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Abstract By means of a special LU factorization of the Mina matrix with the n-th row and

k-th column entry Dn
x(f

ak(x)), we obtain not only a short proof of the Mina determinant

identity but also the inverse of the Mina matrix. Finally, by use of some similar factorizations
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established.
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1. Introduction

Throughout this paper, we will use Dn
xf(x) to denote the n-th derivative of f(x) with

respect to x, and X = (an,k)
m−1
n,k=0 (resp., det(X)) the square matrix of order m with the n-th

row and k-th column entry an,k = [X]n,k (resp., the determinant of X).

An old theorem of Mina [1], rediscovered independently fifty years later by Zeitlin [2], claims

that

Theorem 1.1 (Mina determinant identity) Let f(x) be an (m−1)-times differentiable function.

Then

det
(
Dn

x(f
k(x))

)m−1

n,k=0
= f ′(x)m(m−1)/2

m−1∏
i=0

i! . (1.1)

This determinant identity was regarded by Poorten [3] as “should be better known”. After-

wards, Wilf [4] generalized this formula to the following

Theorem 1.2 (Generalization of the Mina determinant identity: Wilf [4, Eq.(7)]) For any

sequences {an}∞n=0, there holds

det
(
Dn

x(f
ak(x))

)m−1

n,k=0
= f(x)

∑m−1
i=0 (ai−i)f ′(x)m(m−1)/2

∏
0≤i<j≤m−1

(aj − ai). (1.2)

Up to now, many researchers have made further analysis around these two results, among

them are Poorten [3], Strehl and Wilf [5], Krattenthaler [6,7], Chu [8,9], Zeilberger [10] and
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Zeitlin [2]. A full treatment on determinants of as such and their applications can be found in

the book [11] by Vein and Dale, therein a fairly complete bibliography are given. Especially,

we refer the reader to Krattenthaler’s two remarkable surveys [6,7] on various evaluations of

determinants. Now, let us turn our attention from the Mina determinant to the matrix of the

form (
Dn

x(f
ak(x))

)m
n,k=0

or
(
Dn

x(fk(x))
)m
n,k=0

which we henceforth call the Mina matrix or a matrix of Mina type respectively (known as the

Wronskian of the functions {fk(x)|0 ≤ k ≤ m} in the literature). We find that some more

problems such as the LU factorization and the inverse of the Mina matrix (subject to f ′(x) ̸= 0)

arise quite naturally. These problems seem to have received little attention so far.

The aim of this paper is to attack these problems. Our paper is planned as follows. First,

by the Newton binomial formula, we shall establish an LU factorization of the Mina matrix.

Analogous results in the setting of formal power series, as well as applications to combinatorial

identities, are also discussed. These results are presented in Section 2. Using this LU factor-

ization, in Sections 3 and 4 we shall present not only a short elementary proof of (generalized)

the Mina determinant identity but also the inverse of the Mina matrix, the latter utilizes the

Lagrange inversion formula. In the last section, we shall extend such idea of matrix factorization

to those build up from the Lagrange interpolation formula, thereby to computing determinants

of Mina type. As main consequences, two new determinant identities for arbitrary polynomials

are established.

2. LU factorizations of the Mina matrix

In this section, we shall focus on LU factorizations of the Mina matrix separately by distin-

guishing two settings: the space of differentiable functions and the ring of formal power series.

2.1. LU factorizations for differentiable functions

In what follows, we proceed to establish the following LU (lower and upper triangular

matrix) factorization of the Mina matrix for differentiable functions.

Theorem 2.1 (LU factorization) Let f(x) be an (m − 1)-times differentiable function and A

be the m×m Mina matrix with the (n, k)-entry given by

[A]n,k = Dn
x(f

k(x)). (2.1a)

Then there must exist two matrices B and C with the (n, k)-entries given by

[B]n,k = Dn
y ((f(y)− f(x))k)

∣∣
y=x

, [C]n,k =

(
k

n

)
fk−n(x), (2.1b)

such that

A = BC. (2.1c)
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Proof First, by the Newton binomial formula it follows that

fk(y) = ((f(y)− f(x)) + f(x))k =

k∑
i=0

(
k

i

)
fk−i(x)(f(y)− f(x))i.

