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Abstract This paper is concerned with the cauchy problem for the hyperelastic rots equation

in Besov space. By virtue of the Littlewood-Paley decomposition, the local well-posedness for

the equation in Besov space is established. Furthermore, the blow-up criterion for the solutions

of the hyperelastic rots equation is derived.
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1. Introduction

The hyperelastic rod (HR) equation

ut − utxx + 3uux = γ(2uxuxx + uuxxx) (1.1)

was first derived by Dai in [1,2] as a model for finite-length and small-amplitude axial deformation

waves in thin cylindrical rods composed of a compressible isotropic hyperelastic material, where

u(t, x) represents the radial stretch relative to a pre-stressed state and γ is a constant determined

by the material parameters.

For γ = 1, Eq. (1.1) becomes the celebrated Camassa-Holm (CH) equation [3,4], which was

proposed as a model for the unidirectional propagation of the shallow water waves over a flat

bottom [5], where u(t, x) represents the free surface above a flat bottom.

For γ = 0, Eq. (1.1) gives the celebrated BBM equation, which was proposed by Benjamin,

Bona, and Mahony [6] as a model for the unidirectional evolution of long surface waves in a

channel. Recently, Bona and Tzvetkov [7] have proved that this equation is globally well-posed

in Sobolev spaces Hs, if s ≥ 0.

The case γ ̸= 1 also has been extensively studied [8–14]. It is known that when the parameter

fulfills γ < 1, all the solitary-wave solutions are smooth and orbitally stable in the energy space

[8]. Moreover, if γ > 1, all the solitary waves have singularities cusped at the crest [9]. In

[10,11], the well-posedness of the hyperelastic rod equation in Sobolev spaces Hs, s > 3/2 has

been studied. Their approach is to rewrite the HR equation in its non-local form, and then to

verify the conditions needed to apply Kato’s semi-group theory [15]. Using a vanishing viscosity
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argument, Coclite, Holden, and Karlsen [16] established existence of a strongly continuous semi-

group of global weak solutions of HR equation on the line for initial data in H1. Bendahmane,

Coclite, and Karlsen [17] extended this result to traveling wave solutions that are supersonic

solitary shock waves. We refer to [10,18] for more information on the existence of global solutions

to the hyperelastic rod equation.

Note that p(x) = 1
2e

−|x| and p(x) ∗ f = (1 − ∂2
x)

−1f for all f ∈ L2(R), we can rewrite

Eq. (1.1) as follows:

ut + γu∂xu = P (D)(
3− γ

2
u2 +

γ

2
(∂xu)

2), (1.2)

where P (D)(f) = −∂x(1− ∂2
x)

−1f . Supplement (1.2) with the initial data

u(x, 0) = u0. (1.3)

In this work, we study the Cauchy problem of the hyperelastic rod equation. By virtue of the

Littlewood-Paley decomposition and nonhomogeneous Besov space, we show that the Cauchy

problem for Eqs. (1.2) and (1.3) is locally well-posed in Besov space.

Our paper is organized as follows. In Section 2, we recall some basic facts of Besov space

and the transport equation theory. In Section 3, we establish the local well-posedness of the

Cauchy problem of the equation. In Section 4, we give a blow-up criterion for the Eqs. (1.2) and

(1.3).

2. Preliminaries

In this section, we will recall some fact on the Littlewood-Paley decomposition, the nonho-

mogeneous Besov space and some useful properties, and the general transport equation theory,

which will be used in the sequel.

Proposition 2.1 (Littlewood-Paley decomposition [19–23]) There exists a couple of smooth

functions (χ, φ) valued in [0,1], such that χ is supported in the ball B , {ξ ∈ Rn : |ξ| ≤ 4
3}, and

φ is supported in the ring C , {ξ ∈ Rn : 3
4 6 |ξ| ≤ 8

3}. Moreover,

∀ξ ∈ Rn, χ(ξ) + Σq∈Nφ(2
−qξ) = 1

and

suppφ(2−q·) ∩ suppφ(2−q′ ·) = ∅, if |q − q′| ≥ 2,

suppχ(·) ∩ suppφ(2−q·) = ∅, if q ≥ 1.

