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Abstract We consider the limiting property of the distribution function of Lp function at

endpoints 0 and ∞ and prove that for λ > 0 the following two equations

lim
λ→+∞

λpm({x : |f(x)| > λ}) = 0, lim
λ→0+

λpm({x : |f(x)| > λ}) = 0

hold for f ∈ Lp(Rn) with 1 ≤ p < ∞. This result is naturally applied to many operators of

type (p, q) as well.
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1. Introduction

The Hardy-Littlewood maximal operator M acting on f ∈ L1
loc(Rn) is defined by

Mf(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy, (1.1)

where B(x, r) denotes a ball centered at x with radius r, and |B(x, r)| represents the Lebesgue

measure of the ball B(x, r). As a sublinear operator, M maps Lp(Rn) to itself whenever 1 < p ≤
∞. That is, there exists a constant Cn,p > 0 such that the following inequality

∥Mf∥p ≤ Cn,p∥f∥p

holds for all f ∈ Lp(Rn).

A weak-type result related to the Hardy-Littlewood maximal operator is that M maps

L1(Rn) to L1,∞(Rn). That is, there exists a constant Cn such that the inequality

λm({x : Mf(x) > λ}) ≤ Cn∥f∥1 (1.2)

holds for all f ∈ L1(Rn) and λ > 0, where m denotes the Lebesgue measure on Rn. As we have

shown in (1.2), the supremum of the left side of the inequality over λ is finite. In [1], Janakiraman

investigated the limiting properties of λm({x : Mf(x) > λ}) as λ tends to 0 or ∞ and obtained

the following Theorem 1.1.
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Theorem 1.1 Let M be the Hardy-Littlewood maximal operator and f ∈ L1(Rn). For λ > 0,

the following two equations

lim
λ→0+

λm({x ∈ Rn : Mf(x) > λ}) = ∥f∥1 (1.3)

and

lim
λ→+∞

λm({x ∈ Rn : Mf(x) > λ}) = 0 (1.4)

hold.

In Theorem 1.1, the authors studied the limiting property of the product of λ and the distri-

bution function of the Hardy-Littlewood maximal function of L1 function at the two endpoints 0

and ∞. In fact, if we take the supremum for λ over R+ := (0,∞) in the left side of the Eq. (1.3),

then the supremum is just the weak L1 norm of Mf . For f ∈ Lp(Rn) with 1 ≤ p ≤ ∞, we

want to know what properties the limiting behavior of λpm({x : |f(x)| > λ}) has, as λ tends to

0 or ∞. In this paper, motivated by the result in Theorem 1.1, we will investigate the limiting

question. Now let us formulate our main theorems.

Theorem 1.2 Suppose that f ∈ Lp(Rn) with 1 ≤ p < ∞. Then the following two equations

lim
λ→+∞

λpm({x : |f(x)| > λ}) = 0 (1.5)

and

lim
λ→0+

λpm({x : |f(x)| > λ}) = 0 (1.6)

hold.

As an application of Theorem 1.2, we can obtain the following results.

Theorem 1.3 Suppose that the operator T is bounded from Lp(Rn) to Lq(Rn) with 1 ≤ p ≤
∞, 1 ≤ q < ∞. If f ∈ Lp(Rn), then the following two equations

lim
λ→+∞

λqm({x : |Tf(x)| > λ}) = 0 (1.7)

and

lim
λ→0+

λqm({x : |Tf(x)| > λ}) = 0 (1.8)

hold.

In fact, since the operator T is bounded from Lp(Rn) to Lq(Rn), we immediately have

Tf ∈ Lq(Rn), provided that f ∈ Lp(Rn). Thus Theorem 1.3 can be directly obtained by

Theorem 1.2. It should be pointed out that, when the case 1 < p = q < ∞ holds, the operator T

covers many famous operators such as the Hardy-Littlewood maximal function, Hardy operator

and Calderon-Zygmund singular integral operator etc. More details can be found in [2] and [3].

For the general p, q, the operator T also covers many operators such as the convolution operator,

the Fourier transform and some fractional singular integral operators, etc.

2. Proofs of Theorems

Next we will give the proofs of Theorems 1.2 and 1.3.
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Proof of Theorem 1.2 We first prove the Eq. (1.5). Consider the case f ∈ Lp(Rn), 1 ≤ p < ∞.

Actually if f ∈ L1(Rn), the Eq. (1.5) is just the corollary of the Eq. (1.4) in Theorem 1.1.