Consequently, we have

Dn
x(f

k(x)) = Dn
y (((f(y)− f(x)) + f(x))k)

∣∣
y=x

= Dn
y

( k∑
i=0

(
k

i

)
fk−i(x)(f(y)− f(x))i

)∣∣∣
y=x

=

k∑
i=0

(
k

i

)
fk−i(x)Dn

y ((f(y)− f(x))i)
∣∣
y=x

,

which turns out to be, after reformulated in terms of matrix algebra, (2.1c). Thus the theorem

is proved. �
It is quite clear that the matrix B is lower-triangular and C is upper-triangular. For this

reason, we hereafter call Theorem 2.1 by the LU factorization of the Mina matrix. Two specific

forms of Theorem 2.1, which we shall use later, are worthwhile to state in details.

Corollary 2.2 Let f(y) be infinitely differentiable in a neighborhood of a real or complex

number x. Then

Dn
y ((f(y)− f(x))k)

∣∣
y=x

=
k∑

i=0

(−1)k−i

(
k

i

)
fk−i(x)Dn

x(f
i(x)). (2.2)

Proof It suffices to see that the inverse of C, denoted by C−1 hereafter, equals(
(−1)k−n

(
k

n

)
fk−n(x)

)m−1

n,k=0
.

On considering (2.1c) in view of inverse relations, we immediately find that B = AC−1, i.e.,

[B]n,k = [AC−1]n,k, viz.,

Dn
y ((f(y)− f(x))k)

∣∣
y=x

=

k∑
i=0

(−1)k−i

(
k

i

)
fk−i(x)Dn

x(f
i(x)).

As claimed. �

Corollary 2.3 Under the same assumption as in Corollary 2.2. Then

Dn
y ((f(y)− f(x))k)

∣∣
y=x

= n!
∑
ij≥1

i1+i2+···+ik=n

k∏
j=1

D
ij
x (f(x))

ij !
(2.3)

= k!Bn,k(Dx(f),D
2
x(f), . . . ,D

n−k+1
x (f)) (2.4)

where Bn,k(x1, x2, . . . , xn−k+1) denotes the usual Bell polynomials [12, p.133, Definition].

Proof It follows from the Taylor series of f(y) at y = x

f(y) = f(x) +
∞∑
i=1

Di
x(f(x))

(y − x)i

i!
. �
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In particular, when n = k, it is clear that

Corollary 2.4 For all n ≥ 0, there holds

Dn
y ((f(y)− f(x))n)

∣∣
y=x

= n!(f ′(x))n. (2.5)

As an example, we illustrate Theorem 2.1 with the LU factorization of the Mina matrix of

order four.

Example 2.5 With the same notation as above, we have
1 f f2 f3

0 f ′ 2ff ′ 3f2f ′

0 f ′′ 2(f ′)2 + 2ff ′′ 6f(f ′)2 + 3f2f ′′

0 f (3) 6f ′f ′′ + 2ff (3) 6(f ′)3 + 18ff ′f ′′ + 3f2f (3)



=


1 0 0 0

0 f ′ 0 0

0 f ′′ 2(f ′)2 0

0 f (3) 6f ′f ′′ 6(f ′)3




1 f f2 f3

0 1 2f 3f2

0 0 1 3f

0 0 0 1

 .

2.2. Analogues in formal power series

Once dropping the hypothesis that f(x) is (m−1)-times differentiable and reconsidering all

forgoing conclusions in view of our specific interests in combinatorics, we have to resort to the

theory of formal power series. To be precise, we need the coefficient functional [xn] acting on

the ring C[[x]] of formal power series over the complex field C, defined by

[xn]fk(x) = A(n, k) (2.6)

for any given

fk(x) =

∞∑
n=0

A(n, k)xn. (2.7)

In view of this definition, we now reformulate Theorem 2.1 and Corollary 2.2 in the following

succinct form.