Then for all u ∈ S ′(Rn), we can define the nonhomogeneous dyadic blocks as follows. Let

∆qu , 0, if q 6 −2, ∆−1u , χ(D)u = F−1
x χFxu,

∆qu , φ(2−qD)u = F−1
x φ(2−qξ)Fxu, if q ≥ 0.

Hence,

u =
∑
q∈N

∆qu in S ′(R),
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where the right-hand side is called the nonhomogeneous Little-Paley decomposition of u.

Remark 2.2 The low frequency cut-off Sq is defined by

Sq =

q−1∑
p=−1

△pu = χ(2−qD)u = F−1
x χ(2−qξ)Fxu, ∀q ∈ N.

It is easily checked that

△p △qu ≡ 0, if |p− q| ≥ 2,

△q (Sp−1u△p v) ≡ 0, if |p− q| ≥ 5, ∀u, v ∈ S ′(R)

as well as

∥△qu∥Lp ≤ ∥u∥Lp , ∥Squ∥Lp ≤ C∥u∥Lp , ∀1 ≤ p ≤ ∞

with the aid of Young,s inequality, where C is a positive constant independent of q.

Definition 2.3 (Besov spaces) Let s ∈ R, 1 ≤ p ≤ +∞. The nonhomogeneous Besov space

Bs
p,r(Rn) is defined by:

Bs
p,r(Rn) = {f ∈ S ′(Rn) : ∥f∥Bs

p,r
= ∥(2qs∥ △q f∥Lp)q≥−1∥lr < ∞}.

In particular, B∞
p,r = ∩s∈RB

s
p,r.

Definition 2.4 Let T > 0, s ∈ R and 1 ≤ p ≤ ∞. Set

Es
p,r(T ) , C([0, T ];Bs

p,r) ∩ C1([0, T ];Bs−1
p,r ), if r < ∞,

Es
p,∞(T ) , L∞([0, T ];Bs

p,∞) ∩ Lip([0, T ];Bs−1
p,∞)

and

Es
p,r ,

∩
T>0

Es
p,r(T ).

Lemma 2.5 ([20,21]) Let s ∈ R, 1 ≤ p, r, pj , rj ≤ +∞. Then

(1) Topological properties: Bs
p,r(Rn) is a Banach space which is continuously embedded in

S ′(Rn).

(2) Density: Cc is dense in Bs
p,r(Rn) ⇔ 1 ≤ p, r ≤ ∞.

(3) Embedding: Bs
p1,r1 ↪→ B

s−n( 1
p1

− 1
p2

)
p2,r2 , if p1 ≤ p2 and r1 ≤ r2. Bs2

p,r2 ↪→ Bs1
p,r1 , locally

compact if s1 ≤ s2.

(4) Algebraic properties: ∀s > 0, Bs
p,r

∩
L∞ is an algebra. Moreover, Bs

p,r is an algebra,

provided that s > n
p or s ≥ n

p and r = 1.

(5) 1-D moser-type estimates:

(i) For s > 0,

∥fg∥Bs
p,r

≤ C(∥f∥Bs
p,r

∥g∥L∞ + ∥f∥L∞∥g∥Bs
p,r

).

(ii) ∀s1 ≤ 1
p < s2 (s2 ≥ 1

p if r = 1), and s1 + s2 > 0, we have

∥fg∥Bs1
p,r

≤ C∥f∥Bs1
p,r

∥g∥Bs2
p,r

.
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(6) Complex interpolation:

∥f∥
B

θs1+(1−θ)s2
p,r

≤ C∥f∥θ
B

s1
p,r

∥f∥1−θ
B

s2
p,r

, ∀θ ∈ [0, 1].

(7) A logarithmic interpolation inequality:

∥f∥Bs
p,1

≤ C
1 + ε

ε
∥f∥Bs

p,∞
(1 + ln

∥f∥Bs+ε
p,∞

∥f∥Bs
p,∞

), ∀ε > 0.

(8) Fatou lemma: if (un)n∈N is bounded in Bs
p,r and un → u in S ′(Rn), then u ∈ Bs

p,r and

∥u∥Bs
p,r

≤ lim inf
n→∞

∥un∥Bs
p,r

.