For a fixed function f ∈ Lp(Rn) with 1 ≤ p < ∞, there exists a sequence of functions

{fk}k∈N which belong to Cc(Rn) such that ∥f − fk∥p < 1
k . For any positive real number λ > 0,

we have

{x : |f(x)| > λ} ⊂ {x : |f(x)− fk(x)| >
λ

2
}
∪

{x : |fk(x)| >
λ

2
}.

Since f ∈ Lp(Rn) and fk ∈ Lp(Rn), we have f − fk ∈ Lp(Rn). Thus it follows that

m({x : |f(x)− fk(x)| >
λ

2
}) ≤

2p∥f − fk∥pp
λp

.

Since Cc(Rn) is a subspace of L∞(Rn), we have

m({x : |fk(x)| >
λ

2
}) = 0, (2.1)

whenever λ ≥ 2∥fk∥∞. Consequently, when λ ≥ 2∥fk∥∞, we conclude that

λpm({x : |f(x)| > λ}) ≤λpm({x : |f(x)− fk(x)| >
λ

2
}
∪

{x : |fk(x)| >
λ

2
})

≤2p∥f − fk∥pp + λpm({x : |fk(x)| >
λ

2
})

≤2p

kp
. (2.2)

Therefore, the inequality (2.2) implies that

lim sup
λ→+∞

λpm({x : |f(x)| > λ}) ≤ 2p

kp
. (2.3)

Note that k may be arbitrarily large, then we can easily obtain that the Eq. (1.5) holds for every

f ∈ Lp(Rn).

Next we will prove the Eq. (1.6).

This proof is similar to the proof of Eq. (1.5). In the same way we also need a sequence

of functions {fk}k∈N belonging to Cc(Rn) to approximate a function f(x) in Lp(Rn). And the

argument is similar, but one point should be noted that in this part the estimate of m({x :

|fk(x)| > λ
2 }) is different from (2.1).

Since fk ∈ Cc(Rn), we havem({x : |fk(x)| > λ
2 }) ≤ m(Sk) < ∞, where Sk = {x : fk(x) ̸= 0}

is a compact set. Thus it follows that

lim
λ→0+

λpm({x : |fk(x)| >
λ

2
}) = 0. (2.4)

Noting the inequality (2.2) and the Eq. (2.4), we conclude that

lim sup
λ→0+

λpm({x : |f(x)| > λ}) ≤ lim sup
λ→0+

λpm({x : |f(x)− fk(x)| >
λ

2
}
∪

{x : |fk(x)| >
λ

2
})

≤2p∥f − fk∥pp + lim sup
λ→0+

λpm({x : |fk(x)| >
λ

2
})

≤2p

kp
. (2.5)

Consequently, the Eq. (1.6) holds for all f ∈ Lp(Rn) with 1 ≤ p < ∞. �
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We remark that if a function f ∈ Lp(Rn) and ∥f∥p > 0 with 1 ≤ p < ∞, then we can easily

obtain ∥f∥Lp,∞ = supλ>0 λ(m({x : |f(x)| > λ}))
1
p > 0. However, the both Eqs. (1.5) and (1.6)

in Theorem 1.2 show us that the weak L1 norm of f must not be reached at the endpoints λ = 0

and λ = ∞.

Furthermore, except the two endpoints λ = 0 and λ = ∞, for every positive number α > 0

and c < 1, there must exist a function f ∈ Lp(Rn) and ∥f∥p > 0 with 1 ≤ p < ∞ such that

lim
λ→α−

λ(m({x : |f(x)| > λ}))
1
p > c∥f∥p (2.6)

and

lim
λ→α+

λ(m({x : |f(x)| > λ}))
1
p > c∥f∥p (2.7)

hold.

3. Further results

Next we will consider the problem of the critical value. When f ∈ Lp(Rn) with 1 ≤ p < ∞,

the exponential p in (1.5) and (1.6) is the critical value. In fact, we have the following theorem.

Theroem 3.1 For every ε > 0, there must exist a function f ∈ Lp(Rn) such that the following

equation

lim
λ→+∞

λp+εm({x : |f(x)| > λ}) = ∞ (3.1)

holds.

In the same way, for every ϵ > 0, there must exist a function f ∈ Lp(Rn) such that the

following equation

lim
λ→0+

λp−ϵm({x : |f(x)| > λ}) = ∞ (3.2)

holds.

We remark that we immediately deduce from the Eq. (1.5) that

lim
λ→+∞

λp−αm({x : |f(x)| > λ}) = 0 (3.3)

holds for f ∈ Lp(Rn) and any α ≥ 0. Consequently, the both Eqs. (3.1) and (3.3) show that the

exponential p is the critical value in the sense of weak type norm of the Lp function f at the

endpoint ∞.