Theorem 2.6 Let {A(n, k)}n,k≥0 be defined by (2.7). Then we have

A(n, k) =
k∑

i=0

(
k

i

)
A(0, k − i)[xn](f(x)−A(0, 1))i, (2.8)

or, equivalently,

[xn](f(x)−A(0, 1))k =

k∑
i=0

(−1)k−i

(
k

i

)
A(0, k − i)A(n, i). (2.9)

Proof According to the definitions (2.6) and (2.7), we only need to make the replacement

Dn
x(f

k(x))
∣∣
x=0

7→ n!A(n, k)

in the identities (2.1c) and (2.2). Observe that in this process, the sum on the right side of (2.3)
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becomes

n!
∑
ij≥1

i1+i2+···+ik=n

k∏
j=1

A(ij , 1) = n! [xn](f(x)−A(0, 1))k.

This completes the proof of the theorem. �
Setting f(x) = ex and (1+x)a in (2.9), respectively, gives rise to the famous Stirling number

of the second kind, i.e., S(n, k), and its polynomial generalization. It means that (2.10) is the

limit of (2.11) as a tends to infinity after dividing both sides of (2.11) by an.

Corollary 2.7 ([13]) Let S(n, k) be the Stirling numbers of the second kind. Then

k!S(n, k) =
k∑

i=0

(−1)k−i

(
k

i

)
in, (2.10)

k∑
i=0

(−1)k−i

(
k

i

)(
ai

n

)
= [xn]

(
(1 + x)a − 1

)k
, (2.11)

where, for any complex numbers x and nonnegative integers n, the generalized binomial coefficient(
x

n

)
:=

(x)n
n!

and the usual falling factorial

(x)n := x(x− 1) · · · (x− n+ 1).

It should be remarked that the identity (2.11) can be regarded as extensions of both (3.150)

and (3.164) listed in the book [14] by Gould. For instance, by specializing a = −1, 1/2, 2, we

obtain correspondingly that

Example 2.8 For all integers n ≥ k ≥ 0, the following identities are valid.

k∑
i=0

(−1)k−i

(
k

i

)(
−i

n

)
= (−1)n

(
n− 1

k − 1

)
, (2.12)

k∑
i=0

(−1)k−i

(
k

i

)(
i/2

n

)
= (−1)n−k k2

k−2n

2n− k

(
2n− k

n

)
, (2.13)

k∑
i=0

(−1)k−i

(
k

i

)(
2i

n

)
= 22k−n

(
k

n− k

)
. (2.14)

3. Proofs of the Mina determinant identity

In the course of proving Theorem 2.1, we already come up with a simple proof of the

Mina determinant identity (1.1). It is immediate from (2.1c), by taking determinants det(A) =

det(BC) = det(B)×det(C). In fact, by the same argument as in Theorem 2.1, we can also show

Wilf’s determinant identity (1.2) generalizing the Mina result. Such a proof is sure to be new,

short, and really elementary, for the reason that it is distinct from those by Mina [1], Wilf [5],

Zeitlin [2], and Chu [9].
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Proof of Theorem 1.2 Without loss of generality, we may assume f(x) ̸= 0. Hence, it is easy

to check that for 0 ≤ n, k ≤ m− 1,

Dn
x(f

ak(x)) = Dn
y (f

ak(x)(1 +
f(y)− f(x)

f(x)
)ak)

∣∣
y=x

= fak(x)Dn
y (1 +

f(y)− f(x)

f(x)
)ak

∣∣
y=x

= fak(x) Dn
y

( ∞∑
i=0

(
ak
i

)
(
f(y)− f(x)

f(x)
)i
)∣∣∣

y=x

=
∞∑
i=0

(
ak
i

)
fak−i(x)Dn

y ((f(y)− f(x))i)
∣∣
y=x

=
m−1∑
i=0

(
ak
i

)
fak−i(x)Dn

y ((f(y)− f(x))i)
∣∣
y=x

. (3.1)

Note that in the last third equality we have used the fact

|f(y)− f(x)

f(x)
| < 1 when y 7→ x.

And the last equality results from the fact that

Dn
y ((f(y)− f(x))i)

∣∣
y=x

= 0 for i > m− 1 ≥ n.

