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Abstract Let D be a nontrivial symmetric (v, k, λ) design, and G be a subgroup of the

full automorphism group of D. In this paper we prove that if G acts flag-transitively, point-

primitively on D and Soc(G) = PSL(2, q), then D has parameters (7, 3, 1), (7, 4, 2), (11, 5, 2),

(11, 6, 3) or (15, 8, 4).
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1. Introduction

A 2-(v, k, λ) design D is a set P of v points together with a set B of b blocks, such that

every block contains k points and every pair of points is in exactly λ blocks. The design D is

symmetric if b = v, and is non-trivial if 2 < k < v − 1. In this paper we only study non-trivial

symmetric 2-(v, k, λ) designs, and for brevity we call such a design a symmetric (v, k, λ) design.

A flag in a design is an incident point-block pair. The complement of D, denoted by D, is a

symmetric (v, v − k, v − 2k + λ) design whose set of points is the same as the set of points of

D, and whose blocks are the complements of the blocks of D. The automorphism group Aut(D)

of D consists of all permutations of P which leave B invariant. For G ≤ Aut(D), the design D
is called point-primitive if G is primitive on P , and flag-transitive if G is transitive on the set

of flags. The socle of a group G, denoted by Soc(G), is the subgroup generated by its minimal

normal subgroups.

The classification program for symmetric (v, k, λ) designs has been studied by several re-

searchers. In 1985, Kantor [1] classified all symmetric (v, k, λ) designs admitting 2-transitive

automorphism groups. In [2], Dempwolff determined all symmetric (v, k, λ) designs which admit

an automorphism group G such that G has a nonabelian socle and is a primitive rank three

group on points (and blocks). In [3,4], we classified flag-transitive point-primitive symmetric

(v, k, λ) designs admitting an automorphism group G such that Soc(G) is a sporadic simple

group. This paper is devoted to the complete classification of flag-transitive point-primitive
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symmetric (v, k, λ) designs which admit an automorphism group G with Soc(G) = PSL(2, q),

and extend the result of symmetric designs with λ = 4 in [5] to the general case.

Theorem 1.1 Let D = (P,B) be a symmetric (v, k, λ) design which admits a flag-transitive,

point-primitive automorphism group G, and x be a point of P . If G is an almost simple group

and X = Soc(G) = PSL(2, q), where q = pf and p is a prime, then D is one of the following:

(i) a (7, 3, 1) design with X = PSL(2, 7) and Xx = S4;

(ii) a (7, 4, 2) design with X = PSL(2, 7) and Xx = S4;

(iii) a (11, 5, 2) design with X = PSL(2, 11) and Xx = A5;

(iv) a (11, 6, 3) design with X = PSL(2, 11) and Xx = A5;

(v) a (15, 8, 4) design with X = PSL(2, 9) and Xx = PGL(2, 3).

Corollary 1.2 For λ ≥ 5, there is no symmetric (v, k, λ) design admitting a flag-transitive,

point-primitive almost simple automorphism group with socle PSL(2, q).

2. Preliminaries

In this section we state some preliminary results which will be needed later in this paper.

From [6,7] we get the following:

Lemma 2.1 Let D be a flag-transitive symmetric (v, k, λ) design. Then the following hold:

(i) k(k − 1) = λ(v − 1), and in particular k2 > v;

(ii) k |λdi, where di is any non-trivial subdegree of G;

(iii) k | |Gx| and |Gx|3 > |G|, where Gx is the stabilizer in G of a point x ∈ P .

Lemma 2.2 ([8]) Let D be a symmetric (v, k, λ) design and G ≤ Aut(D). Then

(i) G has as many orbits on points as on blocks;

(ii) if G is a transitive automorphism group, then G has the same rank whether considered

as a permutation group on points or on blocks.

Lemma 2.3 Let D = (P,B) be a symmetric (v, k, λ) design and G be a subgroup of Aut(D).

Then G is 2-transitive on P if and only if G is flag-transitive on both the design D and the

complement design D of D.

Proof Note that when G is transitive on P and x ∈ P , G is flag-transitive on D if and only

if Gx is transitive on the set of all blocks in B containing x. Suppose G is 2-transitive on P .

Then for any x ∈ P , Gx has two orbits on P . By (i) of Lemma 2.2, Gx has two orbits on B.

But x ∈ P has at least 2 orbits on B, the set of blocks containing x and the set of blocks not

containing x. Therefore the set of blocks containing x must be a single orbit of Gx on B and

G is flag-transitive on D. Similarly, since G is also 2-transitive on P for D = (P,B), G is also

flag-transitive on D.

Conversely, if D is flag-transitive, then GC is transitive on the points of C for every block

C of D. Let B = P − C. Then B is one of the blocks of D and GB = GC . Since D is also
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flag-transitive, GB is transitive on B. Thus GB has two orbits acting on points, which implies

that the point-stabilizer Gx has two orbits acting on P by Lemma 2.2. Hence G is 2-transitive

on P . �

Lemma 2.4 Let G be a transitive group on P , and let X E G. Then each orbit of Gx acting

on P is the union of some orbits of Xx which have the same cardinality.

Proof This is well known, and follows from the 1
2 -transitivity of Xx since Xx E Gx and Gx is

transitive on each Gx-orbit. �

Lemma 2.5 Let D = (P,B) be a symmetric (v, k, λ) design admitting a flag-transitive, point-

primitive automorphism group G with socle X. If the non-trivial subdegree t of X appears with

multiplicity s, then k |λst.

