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Abstract We consider the problem of estimating the derivative of a function f from its noisy

version fδ by using the derivatives of the partial sums of Fourier-Legendre series of fδ. Instead

of the observation L2 space, we perform the reconstruction of the derivative in a weighted L2

space. This takes full advantage of the properties of Legendre polynomials and results in a

slight improvement on the convergence order. Finally, we provide several numerical examples

to demonstrate the efficiency of the proposed method.
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1. Introduction

Numerical differentiation is a problem consisting in estimating the derivative f ′ of a function

f from the noisy measurement fδ which is not assumed to be differentiable. It arises from many

scientific researches and applications, and is discussed extensively in computational mathematics

[1–3]. At the same time, such a problem is known to be ill-posed in the sense that small errors

in the measurement of a function may lead to large errors in its computed derivatives [4]. A

number of special techniques have been developed for numerical differentiation.

For example, if fδ admits the evaluation at any point x ∈ [−1, 1], then one may think of it

as fδ ∈ C[−1, 1] and apply a variety of properly regularized numerical differentiation techniques

(see e.g., [5,6] and references therein). However, fδ can sometimes only be given by a finite set

of noisy Fourier coefficients

fδk = ⟨fδ, φk⟩L2 :=

∫ 1

−1

fδ(x)φk(x)dx, k = 0, 1, . . . , N, (1)

with respect to some orthonormal system {φk(x)}∞k=0, which is called a design. In such a case,

a general assumption is that fδ ∈ L2(−1, 1) and

∥f − fδ∥L2 ≤ δ, (2)
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where δ is used for measuring the noise level. One is sometimes advised to find f ′, by means of

the standard regularization methods, from the ill-posed integral equation

A(f ′)(x) :=

∫ x

−1

f ′(u)du = fδ(x)− fδ(−1). (3)

However, according to Example 5 of [7], even if one uses the native design {φk(x)}∞k=0 of the

operator A consisting of its singular functions, the derivatives of some simple and analytic func-

tions cannot be reconstructed by using the standard regularization methods with L2 accuracy

better than O(δ
1
3 ). Thus, it is not always reasonable to transform the problem of numerical

differentiation into the equation (3).

Recently, an alternative numerical differentiation method by using Legendre polynomials

was developed in [8]. Let Lk(x) denote k-th Legendre polynomials:

Lk(x) = (−1)k
√
k + 1/2(2kk!)−1 dk

dxk
{
(1− x2)k

}
, k = 0, 1, . . . .

It is well known that the polynomials {Lk(x)}∞k=0 are L2-orthonormal on [−1, 1], i.e.,∫ 1

−1

Lk(x)Lm(x)dx = δk,m,

where δk,m is the Kronecker delta. With the assumptions (1) and (2), the authors consider the

approximation of f ′(x) by using the derivatives of the partial sums of Fourier-Legendre series of

fδ

Snf
δ(x) :=

n∑
k=0

fδkLk(x),

where fδk = ⟨fδ, Lk⟩L2 . Consequently, the numerical differentiation scheme takes the form

Dnf
δ(x) :=

d

dx
(Snf

δ(x)) =

n∑
k=1

fδkL
′
k(x). (4)

The error estimates for the scheme (4) are considered in the observation space L2(−1, 1) as well

as the space of continuous functions C[−1, 1].

We note here that the derivatives of Legendre polynomials L′
k(x) in (4) are proportional to

the Jacobi polynomials P
(1,1)
k−1 (x) given by

P
(1,1)
k−1 (x) =

√
(k + 1)(k + 3/2)(k + 2)

(−1)k

2k+1(k + 1)!

1

(1− x2)

dk

dxk
{(1− x2)k+1}.

To be more precise, we have

L′
k(x) =

√
k(k + 1)P

(1,1)
k−1 (x), k ≥ 1. (5)

On the other hand, the sequence {P (1,1)
k (x)}∞k=0 is orthonormal with respect to the weight func-

tion w(x) = 1− x2 (see [9] for details):∫ 1

−1

P
(1,1)
k (x)P (1,1)

m (x)w(x)dx = δk,m, k,m ≥ 0. (6)

Thus, compared with the space L2, it would be more beneficial to consider the numerical differ-

entiation scheme (4) in the weighted space L2
w. As we shall see later, this will take full advantage



Numerical differentiation in a weighted L2 space 249

of the properties of the derivatives of Legendre polynomials, and lead to a slight improvement

on the convergence order.