As previously, we rewrite (3.1) in the form

Ã = B̃ × C̃ (3.2)

where Ã, B̃, and C̃ are three m×m matrices of Mina type whose entries are given, respectively,

by

[Ã]n,k = Dn
x(f

ak(x)); [B̃]n,k = Dn
y ((f(y)− f(x))k)

∣∣
y=x

; [C̃]n,k =

(
ak
n

)
fak−n(x).

Since

det (C̃)m−1
n,k=0 = det

((ak
n

)
fak−n(x)

)m−1

n,k=0
= f(x)

∑m−1
i=0 (ai−i)det

((ak
n

))m−1

n,k=0

=
f(x)

∑m−1
i=0 (ai−i)

1!2! · · · (m− 1)!

∏
0≤i<j≤m−1

(aj − ai),

which, by taking determinants on both sides of (3.2), gives rise to

det (Ã)m−1
n,k=0 = det (B̃)m−1

n,k=0 × det (C̃)m−1
n,k=0

= f(x)
∑m−1

i=0 (ai−i)
(
f ′(x)

)m(m−1)/2 ∏
0≤i<j≤m−1

(aj − ai).

The theorem is therefore proved. �
By virtue of Theorem 2.6, we may establish an analogous determinant identity in the setting

of formal power series.

Corollary 3.1 (Mina determinant identity for formal power series) Under the same assumptions
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as in Theorem 2.6. Then we have

det
(
[xn](fak(x))

)m−1

n,k=0
=

λ
∑m−1

i=0 (ai−i)
0 λ

m(m−1)/2
1

1!2! · · · (m− 1)!

∏
0≤i<j≤m−1

(aj − ai), (3.3)

where λ0 = f(0), λ1 = [x]f(x).

Proof Observe that for arbitrary complex numbers ak and f(x) given by the definition (2.7),

it holds

fak(x) =
∞∑
i=0

(
ak
i

)
fak−i(0)(f(x)− f(0))i.

Applying the coefficient functional [xn] to both sides of this identity, we obtain that

[xn]fak(x) =
∞∑
i=0

(
ak
i

)
fak−i(0)[xn](f(x)−A(0, 1))i (3.4)

where [xn]f i(x) = A(n, i). Under the known conditions, it is easily found that

fak−i(0) = λak−i
0 ;

[xn](f(x)−A(0, 1))i =

{
0, i > n;

λn
1 , i = n.

We are thus led to the following matrix factorization

([xn](fak(x)))m−1
n,k=0 = ([xn](f(x)−A(0, 1))k)m−1

n,k=0 ×
((ak

n

)
fak−n(0)

)m−1

n,k=0
,

which in turn, by taking determinants on both sides simultaneously, yields

det ([xn](fak(x)))m−1
n,k=0 =

λ
∑m−1

i=0 (ai−i)
0 λ

m(m−1)/2
1

1!2! · · · (m− 1)!

∏
0≤i<j≤m−1

(aj − ai).

The corollary is proved. �

4. Inverse of the Mina matrix

It is evident that the Mina matrix (Dn
x(f

k(x)))m−1
n,k=0 is nonsingular if and only if f ′(x) ̸= 0.

The goal of this section is to derive the inverse of the Mina matrix from the LU factorization

(2.1c). To do this, we also need the following

Lemma 4.1 ([15, Def.7 and Thm.6]) For any pair of reciprocal functions f(x), g(x) ∈ L1, viz.,

f(g(x)) = g(f(x)) = x, and finite or infinite integer M ≥ 0, we have

(
1

n!
Dn

0 (f
k(x)))−1

M≥n≥k≥0 = (
1

n!
Dn

0 (g
k(x)))M≥n≥k≥0, (4.1)

where the notation

Dn
0 (f(x)) = Dn

x(f(x))|x=0;

L1 = {f(x)|f(x) is analytic around x = 0, f(0) = 0, f ′(0) ̸= 0}.
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Combining Lemma 4.1 with the LU factorization (2.1c) of the Mina matrix, we immediately

obtain that

Theorem 4.2 Let f(x) be an (m− 1)-times differentiable function with f
′
(x) ̸= 0. Then

(Dn
x(f

k(x)))−1
m−1≥n,k≥0 (4.2)

=
( m−1∑

i=max{n,k}

(−1)i−n

(
i

n

)(
i− 1

i− k

)
f i−n(x)

i!
Di−k

y (
y − x

f(y)− f(x)
)i
∣∣
y=x

)
m−1≥n,k≥0

.