(9) Let m ∈ R and f be an Sm-mutiplier (i.e., f : Rn → R) is a smooth and satisfies that

∀α ∈ Nn, ∃ a constant Cα, s.t. |∂αf(ξ)| ≤ Cα(1 + |ξ|)m−|α| for all ξ ∈ Rn. Then the operator

f(D) is continuous from Bs
p,r to Bs−m

p,r .

(10) The usual product is continuous from B
− 1

p

p,1 × (B
1
p
p,∞

∩
L∞) to B

− 1
p

p,∞.

Lemma 2.6 ([21]) Let 1 ≤ r ≤ +∞, 1 ≤ p ≤ p1 ≤ ∞ and s > −N min( 1
p1
, 1
p ) or s >

−1 −N min( 1
p1
, 1
p ) if ∇v = 0. Then there exists a constant C depending only on s, p, p1 and r,

and such that the following inequalities are ture:

(i) If s < 1 + N
p1
,

∥2qs∥Rq∥Lp∥lr ≤ C∥∇v∥
B

N
p

P1,∞∩L∞
∥f∥Bs

p,r
. (2.1)

(ii) If s > 1 + N
p1
, or s = 1 + N

p1
and r = 1,

∥2qs∥Rq∥Lp∥lr ≤ C∥∇v∥Bs−1
P1,r∩L∞∥f∥Bs

p,r
. (2.2)

If f = v, then we also have

∥2qs∥Rq∥Lp∥lr ≤ C∥∇v∥L∞∥f∥Bs
p,r

, (2.3)

where Rq = v∇△qf −△q(v∇f).

Lemma 2.7 Let 1 ≤ p, r ≤ +∞ and s > −min( 1p , 1 − 1
p ). Assume that f0 ∈ Bs

p,r, g ∈

L1(0, T ;Bs
p,r), and ∂xv belongs to L1(0, T ;Bs−1

p,r ) if s > 1 + 1
p or to L1(0, T ;B

1
p
p,r

∩
L∞) other-

wise. If f ∈ L∞(0, T ;Bs
p,r

∩
C([0, T ];S ′(R)) solves the following general one dimension linear

transport equation: {
∂tf + γv∂xf = g,

f |t=0 = f0,
(2.4)

then there exists a constant C depending only on s, p, γ and r, and such that the following

statements hold:

∥f(t)∥L̃∞
t (Bs

p,r)
≤ eCV (t)

(
∥f0∥Bs

p,r
+

∫ t

0

e−CV (τ)∥g(τ)∥Bs
p,r

dτ
)

(2.5)

with V (t) =
∫ t

0
∥∂xv(τ)∥

B
1
p
p,r∩L∞

dτ if s < 1 + 1
p and V (t) =

∫ t

0
∥∂xv(τ)∥Bs−1

p,r
dτ else.

If f = v, then for all s > 0, (2.5) holds true with V (t) = ∥∂xv(t)∥L∞ .
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Proof Applying the operator △q to Eq. (2.4) yields{
∂t△qf + γv∂x△qf = △qg + γRq,

△qf |t=0 = △qf0,

where Rq = v∂x△qf −△q(v∂xf). It is easy to prove by direct caculation that

∂t|△qf |p + γv∂x|△qf |p = p△qg|△qf |p−2 + γpRq|△qf |p−2.

Integrating about x gives

∂t∥△qf∥pLp =

∫
R
(γ|△qf |p∂xv + p△qg|△qf |p−2 + γpRq|△qf |p−2)dx

≤ γ∥∂xv∥Lp∥∥△qf∥pLp + p∥△qg∥Lp∥△qf∥p−1
Lp + γp∥Rq∥Lp∥△qf∥p−1

Lp .

We have

∂t∥△qf∥Lp ≤ γ∥∂xv∥Lp∥|△qf |Lp + ∥△qg∥Lp + γ∥Rq∥Lp .