Proof Suppose that Γ1,Γ2, . . . ,Γs are all orbits of Xx with cardinality t, where x ∈ P . By

Lemma 2.4, the group Gx acts on Γ =
∪s

i=1 Γi, and the cardinalities of orbits of Gx are

(a1t)
s1 , (a2t)

s2 , . . . , (art)
sr ,

where ab means that a appears with multiplicity b, and r, ai, si (1 ≤ i ≤ r) are all positive

integers such that
∑r

i=1 aisi = s, and ai ̸= aj if and only if i ̸= j for 1 ≤ i, j ≤ r. Let

c = gcd(a1, a2, . . . , ar). Then c | s. Lemma 2.1 (ii) shows that k |λ(ait), i = 1, 2, . . . , r. So k |λct,
and hence k |λst. �

The subgroups of PSL(2, q) are well-known and given by Huppert [9].

Lemma 2.6 ([9]) The subgroups of the group PSL(2, q) (q = pf ) are as follows.

(i) An elementary abelian group Cℓ
p, where ℓ ≤ f ;

(ii) A cyclic group Cz, where z | pf±1
d and d = gcd(2, q − 1);

(iii) A dihedral group D2z, where z is the same as in (ii);

(iv) The alternating group A4 when p > 2 or p = 2 and 2 | f ;

(v) The symmetric group S4 when p2f ≡ 1 (mod 16);

(vi) The alternating group A5 when p = 5 or p2f ≡ 1 (mod 5);

(vii) Cℓ
p : Ct, where t | gcd(pℓ − 1, pf−1

d ) and d = gcd(2, q − 1);

(viii) PSL(2, pℓ) when ℓ | f and PGL(2, pℓ) when 2ℓ | f .

The following lemma is a combination of Theorems 1.1, 2.1 and 2.2 in [10].

Lemma 2.7 Let X = PSL(2, q) ≤ G ≤ PΓL(2, q) and let M be a maximal subgroup of G which

does not contain X. Then either M ∩X is maximal in X, or G and M are given in Table 1. The

maximal subgroups of X appear in Tables 2 and 3.
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G M |G : M |
PGL(2, 7) NG(D6) = D12 28

PGL(2, 7) NG(D8) = D16 21

PGL(2, 9) NG(D10) = D20 36

PGL(2, 9) NG(D8) = D16 45

M10 NG(D10) = C5 o C4 36

M10 NG(D8) = C8 o C2 45

PΓL(2, 9) NG(D10) = C10 o C4 36

PΓL(2, 9) NG(D8) = C8.Aut(C8) 45

PGL(2, 11) NG(D10) = D20 66

PGL(2, q), q = p ≡ ±11, 19 (mod 40) NG(A4) = S4
q(q2−1)

24

Table 1 G and M of Lemma 2.7

Structure Conditions Order Index

Cf
p : C(q−1)/2

q(q−1)
2 q + 1

Dq−1 q ≥ 13 q + 1 q(q−1)
2

Dq+1 q ̸= 7, 9 q − 1 q(q+1)
2

PGL(2, q0) q = q20 q0(q
2
0 − 1)

q0(q
2
0+1)
2

PSL(2, q0) q = qr0, r odd prime
q0(q

2
0−1)
2

qr−1
0 (q2r0 −1)

q20−1

A5 q = p ≡ ±1 (mod 5), 120 q(q2−1)
120

or q = p2 ≡ −1 (mod 5)

A4 q = p ≡ ±3 (mod 8), 12 q(q2−1)
24

and q ̸≡ ±1 (mod 10)

S4 q = p ≡ ±1 (mod 8) 24 q(q2−1)
24

Table 2 Maximal subgroups of PSL(2, q) with q = pf ≥ 5, p odd prime

Structure Conditions Order Index

Cf
2 : Cq−1 q(q − 1) q + 1

D2(q−1) 2(q + 1) q(q−1)
2

D2(q+1) 2(q − 1) q(q+1)
2

PSL(2, q0) q = qr0, r prime, q0 ̸= 2 q0(q
2
0 − 1)

qr−1
0 (q2r0 −1)

q20−1

Table 3 Maximal subgroups of PSL(2, q) with q = 2f ≥ 4

Now we state the following algorithm, which will be useful to search for symmetric designs

which satisfy the condition “k |u”. The output of the algorithm is the list Designs of parameter

sequences (v, k, λ) of potential symmetric designs.

Algorithm 2.8 (Designs)
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Input: u, v.

Output: The list Designs := S.

set S := an empty list;

for each k dividing u with 2 < k < v − 1

λ := k ∗ (k − 1)/(v − 1);

if λ is an integer

Add (v, k, λ) to the list S;

return S.

3. Proof of Theorem 1.1

Let D = (P,B) be a symmetric (v, k, λ) design admitting a flag-transitive, point-primitive

automorphism group G with X EG ≤ Aut(X), where X = PSL(2, q) with q = pf and p prime.

As a maximal subgroup of G, the point stabilizer Gx does not contain X since X is transitive

on P . Thus Lemma 2.7 shows that either X ∩ Gx is maximal in X, or G and Gx are given in

Table 1. We will prove Theorem 1.1 by the following three subsections.