Proof By making use of (2.1c) and noting f ′(x) ̸= 0, we easily find that

(Dn
x(f

k(x)))−1
m−1≥n,k≥0 (4.3)

=
((k

n

)
fk−n(x)

)−1

m−1≥k≥n≥0
(Dn

y ((f(y)− f(x))k)
∣∣
y=x

)−1
m−1≥n≥k≥0.

It is crucial that F (t) ∈ L1, by defining F (t) = f(t+ x)− f(x) with t = y − x. So Lemma 4.1 is

applicable. In conclusion, we get

(Dn
y ((f(y)− f(x))k)|y=x)

−1
m−1≥n≥k≥0 = (

1

n!k!
Dn

t (G
k(t))|t=0)m−1≥n≥k≥0,

where G(t) is the compositional inverse of F (t). And then, thanks to the Lagrange inversion

formula [12, p.148, Theorem A], we deduce that

1

n!
Dn

t (G
k(t))|t=0 =

k

n

1

(n− k)!
Dn−k

t (
t

f(t+ x)− f(x)
)n|t=0.

A direct substitution of these two expressions into the relation (4.3), after a bit of simplification,

gives the complete proof of the theorem. �
As an illustration, we specialize Theorem 4.2 to the Mina matrix of order four.

Example 4.3 Write a := f ′, b := f ′′, c := f (3). Then
1 f f2 f3

0 a 2af 3af2

0 b 2a2 + 2bf 6fa2 + 3bf2

0 c 6ab+ 2cf 6a3 + 18bfa+ 3cf2


−1

=


1 − f(6a4+3a2bf−acf2+3b2f2)

6a5
f2a2+bf3

2a4 − f3

6a3

0 2a4+2a2bf−acf2+3b2f2

2a5
−2fa2−3bf2

2a4
f2

2a3

0 −a2b−acf+3b2f
2a5

a2+3bf
2a4 − f

2a3

0 3b2−ac
6a5 − b

2a4
1

6a3

 .

5. Further discussion: new determinant identities of Mina

Reconsidering all obtained in the preceding sections, we easily find that the LU factorization

of the Mina matrix in Theorem 2.1, built on the Newton binomial formula, is the heart of our

argument. Just as Krattenthaler pointed out in [6], LU factorizations (generally speaking, matrix

factorization) is one of the most important techniques in evaluations of determinants. To the

best of our knowledge, many combinatorial identities containing such matrix factorizations (but
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not necessarily LU) can be used to evaluations of the resulting determinants. For example, using

the well–known Newton formula of finite difference operator ∆x, i.e.,

∆n
xf(x) =

n∑
k=0

(−1)n+k

(
n

k

)
f(x+ k),

Chu [9, Lemma 1] showed that for arbitrary function sequence {fn(x)}

det (∆n
x(fk(x)))

m−1
n,k=0 = det (fk(x+ n))m−1

n,k=0.

Indeed, it is the Faà di Bruno formula by which Chu in his another paper [8] successfully extended

the Mina determinant identity to the case of higher derivatives of composite functions.

All these suggest that, if we restrict our attention to determinants of Mina type, such matrix

factorizations constructed by combinatorial identities may provide us with great free choices for

determinant evaluations, as displayed by Wimp in [16].

Keeping such idea in mind, we now turn our attention to the Lagrange interpolation formula

and its special case–Melzak’s formula [17]. Recall that the Lagrange interpolation formula may

be stated as follows:

Lemma 5.1 (Lagrange interpolation formula) For arbitrary positive integer m, let b0, b1, . . . , bm

be a sequence of distinct complex numbers and f(x) be a polynomial in x of degree at most m.

Then

f(x) =

m∑
j=0

f(bj)

∏m
s=0,s ̸=j(x− bs)∏m
s=0,s ̸=j(bj − bs)

. (5.1)

Making the substitutions bi 7→ x− i and x 7→ x+ y in (5.1) simultaneously, then we recover

Melzak’s formula [17] as follows.