The rest of this paper is structured as follows. Section 2 contains the main results for the

reconstruction of derivative of functions in the weighted L2
w space and the corresponding error

estimates. Using an adaptive rule based on the balancing principle for choosing the regularization

parameter n, we present in Section 3 the numerical experiments supporting our main results.

2. Main results

To estimate the accuracy of the numerical differentiation (4) in the L2
w sense, we need a

quantitative measure of smoothness of the function f to be differentiated. As done in the paper

[8], we measure the smoothness of the function f by decay of its Fourier-Legendre coefficients

fk = ⟨f, Lk⟩L2 . Let ψ : [0,∞) → [0,∞) be a non-decreasing continuous function satisfying

limx→∞ ψ(x) = ∞. We assume that f belongs to the space

Wψ
2 :=

{
g : g ∈ L2(−1, 1), ∥g∥2ψ =

∞∑
k=0

ψ2(k)|⟨g, Lk⟩L2 |2 <∞
}
. (7)

This assumption allows us to treat simultaneously the cases of finite and infinite smoothness,

which correspond to ψ increasing with polynomial and exponential rate, respectively. For ex-

ample, let Wµ
2 denote the space Wψ

2 with ψ(x) = xµ, and let Hr
2 be the Sobolev space of L2

functions whose weak derivatives of order up to r are also in L2(−1, 1). It was shown in [10] that

for r ≥ µ, Hr
2 ⊂Wµ

2 .

From the above discussion, one can easily see that the error between f ′(x) and its approxi-

mation Dnf
δ(x) can be bounded in L2

w norm as follows

∥f ′ −Dnfδ∥L2
w
≤ ∥f ′ −Dnf∥L2

w
+ ∥Dnf −Dnf

δ∥L2
w
. (8)

The first term in the right-hand side of (8) is called the approximation error, and the second

term is called the noise propagation error. We shall estimate these terms for f ∈Wψ
2 and specify

our estimates for ψ increasing with polynomial or exponential rate.

Let us first estimate the approximation error.

Lemma 2.1 Let f ∈Wψ
2 . Then the approximation error has the following bound

∥f ′ −Dnf∥L2
w
≤

(
sup

k≥n+1

k(k + 1)

ψ2(k)

) 1
2 ∥f∥ψ. (9)

In case ψ(x) = xµ (µ > 2) and ψ(x) = exh (h > 0), the bound (9) reduces to the following ones

respectively:

∥f ′ −Dnf∥L2
w
≤

√
n+ 2

n+ 1
(n+ 1)1−µ∥f∥ψ, (10)

and

∥f ′ −Dnf∥L2
w
≤

√
(n+ 1)(n+ 2)e−(n+1)h∥f∥ψ. (11)

Proof From (4) and (5), we have

f ′(x)− (Dnf) (x) = f ′(x)−
n∑
k=1

⟨f, Lk⟩L2L′
k(x) =

∞∑
k=n+1

⟨f, Lk⟩L2L
′
k(x)
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=

∞∑
k=n+1

⟨f, Lk⟩L2

√
k(k + 1)P

(1,1)
k−1 (x).

It follows from (6) and (7) that

∥f ′ −Dnf∥2L2
w
=

∫ 1

−1

( ∞∑
k=n+1

⟨f, Lk⟩L2

√
k(k + 1)P

(1,1)
k−1

)2

w(x)dx

=
∞∑

k=n+1

|⟨f, Lk⟩L2 |2k(k + 1)

=
∞∑

k=n+1

|⟨f, Lk⟩L2 |2ψ2(k)
k(k + 1)

ψ2(k)

≤
(

sup
k≥n+1

k(k + 1)

ψ2(k)

)
∥f∥ψ,

which proves the bound (9). A routine calculation gives rise to (10) and (11).

Next we estimate the noise propagation error.

Lemma 2.2 Under the assumption (2), the following bound holds true

∥Dnf −Dnf
δ∥L2

w
≤

√
n(n+ 1)δ. (12)

Proof Let ck = ⟨f − fδ, Lk⟩L2 (k ≥ 0). In view of (2), it follows that

∞∑
k=0

c2k = ∥f − fδ∥L2 ≤ δ2.

From (5), we have

Dnf −Dnf
δ =

n∑
k=1

ckL
′
k(x) =

n∑
k=1

ck
√
k(k + 1)P

(1,1)
k−1 (x).