3.1. Cases in Table 1

In these cases, we may view the maximal subgroup M as the point stabilizer Gx. We get the

3-tuples (|G|, u, v) in Table 1 where v is the index |G : Gx| and u = |Gx|. For each case except

the last one, we can obtain all potential symmetric designs using Algorithm 2.8 implemented in

GAP [11]. There exists only one potential (21, 16, 12) design with G = PGL(2, 7) and Gx = D16.

The subdegrees of PGL(2, 7) acting on the cosets of D16 are 1, 4, 8 and 8 (Throughout this

paper, we apply Magma [12] to calculate the subdegrees of G and the number of the conjugacy

class of subgroups). Then by using the Magma-command Subgroups (G: OrderEqual:= n) where

n = |G|/v, we obtain the fact that G has only one conjugacy class of subgroups with index 21.

Thus Gx is conjugate to GB for any x ∈ P, B ∈ B which forces that there exists a block B0 such

that Gx = GB0 . The flag-transitivity of G implies that GB0 is transitive on the block B0. So B0

should be an orbit of Gx, but there is no such orbit of size k = 16, a contradiction.

Now we consider the last case. Here G = PGL(2, q) with q = p ≡ ±11, 19 (mod 40),

Gx = S4, and v = q(q2−1)
24 . Since |Gx|3 > |G|, we have 243 > q(q2 − 1), and so q = p = 11 or 19.

If q = 11, then v = 55. There exist two potential symmetric designs with parameters (55, 27, 13)

and (55, 28, 14), but neither of them satisfies the condition that k | |Gx|. If q = 19, then v = 285,

and so (k, λ) = (72, 18) or (213, 159). However, every case k > 24 contradicts the fact that k

divides |Gx|.

3.2. Odd characteristic

In this subsection, we consider the cases that G has odd characteristic p and X ∩ Gx is

maximal in X. The structure of X ∩Gx comes from Table 2.

Case 1 X ∩Gx = Cf
p : C(q−1)/2.
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Here v = q + 1, so k(k − 1) = λ(v − 1) = λq = λpf . If p | k, then from gcd(p, k − 1) = 1 we

have pf | k, that is, v− 1 | k which is impossible. Then p - k, and so pf | k− 1 implies v− 1 | k− 1,

which contradicts k < v − 1.

Case 2 X ∩Gx = Dq−1 (q ≥ 13).

In this case, v = 1
2q(q + 1), |Out(X)| = 2f , |G| = 1

2eq(q
2 − 1) and |Gx| = e(q − 1), where e

is a positive integer and e | 2f .
From k | |Gx| we get k | e(q − 1). So there exists a positive integer m such that k = e(q−1)

m .

The equality k(k − 1) = λ(v − 1) implies that e(q−1)
m ( e(q−1)

m − 1) = 1
2λ(q + 2)(q − 1), and hence

(2e2 −m2λ)q = 2m2λ+ 2e2 + 2em > 0.

This implies that m < 2e. From pf = q = 2m2λ+2e2+2em
2e2−m2λ = 6e2+2em

2e2−m2λ − 2, we get

pf < 6e2 + 2em < 6e2 + (2e)2 = 10e2 ≤ 40f2.

It follows that the 3-tuples (q, p, f) are

(27, 3, 3), (81, 3, 4), (243, 3, 5), (729, 3, 6), (25, 5, 2), (125, 5, 3),

(625, 5, 4), (49, 7, 2), (343, 7, 3), (121, 11, 2), (13, 13, 1), (17, 17, 1),

(19, 19, 1), (23, 23, 1), (29, 29, 1), (31, 31, 1), (37, 37, 1).

We call each of these 3-tuples a subcase. Since k | e(q − 1) and e | 2f , it follows that k |u,
where u = 2f(q− 1). It is easy to compute the values of u and v for every subcase. However, for

every subcase, there is no such symmetric design satisfying the condition that k |u by Algorithm

2.8 calculated with GAP.

Case 3 X ∩Gx = Dq+1 (q ̸= 7, 9).

Now v = 1
2q(q − 1), |Out(X)| = 2f , |G| = 1

2eq(q
2 − 1), and |Gx| = e(q + 1), where e is a

positive integer and e | 2f .
Since k | |Gx| = e(q+1), it follows that there exists a positive integer m such that k = e(q+1)

m .

Then e(q+1)
m ( e(q+1)

m − 1) = 1
2λ(q − 2)(q + 1). So we have

(m2λ− 2e2)q = 2e2 − 2em+ 2m2λ = 2(e− 1

2
m)2 + (2λ− 1

2
)m2 > 0.

Thus pf = q = 2e2−2em+2m2λ
m2λ−2e2 = 6e2−2em

m2λ−2e2 + 2 which gives

pf < 6e2 + 2 ≤ 24f2 + 2.

Combining this with q ̸= 7, 9, we obtain all possible 3-tuples (q, p, f):

(27, 3, 3), (81, 3, 4), (243, 3, 5), (729, 3, 6), (5, 5, 1), (25, 5, 2), (125, 5, 3),

(49, 7, 2), (11, 11, 1), (13, 13, 1), (17, 17, 1), (19, 19, 1), (23, 23, 1).

Since k | e(q+1) and e | 2f , k |u = 2f(q+1). The values of v and u can be calculated easily

for each 3-tuple (p, q, f). In fact, we get no such symmetric design satisfying k |u by Algorithm

2.8 calculated with GAP.