Lemma 5.2 (Melzak’s formula) Let fn(x) be a polynomial in x of degree at most n. Then

n∑
k=0

(−1)k
(
n

k

)
fn(x− k)

y + k
= n!

fn(x+ y)

(y + n)n+1
. (5.2)

As mentioned above, using these two lemmas we can set up respectively two determinant

identities as follows.

Theorem 5.3 Let fk(x) (0 ≤ k ≤ m) be m+ 1 arbitrary polynomials given by

fk(x) = ak,mxm + ak,m−1x
m−1 + · · ·+ ak,1x+ ak,0. (5.3)

Then

det
(
Dn

x(
fk(x)∏m

s=0(x− bs)
)
)m

n,k=0
= det (an,k)

m
n,k=0

m∏
n=0

n!

(x− bn)m+1
. (5.4)

Proof As indicated above, we first divide both sides of (5.1) by
∏m

s=0(x− bs) to get

f(x)∏m
s=0(x− bs)

=

m∑
j=0

1

x− bj

f(bj)∏m
s=0,s ̸=j(bj − bs)

. (5.5)
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It is worth noting that (5.5) is valid for all polynomials which are of degree at most m. Applied

to the polynomial fk(x), we obtain

fk(x)∏m
s=0(x− bs)

=

m∑
j=0

1

x− bj

fk(bj)∏m
s=0,s ̸=j(bj − bs)

. (5.6)

Accordingly, take the n-th derivatives on both sides of (5.6) with respect to x. It follows that

Dn
x

( fk(x)∏m
s=0(x− bs)

)
=

m∑
j=0

Dn
x(

1

x− bj
)

fk(bj)∏m
s=0,s ̸=j(bj − bs)

. (5.7)

Rewriting this relation in terms of matrix algebra, so we are left with the matrix factorization(
Dn

x(
fk(x)∏m

s=0(x− bs)
)
)m

n,k=0
= (Dn

x(
1

x− bk
))mn,k=0 ×

( fk(bn)∏m
s=0,s ̸=n(bn − bs)

)m

n,k=0
.

Observe that the determinant of the first matrix on the right, after some appropriate row and

column manipulation, reduces to a Vandermonde determinant while the second one on the right

can now be evaluated in closed form. To be precise, on referring to (5.3) and noting that

(fk(bn))
m
n,k=0 = (bkn)

m
n,k=0 × (an,k)

m
n,k=0,

we obtain that

det
( fk(bn)∏m

s=0,s ̸=n(bn − bs)

)m

n,k=0
=

det (fk(bn))
m
n,k=0∏

0≤i ̸=j≤m(bj − bi)
= (−1)m(m+1)/2

det (an,k)
m
n,k=0∏

0≤i<j≤m(bj − bi)
.

Finally, we get

det
(
Dn

x(
fk(x)∏m

s=0(x− bs)
)
)m

n,k=0
= det (Dn

x(
1

x− bk
))mn,k=0 × det

( fk(bn)∏m
s=0,s ̸=n(bn − bs)

)m

n,k=0

=
m∏

n=0

(−1)nn!

(x− bn)m+1

∏
0≤i<j≤m

(bj − bi)× (−1)m(m+1)/2
det (an,k)

m
n,k=0∏

0≤i<j≤m(bj − bi)

= det (an,k)
m
n,k=0

m∏
n=0

n!

(x− bn)m+1
.

This completes the proof of the theorem. �
In the same line as above, we may establish another different determinant identity with the

help of Lemma 5.2.

Theorem 5.4 Let {fn(x)}n≥0 be an arbitrary polynomial sequence and each fn(x) be of degree

at most n. Then

det (Dn
y (

fk(x+ y)

(y + k)k+1
))m−1

n,k=0 = (−1)m(m−1)/2
m−1∏
n=0

n!fn(x− n)

(y + n)m
. (5.8)

Proof It suffices to take the i-th derivatives on both sides of (5.2) with respect to y. So we see

that for all n, i ≥ 0, there holds

n∑
k=0

(−1)k
(
n

k

)
fn(x− k)Di

y(
1

y + k
) = Di

y(
n!fn(x+ y)

(y + n)n+1
),
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yielding the factorization of the Mina matrix(
(−1)k

(
n

k

)
fn(x− k)

)m−1

n,k=0
(Dk

y(
1

y + n
))m−1

n,k=0 = (Dk
y(

n!fn(x+ y)

(y + n)n+1
))m−1

n,k=0.

