or 2 . Since $q_{0} \neq 2, a \neq 1$. Hence $a=2$ and $q_{0}=4$, but then $k=\frac{70}{3}$ is not an integer.

If $k=\frac{3 \lambda}{2}$, then $v=\frac{9 \lambda-2}{4}$. Thus $\lambda=\frac{4 v+2}{9}=\frac{4 q_{0}^{3}+4 q_{0}+2}{9}$ and $k=\frac{2 q_{0}^{3}+2 q_{0}+1}{3}$. Since $k\left|\left|G_{x}\right|\right.$ and $e \mid f=2 a$, we have $\left.\frac{2 q_{0}^{3}+2 q_{0}+1}{3} \right\rvert\, 2 a q_{0}\left(q_{0}^{2}-1\right)$. It follows that $2 q_{0}^{3}+2 q_{0}+1 \mid 90 a$, and hence $2^{3 a+1}+2^{a+1}+1 \leq 90 a$. It follows that $a=1$ or 2 . If $a=1$, then $q_{0}=2$, a contradiction. If $a=2$, then $q_{0}=4$ which implies $k=\frac{137}{3}$ is not an integer.

This completes the proof of Theorem 1.1.
Acknowledgements We thank the referees for their time and comments.

References

[1] W. M. KANTOR. Classification of 2-transitive symmetric designs. Graphs Combin., 1985, 1(2): 165-166.
[2] U. DEMPWOLFF. Primitive rank 3 groups on symmetric designs. Des. Codes Cryptogr., 2001, 22(2): 191-207.
[3] Delu TIAN, Shenglin ZHOU. Flag-transitive 2- (v, k, λ) symmetric designs with sporadic socle. J. Combin. Des., 2015, 23(4): 140-150.
[4] Delu TIAN. Classification of Flag-transitive Point-primitive Symmetric Designs. Ph. D. Thesis, South China University of Technology, 2013.
[5] Shenglin ZHOU, Delu TIAN. Flag-transitive point-primitive 2- $(v, k, 4)$ symmetric designs and two dimensional classical groups. Appl. Math. J. Chinese Univ. Ser. B, 2011, 26(3): 334-341.
[6] E. O'Reilly REGUEIRO. Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle. J. Algebraic Combin., 2007, 26(4): 529-552.
[7] Shenglin ZHOU, Huili DONG, Weidong FANG. Finite classical groups and flag-transitive triplanes. Discrete Math., 2009, 309(16): 5183-5195.
[8] E. S. LANDER. Symmetric Designs: An Algebraic Approach. London Mathematical Society Lecture Note Series, 74. Cambridge University Press, London, 1983.
[9] B. HUPPERT. Endliche Gruppen (I). Springer-Verlag, Berlin, 1981.
[10] M. GIUDICI. Maximal subgroups of almost simple groups with socle $\mathrm{PSL}_{2}(q)$. Preprint, arXiv: math/0703 685 v 1 [math.GR]. Also see the paper at http://arXiv.org/abs/math/0703685v1, 2007.
[11] The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4.12, 2008, http://www.gapsystem.org.
[12] W. BOSMA, J. CANNON, C. PLAYOUST. The Magma algebra system I: The user language. J. Symbolic Comput., 1997, 24(3-4): 235-265.
[13] I. A. FARADZEV, A. A. IVANOV. Distance-transitive representations of groups G with $\mathrm{PSL}_{2}(q) \unlhd G \leq$ $\mathrm{P}_{\mathrm{L}}^{2}(q)$. European J. Combin., 1990, 11(4): 347-356.

[^0]: Received Marh 27, 2015; Accepted September 14, 2015
 Supported by the National Natural Science Foundation of China (Grant Nos. 11471123; 11426066) and the Natural Science Foundation of Guangdong Province (Grant No. S2013010011928).

 * Corresponding author

 E-mail address: tiandelu@gdei.edu.cn (Delu TIAN); slzhou@scut.edu.cn (Shenglin ZHOU)