Case 4 X ∩Gx = PGL(2, q
1
2 ) = PGL(2, q0).
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Here v =
q0(q

2
0+1)
2 , |Xx| = |X ∩ Gx| = q0(q

2
0 − 1), |Out(X)| = 2f , |G| = 1

2eq(q
2 − 1), and

|Gx| = eq0(q
2
0 − 1), where e | 2f and f is even.

The subdegrees of PSL(2, q) on the cosets of PGL(2, q0) are

1,
q0(q0 − ε)

2
, q20 − 1, (q0(q0 − 1))

q0−4−ε
4 , (q0(q0 + 1))

q0−2+ε
4 ,

where q0 ≡ ε (mod 4) with ε = ±1 (see [13]). Recall that here ab means the subdegree a appears

with multiplicity b. We consider two subcases in the following.

Subcase 4.1 ε = −1. Then there exists a positive integer s such that q0 = 4s − 1, and the

subdegrees here are: 1, q0(q0+1)
2 , q20 − 1, (q0(q0 − 1))

q0−3
4 , (q0(q0 + 1))

q0−3
4 . By Lemma 2.5, we

get

k |λ gcd
(q0(q0 + 1)

2
, q20 − 1,

q0(q0 − 1)(q0 − 3)

4
,
q0(q0 + 1)(q0 − 3)

4

)
.

Since q0 = 4s − 1, it follows that k | 2λ. Then from k > λ we get k = 2λ. By Lemma 2.1 (i),

λ = v+1
4 =

q30+q0+2
8 and k =

q30+q0+2
4 . Since k | |Gx| and e | 2f , k |u = 2fq0(q

2
0−1). It follows that

q30+q0+2 | 8fq0(q20−1). Note that gcd(q30+q0+2, q0) = 1 and gcd(q20−q0+2, q0−1) = 2, we get

q20 − q0 +2 | 16f . So q20 − q0 +2 ≤ 16f , i.e., (p
1
2 f )2 − p

1
2 f +2 ≤ 16f . It follows that (f, p) = (2, 3)

or (2, 5) because f is even. If (f, p) = (2, 5), then q0 is equal to p which contradicts q0 = 4s− 1.

Suppose that (f, p) = (2, 3). Then D has parameters (15, 8, 4) with X = PSL(2, 9) ∼= A6,

Xx = PGL(2, 3) ∼= S4. The existence of this design has been discussed in [5].

Subcase 4.2 ε = 1. Then q0 = 4s + 1 for some positive integer s. Let q0 = pa. Then f = 2a.

The subdegrees are: 1, q0(q0−1)
2 , q20 − 1, (q0(q0 − 1))

q0−5
4 , (q0(q0 + 1))

q0−1
4 . Lemma 2.5 shows

that

k |λ gcd
(q0(q0 − 1)

2
, q20 − 1,

q0(q0 − 1)(q0 − 5)

4
,
q0(q0 + 1)(q0 − 1)

4

)
.

Since gcd( q0(q0−1)
2 , q20 − 1) = 1

2 (q0 − 1), it follows that k | 1
2λ(q0 − 1). Combining this with

k(k − 1) = λ(v − 1) = 1
2λ(q0 − 1)(q20 + q0 + 2), we get

q20 + q0 + 2 | k − 1,

which implies that k is odd.

The flag-transitivity of G implies that Gx acts transitively on P (x), the set of all blocks

which are incident with the point x. Therefore Gx has some subgroup L with index k. Since

XxEGx, we have L/(L∩Xx) ∼= LXx/Xx. Let H = L∩Xx, and |LXx : Xx| = c for some integer

c. Then c | e and |H| = eq0(q
2
0−1)

ck , and hence

k =
e0q0(q

2
0 − 1)

|H|
,

where e0 = e
c . The fact e | 2f = 4a yields e0 | 4a.

Since PSL(2, q0) is the normal subgroup of PGL(2, q0) with index 2, and H ≤ Xx =

PGL(2, q0), we get |H : H ∩ PSL(2, q0)| = |PSL(2, q0)H : PSL(2, q0)| = 1 or 2. Lemma 2.6

gives all the subgroups of PSL(2, q0), and hence |H| must be one of the following:

(i) pℓ or 2pℓ, where ℓ ≤ a;
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(ii) z or 2z, where z | q0±1
2 ;

(iii) 2z or 4z, where z | q0±1
2 ;

(iv) 12 or 24;

(v) 24 or 48 when p2a ≡ 1 (mod 16);

(vi) 60 or 120 when p = 5 or p2a ≡ 1 (mod 5);

(vii) tpℓ or 2tpℓ, where t | gcd(pℓ − 1, pa−1
2 );

(viii) 1
2p

ℓ(p2ℓ − 1) or pℓ(p2ℓ − 1) when ℓ | a, and pℓ(p2ℓ − 1) or 2pℓ(p2ℓ − 1) when 2ℓ | a.
Recall that q0 = 4s+ 1, and so 8 | q20 − 1. Combining this with the fact that k =

e0q0(q
2
0−1)

|H|
is odd, gives 8 | |H|. It follows that |H| ̸= pℓ, 2pℓ, z, 12 and 60, and we deal with the remaining

possible values of |H| in turn.

If |H| = 2z where z | q0±1
2 as in (ii) or (iii), then it is easily known from k =

e0q0(q
2
0−1)

2z that

k is even, a contradiction.