Integrating about t, we hvae

∥△qf∥Lp ≤
∫ t

0

(γ∥∂x(v(τ))∥Lp∥△qf(τ)∥Lp + ∥△qg(τ)∥Lp + γ∥Rq(τ)∥Lp)dτ + ∥△qf0∥Lp . (2.6)

Multiplying 2σq on two sides of inequality (2.6), and using the Lemma 2.6 and the Minkowshi

inequality, we obtain

∥f∥L̃∞
t (Bσ

p,r)
≤ ∥f0∥Bσ

p,r
+

∫ t

0

∥g(τ)∥Bσ
p,r

dτ + C

∫ t

0

∥∂x(v(τ))∥Lp∥f(τ)∥L̃∞
t (Bσ

p,r)
dτ. (2.7)

Using the Gronwall inequality, we obtain Lemma 2.7. �

Remark 2.8 With γ = 1, Lemma 2.7 includes a prior estimates in Besov space for transport

equation [21].

3. Local well-posedness

In this section, we will establish the local well-posedness of Eqs. (1.2) and (1.3) in Besov

spaces.

Uniqueness and continuity with respect to the initial data in some sense can be obtained by

the following a priori estimates.

Lemma 3.1 Let 1 ≤ p, r ≤ ∞ and s > max(1 + 1
p ,

3
2 ). Suppose that we are given u, v ∈

L∞(0, T ;Bs
p,r)∩C([0, T ];Bs−1

p,r ) two solutions of Eqs. (1.2) and (1.3) with the initial data u0, v0 ∈
Bs

p,r. Then for every t ∈ [0, T ], we have

∥u(t)− v(t)∥Bs−1
p,r

≤ ∥u0 − v0∥Bs−1
p,r

e
C

∫ t
0
(∥u(τ)∥Bs

p,r
+∥v(τ)∥Bs

p,r
)dτ

, (3.1)

where C is a positive constant depending only on s, p, γ and r.

Proof Set w = v−u. It is obvious that w ∈ L∞(0, T ;Bs
p,r)∩C([0, T ];Bs−1

p,r ) solves the following
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Cauchy problem of the transport equation:{
∂tw + γu∂xw = R(t, x),

w|t=0 = w0 , v0 − u0,

where R(t, x) = −γw∂xv + P (D)(3−γ
2 (v + u)w + γ

2 (∂xv + ∂xu)∂xw).

For all s > max(1 + 1
p ,

3
2 ) and t ∈ [0, T ], Bs

p,r is a Banach algebra, we obtain

∥w∂xv∥Bs−1
p,r

≤ C∥w∥Bs−1
p,r

∥∂xv∥Bs−1
p,r

≤ C∥w∥Bs−1
p,r

∥v∥Bs
p,r

.

By using the S−1 -multiplier property of P (D) and the fact that Bs−1
p,r is a Banach algebra, we

have ∥∥P (D)(
3− γ

2
(v + u)w +

γ

2
(∂xv + ∂xu)∂xw)

∥∥
Bs

p,r

≤ C
∥∥3− γ

2
(v + u)w +

γ

2
(∂xv + ∂xu)∂xw

∥∥
Bs−1

p,r

≤ C(∥u∥Bs
p,r

+ ∥v∥Bs
p,r

)∥w∥Bs
p,r

.

By using Lemma 2.7, we have

∥w(t)∥Bs−1
p,r

≤ ∥w0∥Bs−1
p,r

+ C

∫ t

0

(∥u(τ)∥Bs
p,r

+ ∥v(τ)∥Bs
p,r

)∥w(τ)∥Bs
p,r

dτ.

Taking advantage of Gronwall inequality, we get (3.1). �

Lemma 3.2 Let 1 ≤ p, r ≤ ∞ and s > max(1 + 1
p ,

3
2 ). Let u0 ∈ Bs

p,r and u(0) ≡ 0. Then

(1) There exists a sequence of smooth (u(n))n∈N belonging to C([0, T ], Bs
p,r) and solving

the following equation:

∂tu
(n+1) + γu(n)∂xu

(n+1) = P (D)(
3− γ

2
(u(n))2 +

γ

2
(∂xu

(n))2), (3.2)

u(n+1)|t=0 , u
(n+1)
0 (x) = Sn+1u0.