The proof of Theorem 3.1 is constructive. That is, for any fixed ε > 0, it suffices to find a

Lp function which satisfies the Eq. (3.1).

Proof of Theorem 3.1 We first prove the Eq. (3.1). For some p with 1 ≤ p < ∞, set

f(x) :=

∞∑
k=3

k
1
pχ[k≤|x|≤k+ 1

kn+1 log2 k
](x), (3.4)

for x ∈ Rn. Now we prove f ∈ Lp(Rn).

It follows from (3.4) that

∥f∥pp =
∞∑
k=3

k

∫
k≤|x|≤k+ 1

kn+1 log2 k

1dx =
∞∑
k=3

kωn−1

∫ k+ 1

kn+1 log2 k

k

rn−1dr
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=

∞∑
k=3

kωn−1
rn

n

∣∣∣k+ 1

kn+1 log2 k

k
=

∞∑
k=3

k
ωn−1

n
[(k +

1

kn+1 log2 k
)n − kn],

where ωn−1 denotes the surface area of n dimensional unit sphere.

By the following inequality

nkn−1 1

kn+1 log2 k
≤ [(k +

1

kn+1 log2 k
)n − kn] ≤ 2nkn−1 1

kn+1 log2 k
, (3.5)

we have

∥f∥pp ≤ 2nωn−1

n

∞∑
k=3

1

k log2 k
< ∞.

For any positive integer N > 3, we have

m({x : |f(x)| > N}) =
∞∑

k=Np+1

∫
k≤|x|≤k+ 1

kn+1 log2 k

1dx

=
∞∑

k=Np+1

ωn−1

∫ k+ 1

kn+1 log2 k

k

rn−1dr

≥ωn−1

∞∑
k=Np+1

1

k2 log2 k

≥ ωn−1

4(Np + 1) log2[2(Np + 1)]
. (3.6)

The elementary property of limit implies that

lim
N→∞

ωn−1N
p+ε

4(Np + 1) log2[2(Np + 1)]
= ∞ (3.7)

holds for any ε > 0.

Thus combining the inequality (3.6) with the Eq. (3.7) yields that

lim
λ→+∞

λp+εm({x : f(x) > λ}) = ∞

holds for any ε > 0, that is, the Eq. (3.1) holds.

We now prove the Eq. (3.2). The proof of Eq. (3.2) has a lot of similars as that in the

Eq. (3.1), so we give the different parts.

In the same way, set

f(x) :=
∞∑
k=3

k−
1
pχ[k≤|x|≤k+ 1

kn−1 log2 k
](x) (3.8)

for x ∈ Rn. By employing the fundamental knowledge of the mathematical analysis, we can

easily show that f ∈ Lp(Rn) holds for 1 ≤ p < ∞.

For any positive integer N > 3, the inequalityMg(x) ≥ |g(x)| holds for almost every x ∈ Rn,

then we have

m({x : |f(x)| > 1

N
}) =

Np∑
k=3

∫
k≤|x|≤k+ 1

kn−1 log2 k

1dx
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=

Np∑
k=3

ωn−1

∫ k+ 1

kn−1 log2 k

k

rn−1dr

=
ωn−1

n

Np∑
k=3

[(k +
1

kn−1 log2 k
)n − kn]

≥ωn−1

n

Np − 3

p2 log2 N
. (3.9)

Obviously we conclude from (3.9) that

lim
λ→0+

λp−ϵm({x : |f(x)| > λ}) = ∞

holds for any ϵ > 0. This is our desired result. �
We do not know whether or not the Eqs. (3.1) and (3.2) in Theorem 3.1 still hold, if we

replace |f | by |Tf |, provided that T is bounded on Lp. However, when Tf is the Hardy-

Littlewood maximal function of f , the corresponding results hold. In fact, we have the following

theorem.

Theroem 3.2 Suppose that M is the Hardy-Littlewood maximal function operator and 1 <

p < ∞. For every ε > 0, there must exist a function f ∈ Lp(Rn) such that the following equation

lim
λ→+∞

λp+εm({x : Mf(x) > λ}) = ∞ (3.10)

holds. In the same way, for every ϵ > 0, there must exist a function f ∈ Lp(Rn) such that the

following equation

lim
λ→0+

λp−ϵm({x : Mf(x) > λ}) = ∞ (3.11)

holds.

Noting that Mf(x) ≥ |f(x)| for almost every x ∈ Rn and using the almost similar method

as in proving Theorem 3.1, we can easily obtain the proof of Theorem 3.2, so we omit the proof

here.
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