If |H| = 4z as in (iii), and in addition z | q0+1
2 , then k is even, a contradiction. Next suppose

that z | q0−1
2 . Since q20 + q0 + 2 | k − 1, q20 + q0 + 2 divides

z(k − 1) =
e0q0(q

2
0 − 1)

4
− z =

e0(q0 − 1)

4
(q20 + q0 + 2)− e0(q0 − 1)

2
− z,

which implies that q20 + q0 +2 | e0(q0−1)
2 + z. Therefore, q20 + q0 +2 ≤ e0(q0−1)

2 + z. It follows that

p2a+pa+2 ≤ 2a(pa−1)+ pa−1
2 because e0 ≤ 4a and z ≤ q0−1

2 , and hence 2p2a+2a+5 ≤ (2a−1)pa

which is a contradiction.

If |H| = 24, then k =
e0q0(q

2
0−1)

24 . The fact that q20 + q0 + 2 | k − 1 implies that q20 + q0 + 2

divides

6(k − 1) =
e0q0(q

2
0 − 1)

4
− 6 =

e0(q0 − 1)

4
(q20 + q0 + 2)− e0(q0 − 1)

2
− 6.

Thus q20+q0+2 | e0(q0−1)
2 +6, and so q20+q0+2 ≤ e0(q0−1)

2 +6. Since e0 | 4a, we have p2a+pa+2 ≤
e0(q0−1)

2 + 6 ≤ 2a(pa − 1) + 6, which is impossible since p ≥ 3.

The case (v) |H| = 48, or (vi) |H| = 120 can be ruled out similarly.

For (vii), if |H| = tpℓ or 2tpℓ , then k =
e0q0(q

2
0−1)

itpℓ where i = 1 or 2, and hence k is even

because t | pa−1
2 , a contradiction.

For (viii), suppose first that ℓ | a and |H| = pℓ(p2ℓ−1) or 1
2p

ℓ(p2ℓ−1). Then k = ie0p
a(p2a−1)

pℓ(p2ℓ−1)

where i = 1 or 2. If ℓ = a, then k = ie0. From v < k2 and e0 | 4a, we see pa(p2a+1)
2 < (ie0)

2 ≤
16i2a2. It follows that (p, a) = (3, 1), and so q0 = 3, contradicting q0 = 4s+ 1. Thus ℓ < a, and

so a ≥ 2. It is easy to see that pℓ − 1 | pa − 1 because ℓ | a. Since q20 + q0 + 2 | k − 1, we obtain

that q20 + q0 + 2 divides

pℓ(pℓ + 1)(k − 1) =
ie0p

a(p2a − 1)

pℓ − 1
− pℓ(pℓ + 1)

=
ie0(p

a − 1)

pℓ − 1
(p2a + pa + 2)− 2ie0(p

a − 1)

pℓ − 1
− pℓ(pℓ + 1).

Thus p2a + pa +2 | 2ie0(p
a−1)

pℓ−1
+ pℓ(pℓ +1). Since ℓ | a and ℓ < a, we have 2ℓ ≤ a, and so p2ℓ ≤ pa.

Then p2a + pa + 2 < 8ia(pa − 1) + 2pa. Combining this with q0 = pa = 4s+ 1 and a ≥ 2, gives

(p, a) = (3, 2) when i = 1, and (p, a) = (3, 2) or (5, 2) when i = 2. It follows that ℓ = 1 and
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e0 = 1, 2, 4 or 8. For all these parameters e0, p, a and ℓ, we can get all possible values of v and k.

It is not hard to check that for all these pairs (v, k), there are no integer values of λ satisfying

equation k(k − 1) = λ(v − 1), a contradiction.

Now suppose that 2ℓ | a and |H| = pℓ(p2ℓ − 1). Then a ≥ 2 and k = e0p
a(pa+1)(pa−1)
pℓ(p2ℓ−1)

is even

since p2ℓ − 1 | pa − 1, a contradiction. Finally suppose that 2ℓ | a and |H| = 2pℓ(p2ℓ − 1) so that

k = e0p
a(p2a−1)

2pℓ(p2ℓ−1)
and a ≥ 2. Then by q20 + q0 + 2 | k − 1, we get that q20 + q0 + 2 divides

pℓ(pℓ + 1)(k − 1) =
e0p

a(p2a − 1)

2(pℓ − 1)
− pℓ(pℓ + 1)

=
e0(p

a − 1)

2(pℓ − 1)
(p2a + pa + 2)− e0(p

a − 1)

pℓ − 1
− pℓ(pℓ + 1),

which yields p2a+pa+2 | e0(p
a−1)

pℓ−1
+pℓ(pℓ+1). By p2ℓ ≤ pa, we have p2a+pa+2 < 4a(pa−1)+2pa.

It follows that p2a < (4a+1)(pa − 1)− 1 < (4a+1)pa, and then pa < 4a+1. This is impossible.

Case 5 X ∩Gx = PSL(2, q0), for q = qr0 where r is an odd prime.

Here v =
qr−1
0 (q2r0 −1)

q20−1
, |Xx| = 1

2q0(q
2
0 − 1), |Out(X)| = 2f , |G| = 1

2eq(q
2 − 1), and |Gx| =

1
2eq0(q

2
0 − 1), where e | 2f . Let q0 = pa. Then f = ra.