(2) There exist T > 0 such that the solutions (u(n))n∈N is uniformly bounded in Es
p,r(T )

and a cauchy sequence in C([0, T ];Bs−1
p,r ) whence it converges to some limit u ∈ C([0, T ];Bs−1

p,r ).

Proof Since all Sn+1u0 ∈ B∞
p,r, by using Lemma 2.7, with the aid of induction, we show that

for all n ∈ N, (3.2) holds.
By using Lemma 2.7, we have

∥u(n+1)(t)∥Bs
p,r

≤ eU
(n)(t)

(
∥u0∥Bs

p,r
+

∫ t

0

eU
(n)(τ)∥P (D)(

3− γ

2
(u(n))2 +

γ

2
(∂xu

(n))2)∥Bs
p,r

dτ
)
,

(3.3)

where U (n)(t) ,
∫ t

0
∥u(n)∥Bs

p,r
dτ.

Choose 0 < T < 1
2C2∥u0∥Bs

p,r

and suppose that

∥u(n)(t)∥Bs
p,r

≤
C∥u0∥Bs

p,r

1− 2C2∥u0∥Bs
p,r

t
. (3.4)

Since U (n)(t) ,
∫ t

0
∥u(n)∥Bs

p,r
dτ, by using (3.4), we have

eCU(n)(t)−CU(n)(τ) = e
C

∫ t
τ
∥u(n)∥Bs

p,r
(t′)dt′
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≤ e
C

∫ t
τ

∥u0∥Bs
p,r

1−2C2∥u0∥Bs
p,r

t′
dt′

≤ (
1− 2C2∥u0∥Bs

p,r
τ

1− 2C2∥u0∥Bs
p,r

t
)

1
2 . (3.5)

From (3.5), when τ = 0, we have

eCU(n)(t) ≤ (1− 2C2∥u0∥Bs
p,r

t)−
1
2 . (3.6)

Substituting (3.6) into (3.3) yields, for t ∈ [0, T ]

∥u(n+1)(t)∥Bs
p,r

≤ eU
(n)(t)

(
∥u0∥Bs

p,r
+

∫ t

0

eU
(n)(τ)∥P (D)(

3− γ

2
(u(n))2 +

γ

2
(∂xu

(n))2)∥Bs
p,r

dτ
)

≤
2C∥u0∥Bs

p,r

1− 2C2∥u0∥Bs
p,r

t
,

which implies that (u(n))n∈N is uniformly bounded in C([0, T ];Bs
p,r).

By using the fact Bs−1
p,r is a Banach algebra and Bs

p,r ↪→ Bs−1
p,r , we have

∥u(n)u(n+1)
x ∥Bs−1

p,r
≤ C∥u(n)∥Bs−1

p,r
∥u(n+1)

x ∥Bs−1
p,r

≤
C∥u0∥2Bs

p,r

(1− 2C2∥u0∥Bs
p,r

t)2
. (3.7)

Since Bs−1
p,r is a Banach algebra, by using the S−1− multiplier property of P (D) and (3.4), we

have

∥P (D)(
3− γ

2
(u(n))2 +

γ

2
(∂xu

(n))2)∥Bs
p,r

≤ C∥3− γ

2
(u(n))2 +

γ

2
(∂xu

(n))2∥Bs−1
p,r

≤ C∥(u(n))2∥Bs−1
p,r

≤
C∥u0∥2Bs

p,r

(1− 2C2∥u0∥Bs
p,r

t)2
. (3.8)

Thus, combining (3.2) with (3.7) and (3.8), we have

∥u(n+1)
t ∥Bs−1

p,r
≤ ∥u(n)∂xu

(n+1)∥Bs−1
p,r

+ ∥P (D)(
3− γ

2
(u(n))2 +

γ

2
(∂xu

(n))2)∥Bs−1
p,r

≤
C∥u0∥2Bs

p,r

(1− 2C2∥u0∥Bs
p,r

t)2
.

Consequently, (u(n))n ∈ Es
p,r.