Then

∥Dnf −Dnf
δ∥2L2

w
=

∫ 1

−1

( n∑
k=1

ck
√
k(k + 1)P

(1,1)
k−1 (x)

)2

w(x)dx

=

n∑
k=1

c2kk(k + 1) ≤ n(n+ 1)

n∑
k=1

c2k ≤ n(n+ 1)δ2.

Extracting the square root, we get (12). �
Using Lemmas 2.1 and 2.2, we obtain our main result immediately. In what follows C stands

for some absolute positive constant, which may not be the same at different occurrences.

Theorem 2.3 Let the assumption (2) be satisfied. If f ∈Wψ
2 with ψ(x) = xµ, then for µ > 2

there exists a number n of the form n = ⌊Cδ
1

1−µ ⌋ − 1 such that

∥f ′ −Dnf
δ∥L2

w
= O(δ

µ−2
µ−1 ). (13)

Suppose that f ∈ Wψ
2 with ψ(x) = exh (h > 0). Then there exists a number n of the form

n = ⌊C 1
h log

1
δ ⌋ such that

∥f ′ −Dnf
δ∥L2

w
= O(δ log

1

δ
). (14)
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Remark 2.4 Under the same condition as in Theorem 2.3, it was shown in [8] that for f ∈Wψ
2

with ψ(x) = xµ (µ > 2), then one has

∥f ′ −Dnf
δ∥L2 = O(δ

µ−2
µ );

in addition, for f ∈Wψ
2 with ψ(x) = exh (h > 0), one has

∥f ′ −Dnf
δ∥L2 = O(δ log2 δ).

Therefore, the estimations (13) and (14) imply that the reconstruction of the derivative in the

weighted space L2
w could lead to a slight improvement on the convergence order.

Remark 2.5 Note that n plays the role of the regularization parameter in the method Dnf
δ.

With the noise propagation error bound (12) at hand, we can choose n based on the so-called

balancing principle as follows

n+ = min
{
n : ∥Dnf

δ −Dmf
δ∥L2

w
≤ 4

√
m(m+ 1)δ,m = N,N − 1, . . . , n+ 1

}
. (15)

Using the deterministic oracle inequality [10], one can show easily that the choice n = n+ gives

an error bound that only by a constant factor worse than the best possible one.

3. Numerical experiments

In this section, we use two numerical experiments to demonstrate the method Dnf
δ together

with the adaptive parameter choice rule (15). In particular, we shall compare our method with

that performed in the space L2(−1, 1), namely, the method Dnf
δ together with the parameter

choice rule:

n+ = min
{
n : ∥Dnf

δ −Dmf
δ∥L2

w
≤ 4λ(m)δ,m = N,N − 1, . . . , n+ 1

}
, (16)

where λ(m) = 1
2m

√
m2 + 6m+ 5.

Set the largest truncation level N = 50. Noisy coefficients {fδi }ni=1 are simulated as follows.

First, calculate the values of a function f at 400 points xi which are uniformly distributed

in [−1, 1]. Then, using the least squares method, find the coefficients of the linear combi-

nation
∑n
i=0 ciLi(x) from the data (xi, f(xi)), i = 1, 2, . . . , 400. Finally, take fδi = ci + ξδi ,

i = 0, 1, . . . , 50, where ξδi is distributed according to the normal distribution.

We consider the following functions on [−1, 1]:

f1(x) =
(
1− 2

3
x+

1

9

)− 1
2 , f ′1(x) =

1

3

(
1− 2

3
x+

1

9

)− 3
2 ;

f2(x) = x2, f ′2(x) = 2x.

The numerical results of the derivative approximation with different truncation levels n+ for

δ = 10−3 and δ = 10−2 are shown in Figures 1 and 2, respectively. The approximated derivatives

with the truncation levels chosen in accordance with (15) and (16) are depicted respectively in

the right panels and left ones. It can be seen from Figures 1 and 2 that, the truncated derivative

method Dnf
δ with the parameter choice rule (15) could outperform the method Dnf

δ with the

parameter choice rule (16).
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Figure 1 Numerical results on [−1, 1] for f1. Left: the approximated derivative performed in the L2

space with the truncation level n+ = 29. Right: the approximated derivative performed in the weighted

L2 space with the truncation level n+ = 17.
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Figure 2 Numerical results near x = −1 for f2. Left: the approximated derivative performed in the L2

space with the truncation level n+ = 29. Right: the approximated derivative performed in the weighted

L2 space with the truncation level n+ = 17.
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