From |Gx|3 > |G|, that is, ( 12eq0(q
2
0 − 1))3 > 1

2eq(q
2 − 1) = 1

2eq
r
0(q

2r
0 − 1), we obtain

4f2 ≥ e2 > 4qr−3
0

q2r0 − 1

q60 − 3q40 + 3q20 − 1
.

For an odd prime r, if r ≥ 5, then

f2 > qr−3
0

q2r0 − 1

q60 − 3q40 + 3q20 − 1
≥ qr−3

0

q100 − 1

q60 − 3q40 + 3q20 − 1
> qr0 = q = pf ,

where the third inequality holds because q100 − 1 > q30(q
6
0 − 3q40 +3q20 − 1) = q90 − 3q50(q

2
0 − 1)− q30 .

But it is easy to see that pf

f2 > 1 when p ≥ 3 and f ≥ r ≥ 5, a contradiction. Hence r = 3, and

so v = q20(q
4
0 + q20 + 1) and f = 3a.

The subdegrees of PSL(2, q30) on the cosets of PSL(2, q0) are as follows [13]:

1,
(q20 − 1

2

)2(q0+1)
, (q0(q0 − 1))

q0(q0−1)
2 , (q0(q0 + 1))

q0(q0+1)
2 ,

(q0(q20 − 1)

2

)2(q30+q0−1)
.

By Lemma 2.5, we know that k divides λ times the greatest common divisor of the above non-

trivial subdegrees, so that k | 2λ. Thus k = 2λ follows from k > λ. The equation k(k − 1) =

λ(v − 1) forces v = 4λ − 1. Therefore λ = v+1
4 =

q60+q40+q20+1
4 and k = 2λ =

q60+q40+q20+1
2 . Then

by Lemma 2.1 (iii), k | |Gx| = 1
2eq0(q

2
0 − 1). This together with e | 2f = 6a and q0 = pa, implies

p6a+p4a+p2a+1
2 ≤ 3apa(p2a − 1) and so that p6a < 6a · pa · p2a, i.e., p3a < 6a, which is impossible.

Case 6 X ∩Gx = A5, where q = p ≡ ±1 (mod 5) or q = p2 ≡ −1 (mod 5).

Here v = q(q2−1)
120 , |Xx| = |X ∩Gx| = 60, |Out(X)| = 2f , |G| = 1

2eq(q
2 − 1) and |Gx| = 60e,

where e | 2f and f = 1 or 2.

From the inequality |Gx|3 > |G| we have (60e)3 > 1
2eq(q

2 − 1). This together with e | 2f ,
implies 2 · 603 · (2f)2 ≥ pf (p2f − 1), i.e.,

1203f2 ≥ pf (p2f − 1).
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If f = 1, then q = p ≡ ±1 (mod 5) and 1203 ≥ p(p2−1), which force q = 11, 19, 29, 31, 41, 59,

61, 71, 79, 89, 101 or 109. Now we compute the values of v by v = q(q2−1)
120 , and from k | |Gx|,

e = 1 or 2 we get k |u = 120. We then check all possibilities for v by using Algorithm 2.8,

and obtain three potential parameters: (11, 5, 2), (11, 6, 3) and (57, 8, 1). If (v, k, λ) = (57, 8, 1),

then X = PSL(2, 19). The subdegrees of X on the cosets of A5 are 1, 6, 20 and 30. By Lemma

2.4, the subdegrees of G are also 1, 6, 20 and 30, contradicting Lemma 2.1 (ii). If (v, k, λ) =

(11, 5, 2), then X = PSL(2, 11), and so G = PSL(2, 11) or PGL(2, 11). The GAP-command

Transitivity(G,Ω) returns the degree t of transitivity of the action implied by the arguments;

that is, the largest integer t such that the action is t-transitive. Thus we know that G acts as

2-transitive permutation group on the set P of 11 points by GAP. Then Lemma 2.3 shows that

D is flag-transitive, as required. In fact, this design has been found in [6]. If (v, k, λ) = (11, 6, 3),

then Lemma 2.3 shows that D is also flag-transitive, as described in [7].

If f = 2, then q = p2 ≡ −1 (mod 5) and 1203 ·42 ≥ p2(p4−1). Hence, the possible pairs (p, v)

are (3, 6), (7, 980) and (13, 40222). Since k | 60e and e | 2f = 4, we have k |u = 240. Running

Algorithm 2.8 with u = 240 and v = 6, 980 or 40222, returns an empty list Designs for every

case, a contradiction.

Case 7 X ∩Gx = A4, q = p ≡ ±3 (mod 8) and q ≢ ±1 (mod 10).

Here v = q(q2−1)
24 , |Xx| = |X ∩Gx| = 12, |Out(X)| = 2, |G| = 1

2eq(q
2 − 1) and |Gx| = 12e,

where e = 1 or 2.

The inequality |Gx|3 > |G| gives (12e)3 > 1
2eq(q

2 − 1). Since q ≥ 5, q = p ≡ ±3 (mod 8)

and q ≢ ±1 (mod 10), we get q = 5 or 13. Thus v = 5 or 91, respectively. It is not hard to see

that there is no symmetric (v, k, λ) design with v = 5. If v = 91, then all possible parameters of

(k, λ) are

(10, 1), (36, 14), (45, 22), (46, 23), (55, 33) and (81, 72).

However, by k | 12e and e = 1 or 2, we have k | 24, the desired contradiction.

Case 8 X ∩Gx = S4, q = p ≡ ±1 (mod 8).