Now it suffices to show that (u(n))n∈N is a cauchy sequence in C([0, T ];Bs
p,r). Indeed, for

m,n ∈ N, we have

(∂t + γu(n+m)∂x)(u
(n+m+1) − u(n+1)) = γ(u(n) − u(n+m))∂xu

(n+1) + P (D)(B(x, t),

where B(x, t) , 3−γ
2 ((u(n+m))2 − (u(n))2) + γ

2 ((∂xu
(n+m))2 − (∂xu

(n))2).

By using Lemma 2.7, we have

∥u(n+m+1) − u(n+1)∥Bs−1
p,r

≤CeU
(n+m)(t)

(
∥u(n+m+1)

0 − u
(n+1)
0 ∥Bs−1

p,r
+∫ t

0

e−CU(n+m)(τ)∥γ(u(n) − u(n+m))∂xu
(n+1)+
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P (D)(B(x, τ)∥Bs−1
p,r

dτ
)
. (3.9)

Since Bs−1
p,r is a Banach algebra, and u(n) is uniformly bounded, we have

∥(u(n) − u(n+m))∂xu
(n+1)∥Bs−1

p,r
≤ ∥u(n) − u(n+m)∥Bs−1

p,r
∥∂xu(n+1)∥Bs−1

p,r

≤ C∥u(n) − u(n+m)∥Bs−1
p,r

∥u(n+1)∥Bs
p,r

≤ C∥u(n) − u(n+m)∥Bs−1
p,r

, (3.10)

and

∥P (D)(B(x, t))∥Bs−1
p,r

≤C∥3− γ

2
((u(n+m))2 − (u(n))2) +

γ

2
((∂xu

(n+m))2 − (∂xu
(n))2)∥Bs−2

p,r

≤C∥u(n+m) − u(n)∥Bs−2
p,r

∥u(n+m) + u(n)∥Bs−2
p,r

≤C∥u(n) − u(n+m)∥Bs−1
p,r

. (3.11)

It is easy to check that

∥u(n+m+1)
0 − u

(n+1)
0 ∥Bs−1

p,r
=

∥∥∥ n+m∑
q=n+1

∆qu0

∥∥∥
Bs−1

p,r

=
( ∑

k≥−1

2k(s−1r)∥∆k(
n+m∑
q=n+1

∆qu0)∥rLp

) 1
r

≤ C
( n+m+1∑

k=n

2−kr2ksr∥∆ku0∥rLp

) 1
r ≤ C2−n∥u0∥Bs

p,r
. (3.12)

From (3.9)–(3.12), arguing by induction, one can easily prove that

∥u(n+m+1) − u(n+1)(t)∥L∞
T (Bs−1

p,r ) ≤ CT

(
2−n +

∫ t

0

∥u(n+m) − u(n)∥L∞
T (Bs−1

p,r )dτ
)
.

As ∥u(m)∥L∞
T (Bs

p,r)
is uniformly bounded in Es

p,r(T ), we can conclude the existence of some new

constant C ′
T , such that

∥u(n+m+1) − u(n+1)∥L∞
T (Bs−1

p,r ) ≤ C ′
T 2

−n. (3.13)

From (3.13), we know that (u(n))n∈N is a cauchy sequence in C([0, T ];Bs
p,r), where (u(n))n∈N

converges to some limit u ∈ C([0, T ];Bs
p,r). �

Theorem 3.3 Let 1 ≤ p, r ≤ ∞ and s > max(1 + 1
p ,

3
2 ). Let u0 ∈ Bs

p,r. There exists a time T

such that the Eqs. (1.2) and (1.3) has a unique solution u in Es
p,r(T ).

Proof Now we have to check that u ∈ Es
p,r(T ) solves Eqs. (1.2) and (1.3).

Since (u(n))n∈N is uniformly bounded in L∞(0, T ;Bs
p,r). From (8) in Lemma 2.5, taking

limit in (3.2), we can see that u solves Eqs. (1.2) and (1.3). Using the arguments similar to those

in [21,22], we can obtain that u ∈ Es
p,r(T ). �

4. Brow-up criterion

In this section, we will derive the blow-up criterion of the solutions to the Eqs. (1.2) and

(1.3). To this end, we first state the following estimates.