Observe that the first matrix on the left is triangular while the determinant of the second matrix

can now be evaluated by

det (Dk
y(

1

y + n
))m−1

n,k=0 = det (
(−1)kk!

(y + n)k+1
)m−1
n,k=0 = det (

1

(y + n)k
)m−1
n,k=0 ×

m−1∏
k=0

(−1)kk!

y + k
.

Note that the last determinant on the right is a Vandermonde determinant. This gives the

complete proof of the theorem. �
We conclude our paper with some concrete results worthy of special attention, by specializing

Theorem 5.4 to

fn(x) = 1, xn,

(
λ x

n

)
,

(
x+ n

n

)
,

(
2x+ 2n

2n

)/(
x+ n

n

)
,

respectively.

Example 5.5 For any nonnegative integer m and the variable y ̸= 0,−1, . . . ,−m + 1, write

τ(m) for (−1)m(m−1)/2, then the following identities are valid.

det (Dn
y (

1

(y + k)k+1
))m−1

n,k=0 = τ(m)
m−1∏
n=0

n!

(y + n)m
, (5.9)

det (Dn
y (

(x+ y)k

(y + k)k+1
))m−1

n,k=0 = τ(m)
m−1∏
n=0

n!(x− n)n

(y + n)m
, (5.10)

det (Dn
y (

(λx+ λy)k
(y + k)k+1

))m−1
n,k=0 = τ(m)

m−1∏
n=0

n!(λx− λn)n
(y + n)m

, (5.11)

det (Dn
y (

(x+ y + k)k
(y + k)k+1

))m−1
n,k=0 = τ(m)

m−1∏
n=0

n!(x)n
(y + n)m

, (5.12)

det (Dn
y (

(2x+ 2y + 2k)2k
(x+ y + k)k(y + k)k+1

))m−1
n,k=0 = τ(m)

m−1∏
n=0

n!(2x)2n
(x)n(y + n)m

. (5.13)

In particular, for the Stirling numbers of the second kind S(n, k), we have

det
( ∞∑

i=k

(−1)i−kS(i, k)
(i+ n)n

yi

)m−1

n,k=0
=

m−1∏
n=0

n!yn+1

(y + n)m
, |y| > 1. (5.14)

It is of interest that the identity (5.14) results from a combination of (5.9) with the generating

function of the Stirling numbers S(n, k) (see [12, p.207, Theorem C]):

∞∑
n=k

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
.
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[8] Wenchang CHU. The Faà di Bruno formula and determinant identities. Linear Multilinear Algebra, 2006,

54(1): 1–25.

[9] Wenchang CHU. Finite differences and determinant identities. Linear Algebra Appl., 2009, 430(1): 215–228.

[10] D. ZEILBERGER. A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-

Robbins-Rumsey numbers 1, 2, 7, 42, 429, . . .. J. Combin. Theory Ser. A, 1994, 66(1): 17–27.

[11] R. VEIN, P. DALE. Determinants and Their Applications in Mathematical Physics. Springer-Verlag, New

York, 1999.

[12] L. COMTET. Advanced Combinatorics: The Art of Finite and Infinite Expansions. French, 1974.

[13] L. C. HSU. Theory and application of general Stirling number pairs. J. Math. Res. Exposition, 1989, 9(2):

211–220.

[14] H. W. GOULD. Combinatorial Identities, in: A Standardized Set of Tables Listing 500 Binomial Coefficient

Summations. Morgantown W. Va, 1972.

[15] L. C. HSU. Generalized Stirling number pairs associated with inverse relations. Fibonacci Quart., 1987,

25(4): 346–351.

[16] J. WIMP. Hankel determinants of some polynomials arising in combinatorial analysis. Numer. Algorithms,

2000, 24(1-2): 179–193.

[17] Z. A. MELZAK. Problem 4458. Amer. Math. Monthly, 1951, 58(3): 636.