Now v = q(q2−1)
48 , |Xx| = |X ∩Gx| = 24, |Out(X)| = 2, |G| = 1

2eq(q
2−1), |Gx| = 24e, where

e = 1 or 2.

Since q = p, e ≤ 2 and |Gx|3 > |G|, that is, (24e)3 > 1
2eq(q

2 − 1), we get

q(q2 − 1) < 2 · 243 · e2 ≤ 483.

Since q ≡ ±1 (mod 8), we obtain that the possible pairs (q, v) are (7, 7), (17, 102), (23, 253), (31, 620),

(41, 1435) and (47, 2162). Since k | |Gx| = 24e and e = 1 or 2, we get k |u = 48. Thus Algorithm

2.8 gives only two parameters: (7, 3, 1) and (7, 4, 2). If (v, k, λ) = (7, 3, 1), then X = PSL(2, 7),

and so G = PSL(2, 7) or PGL(2, 7). Hence G acts as a 2-transitive permutation group on the set

P of 7 points by GAP. Thus Lemma 2.3 shows that D is flag-transitive. If (v, k, λ) = (7, 4, 2),

then D is also flag-transitive by Lemma 2.3. This design has been discussed in [6].

3.3. Characteristic two
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In this subsection, we suppose that G is of characteristic 2 and X ∩ Gx is maximal in X.

The structure of X ∩Gx is given in Table 2.

Case 1 X ∩Gx = Cf
2 : Cq−1.

This can be ruled out as Case 1 of Section 3.2.

Case 2 X ∩Gx = D2(q−1).

Now v = 1
2q(q + 1), |Out(X)| = f , |G| = eq(q2 − 1) and |Gx| = 2e(q − 1), where e | f .

From q = 2f ≥ 4 we know that v = 1
2q(q + 1) is even. So λ is also even since k(k − 1) =

λ(v − 1). Lemma 2.1 (iii) shows k | 2e(q − 1). Then there exists a positive integer m such that

k = 2e(q−1)
m . Again by k(k− 1) = λ(v− 1), we have 2e(q−1)

m ( 2e(q−1)
m − 1) = λ( 12q(q+1)− 1), and

so (8e2 −m2λ)q = 2m2λ+8e2 +4em, which forces 8e2 −m2λ > 0 and so m < 2e. The fact that

λ is even implies that 8e2 −m2λ ≥ 2. So we have

2f = q =
24e2 + 4em

8e2 −m2λ
− 2 ≤ 24e2 + 4e · 2e

2
≤ 16f2.

Hence 2 ≤ f ≤ 10. Since k | 2e(q − 1) and e | f , we get k |u = 2f(q − 1). The pairs (v, u),

for 2 ≤ f ≤ 10, are (10, 12), (36, 42), (136, 120), (528, 310), (2080, 756), (8256, 1778), (32896, 4080),

(131328, 9198) and (524800, 20460). Then Algorithm 2.8 gives only one possible set of parameters

(36, 21, 12). Suppose (v, k, λ) = (36, 21, 12). Then G = PSL(2, 8) or PΓL(2, 8). When G =

PSL(2, 8), the subdegrees of G are 1, 73 and 14, and G has only one conjugacy class of subgroups

of index 36. Thus for any B ∈ B, Gx is conjugate to GB . Without loss of generality, let Gx = GB0

for some block B0. The flag-transitivity of G forces GB0 to act transitively on the points of B0.

Hence the points of B0 form an orbit of Gx, which implies that a subdegree of G is k = 21, a

contradiction. Now assume G = PΓL(2, 8). Then the subdegrees of G are 1, 14 and 21, and G

has only one conjugacy class of subgroups of index 36. So let Gx = GB0
for some block B0 as

above. Then B0 is an orbit of size 21 of Gx. By using Magma, we obtain that |B| = |BG| = 36,

but |Bi ∩Bj | = 10 or 15 for any two distinct blocks Bi and Bj . This is a contradiction since in

our situation any two distinct blocks should have λ = 12 common points.

Case 3 X ∩Gx = D2(q+1).

Here v = 1
2q(q − 1), |Out(X)| = f , |G| = 1

2eq(q
2 − 1) and |Gx| = 2e(q + 1), where e | f .

Since k | |Gx|, there exists a positive integer m such that k = 2e(q+1)
m . Thus Lemma 2.1 (i)

yields 2e(q+1)
m ( 2e(q+1)

m − 1) = λ( 12q(q − 1) − 1), and so (m2λ − 8e2)q = 8e2 − 4em + 2m2λ =

8(e− 1
2m)2 + 2(λ− 1)m2 > 0. We then have

2f = q =
8e2 − 4em+ 2m2λ

m2λ− 8e2
=

24e2 − 4em

m2λ− 2e2
+ 2,

which implies 2f < 24e2 +2 ≤ 24f2 +2. Hence 2 ≤ f ≤ 11. Since k | 2e(q+ 1) and e | f , we have

k |u = 2f(q + 1). For 2 ≤ f ≤ 11, the pairs (v, u) are as follows:

(6, 20), (28, 54), (120, 136), (496, 330), (2016, 780),

(8128, 1806), (32640, 4112), (130816, 9234), (523776, 20500), (2096128, 45078).

Applying Algorithm 2.8 to these pairs (v, u), we obtain (v, k, λ) = (496, 55, 6) or (2016, 156, 12).
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If (v, k, λ) = (496, 55, 6), then G = PSL(2, 25) or PΓL(2, 25). Let G = PSL(2, 25) (or PΓL(2, 25)).