Lemma 4.1 Let 1 ≤ p, r ≤ ∞ and s > 1. Let u ∈ L∞(0, T ;Bs
p,r) solving Eqs. (1.2) and (1.3)
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on [0, T )×R with u0 ∈ Bs
p,r ∩Lip as an initial datum. There exist a constant C depending only

on s, γ and p, and a universal constant C ′, such that for all t ∈ [0, T ), we have

∥u(t)∥Bs
p,r

≤ ∥u0∥Bs
p,r

eC
∫ t
0
(∥u(τ)∥Lip)dτ , (4.1)

∥u(t)∥Lip ≤ ∥u0∥LipeC
′ ∫ t

0
∥∂xu(τ)∥L∞dτ . (4.2)

Proof Making use of Eqs. (1.2) and (1.3) and Lemma 2.7, yields

e−C
∫ t
0
∥∂xu(τ)∥L∞dτ∥u(t)∥Bs

p,r

≤ ∥u0∥Bs
p,r

+ C

∫ t

0

e−C
∫ τ
0

∥∂xu(τ
′)∥L∞dτ ′

∥P (D)(
3− γ

2
u2 +

γ

2
(∂xu)

2)(τ)∥Bs
p,r

dτ, (4.3)

where

∥P (D)(
3− γ

2
u2 +

γ

2
(∂xu)

2)∥Bs
p,r

≤ C∥3− γ

2
u2 +

γ

2
(∂xu)

2∥Bs−1
p,r

≤ C∥u∥Lip∥u∥Bs
p,r

.

Hence,

e−C
∫ t
0
∥∂xu(τ)∥L∞dτ∥u(t)∥Bs

p,r
≤ ∥u0∥Bs

p,r
+ C

∫ t

0

e−C
∫ τ
0

∥∂xu(τ
′)∥L∞dτ ′

∥u∥Lip∥u∥Bs
p,r

dτ, (4.4)

which together with Gronwall inequality yields (4.1).

Differentiating Eq. (1.2) with respect to x, we have

∂t(ux) + γu∂xux = −γu2
x + ∂xP (D)(

3− γ

2
u2 +

γ

2
(ux)

2).

Using the inequality [21, p68]

∥P (D)(u2 +
1

2
(∂xu)

2)∥Lip ≤ C∥u∥Lip∥∂xu∥L∞ ,

and applying the L∞ estimate for generally transport equation, we can easily prove that

∥∂xu∥L∞ ≤ C
(
∥u0∥Lip +

∫ t

0

∥P (D)(
3− γ

2
u2 +

γ

2
(∂xu)

2)(τ)∥Lipdτ
)
.

Hence Gronwall inequality gives inequality (4.2). �

Definition 4.2 Let u0 ∈ Bs
p,r. We define the lifespan T ∗

u0
of solution of (1.2) and (1.3) with

initial data u0 as supremum of positive time T such that (1.2) and (1.3) has a solution u ∈ Es
p,r(T )

on [0, T ]×R.

Theorem 4.3 Let u0 be as in Theorem 3.3, and u be the corresponding solution. Then

T ∗
u0

< ∞ ⇒
∫ T∗

u0

0

∥∂xu(τ)∥L∞dτ = ∞.

Proof Let u ∈ ∩T<T∗
u0
Es

p,r(T ) be such that
∫ T∗

u0
0 ∥∂xu(τ)∥L∞dτ < ∞. Thanks to (4.2), we have∫ T∗

u0
0 ∥u(τ)∥Lipdτ is also finite. Hence, (4.1) insures that

∥u(t)∥Bs
p,r

≤ MT∗
u0

, e
∫ T∗

u0
0 ∥u(τ)∥Lipdτ , ∀t ∈ [0, T ∗

u0
].
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Let ε be positive such that ε < 1
2C2MT∗

u0

, where C is the same constant used in Theorem

3.3. Then we have a solution ũ(t) ∈ Es
p,r(ε) to Eqs. (1.2) and (1.3) with initial datum u(T ∗

u0
− ε

2 ).

For the sake of uniqueness, ũ(t) = u(t+ T ∗
u0

− ε
2 ) on t ∈ [0, ε

2 ). So that ũ extends the solution u

beyond T ∗
u0
. The contradiction completes the proof of the theorem. �
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