Then the subdegrees of G are 1 and 3315 (or 1 and 1653), and G has only one conjugacy class

of subgroups of index 496. Thus there exists a block-stabilizer GB0 such that Gx = GB0 , which

implies that B0 should be an orbit of Gx. But this is impossible because |B0| = 55. Now suppose

(v, k, λ) = (2016, 156, 12). Then G = PSL(2, 26), PSL(2, 26) : i (i = 2, 3) or PΣL(2, 26). By the

fact that G has only one conjugacy class of subgroups of index 2016, similar to the analysis

above, there exists a block B0 such that B0 is an orbit of Gx. Thus Gx should have an orbit of

size 156. The subdegrees of G, however, are as follows:

(i) 1, and 6531 when G = PSL(2, 26);

(ii) 1, 657 and 13012 when G = PSL(2, 26) : 2;

(iii) 1, 65 and 19510 when G = PSL(2, 26) : 3;

(iv) 1, 65, 1952 and 3904 when G = PΣL(2, 26).

Case 4 X ∩Gx = PSL(2, q0) = PGL(2, q0), where q = qr0 for some prime r and q0 ̸= 2.

Here v =
qr−1
0 (q2r0 −1)

q20−1
, |Xx| = |X ∩ Gx| = q0(q

2
0 − 1), |Out(X)| = f , |G| = 1

2eq(q
2 − 1) and

|Gx| = eq0(q
2
0 − 1), where e | f . Let q0 = 2a, so that f = ra.

From |Gx|3 > |G|, q = qr0 and e | f , we get

f2 ≥ e2 > qr−3
0

q2r0 − 1

q60 − 3q40 + 3q20 − 1
.

If r ≥ 5, then

f2 > qr−3
0

q2r0 − 1

q60 − 3q40 + 3q20 − 1
≥ qr−3

0

q100 − 1

q60 − 3q40 + 3q20 − 1
> qr0 = q = 2f .

But for f ≥ r ≥ 5 the inequality f2 > 2f is not satisfied. Hence r = 2 or 3.

Suppose first that r = 3, so that q = q30 = 23a, v = q20(q
4
0 + q20 + 1) and f = 3a. The

subdegrees of PSL(2, q30) on the cosets of PSL(2, q0) are as follows [13]:

1, (q20 − 1)q0+1, (q0(q0 − 1))
q0(q0−1)

2 , (q0(q0 + 1))
q0(q0+1)

2 , (q0(q
2
0 − 1))q

3
0+q0−1.

By Lemma 2.5, we have

k |λ gcd
(
(q0 + 1)2(q0 − 1),

q20(q0 − 1)2

2
,
q20(q0 + 1)2

2
, q0(q

2
0 − 1)(q30 + q0 − 1)

)
.

So k | 2λ. This forces k = 2λ since k > λ. Thus v = 4λ−1 by equation k(k−1) = λ(v−1). Then

λ = v+1
4 =

q60+q40+q20+1
4 and k = 2λ =

q60+q40+q20+1
2 . By k | |Gx| = 1

2eq0(q
2
0 − 1) and e | f = 3a, we

get 26a+24a+22a+1
2 ≤ 3a

2 · 2a(22a − 1), and so 26a ≤ 3a · 2a · 22a, i.e., 23a ≤ 3a, which is impossible.

Now suppose r = 2. Then q = q20 = 22a, v = q0(q
2
0 + 1) and f = 2a. The subdegrees of

PSL(2, q20) on the cosets of PGL(2, q0) are as follows [13]:

1, q20 − 1, (q0(q0 − 1))
q0−2

2 , (q0(q0 + 1))
q0
2 .

By Lemma 2.5, we have

k |λ gcd
(
q20 − 1,

q0(q0 − 1)(q0 − 2)

2
,
q20(q0 + 1)

2

)
,

and so k | 3λ. Now, k > λ implies that k = 3λ or 3λ
2 .
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If k = 3λ, then v = 9λ − 2 by k(k − 1) = λ(v − 1). So λ = v+2
9 =

q30+q0+2
9 and k = 3λ =

q30+q0+2
3 . From k | |Gx| = eq0(q

2
0 − 1) and e | f = 2a, we have k | 2aq0(q20 − 1). By the facts that

gcd(q30 + q0 +2, q0) = 2 and gcd(q30 + q0 +2, q0 − 1) = gcd(4, q0 − 1) = 1, we get
q20−q0+2

3 | 4a, and
so 22a−2a+2

3 ≤ 4a, which implies that a = 1 or 2. Since q0 ̸= 2, a ̸= 1. Hence a = 2 and q0 = 4,

but then k = 70
3 is not an integer.

If k = 3λ
2 , then v = 9λ−2

4 . Thus λ = 4v+2
9 =

4q30+4q0+2
9 and k =

2q30+2q0+1
3 . Since k | |Gx|

and e | f = 2a, we have
2q30+2q0+1

3 | 2aq0(q20 − 1). It follows that 2q30 + 2q0 + 1 | 90a, and hence

23a+1 + 2a+1 + 1 ≤ 90a. It follows that a = 1 or 2. If a = 1, then q0 = 2, a contradiction. If

a = 2, then q0 = 4 which implies k = 137
3 is not an integer.

This completes the proof of Theorem 1.1. �
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