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Abstract In this paper, as a natural extension of the Rényi formula which counts labeled

connected unicyclic graphs, we present a formula for the number of labeled (k + 1)-uniform

(p, q)-unicycles as follows:

U (k+1)
p, q =


p!

2[(k − 1)!]q
·

q∑
t=2

qq−t−1 · sgn(tk − 2)

(q − t)!
, p = qk,

0, p ̸= qk,

where k, p, q are positive integers.
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1. Introduction

Let p, q be positive integers. Let X = {x1, x2, . . . , xp} be a finite set, and let E = {Ei|i =
1, 2, . . . , q} be a family of subsets of X. Denote by |X| the number of the elements in X. If

Ei ̸= Ø (1 ≤ i ≤ q), then the couple H = (X,E ) is called a hypergraph. Usually, |X| = p is

called the order of H, the elements of X are called the vertices of H, and the sets E1, E2, . . . , Eq

are called the hyperedges. A hypergraph H = (X,E ) with |X| = p and |E | = q is called a

(p, q)-hypergraph.

It is known that a hypergraph H = (X,E ) with |X| = p and |E | = q is corresponding to

a bipartite graph G(H) = (Y1, Y2, E), where vertex xi ∈ Y1 = X (i = 1, 2, . . . , p) and vertex

Ej ∈ Y2 = E (j = 1, 2, . . . , q) is adjacent in G(H) if and only if xi ∈ Ej in H.

In a hypergraph H = (X,E ), two vertices are said to be adjacent if there is a hyperedge

Ei that contains both of these vertices; Ei ∈ E with |Ei| = 1 is called a loop; if Ei ∈ E with

|Ei| ≥ 2, and there is only one vertex v ∈ Ei shared with other hyperedges, then Ei is called a

pendant hyperedge; a chain of length t is defined to be a sequence (x1, E1, x2, E2, . . . , Et, xt+1)

such that

(1) x1, x2, . . . , xt are all distinct vertices of H,
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(2) E1, E2, . . . , Et are all distinct hyperedges of H,

(3) xi, xi+1 ∈ Ei for i = 1, 2, . . . , t.

Moreover, if t > 1 and x1 = xt+1, then this chain is called a cycle of length t. If there is a

chain in the hypergraph that starts at vertex x and terminates at vertex y, then we shall write

x ≡ y. It is not difficult to verify that the relation x ≡ y is an equivalence relation, whose classes

are called the “connected components” of the hypergraph [1]. A hypergraph with exactly one

connected component is called a connected hypergraph.

For a hypergraph H = (X,E ), H is called k-uniform if ∀Ei ∈ E , |Ei| = k, where k is a

positive integer. If H is connected and contains no cycles, then H is called a hypertree; besides,

H is called a unicycle if H is connected and contains exactly one cycle.

The theory of hypergraphs is generalized from graph theory [1–3]. For example, 2-uniform

hypertrees (resp., unicycles) are the usual trees (resp., connected unicyclic graphs) from graph

theory [2]. Graphical enumeration is interesting, and many mathematicians have studied labeled

enumeration problems and obtained a lot of results [4]. However, there are not many results about

the enumeration of labeled hypergraphs [5]. In 1980, Hegde and Sridharan [6] presented formulas

for the number of labeled k-colored hypergraphs, labeled connected hypergraphs without loops,

labeled even hypergraphs, respectively. Furthermore, Liu [7] obtained counting formulas for

hypergraphs of order p (resp., (p, q)-hypergraphs) with exactly k vertices of odd degree, which

are generalizations of the results in [6]. On the other hand, Mao [8] studied the properties of

hypertrees, and conjectured a counting formula for (k + 1)-uniform (p, q)-hypertrees. In 1988,

Liu [9] gave a proof of Mao’s conjecture, and concluded that when k = 1, such formula is

the famous Cayley formula which counts labeled trees [10]. In recent years, there are some

papers concerning enumeration of labeled information hypergraphs (which is slightly different

from labeled hypergraphs) [11–14].

In this paper, we study the properties of unicycles, and as a natural extension of the Rényi

formula which counts labeled connected unicyclic graphs [15], we present a formula for the number

of labeled (k + 1)-uniform (p, q)-unicycles.

2. Counting labeled unicycles

To begin with, we investigate the properties of unicycles.

Lemma 2.1 A hypergraph H = (X,E ) is a unicycle if and only if its corresponding bipartite

graph G(H) is a connected unicyclic graph.

Proof Note that (x1, E1, x2, E2, . . . , xt, Et, x1) (t > 1) is the unique cycle of H, if and only if,

(x1, E1, x2, E2, . . . , xt, Et, x1) (Ei can be seen as a vertex, where i = 1, 2, . . . , t) is the unique

cycle of G(H). Moreover, it is easy to see that H is connected if and only if G(H) is connected.

�

Lemma 2.2 ([1]) A connected (p, q)-hypergraph H = (X,E ) is a unicycle if and only if∑q
i=1 |Ei| = p+ q.
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Corollary 2.3 If a connected (p, q)-hypergraph H = (X,E ) is a (k+ 1)-uniform unicycle, then

p = qk.

Proof It is obvious that |Ei| = k+1 (i = 1, 2, . . . , q). Combining this with Lemma 2.2, we have

p+ q = q(k + 1), and the proof is completed. �

Lemma 2.4 Let H = (X,E ) be a unicycle with |X| = p and |E | = q.

(1) For any Ei, Ej ∈ E (i ̸= j), we have |Ei ∩ Ej | ≤ 2.

(2) If |E | ≥ 3 and there are Ei, Ej ∈ E (i ̸= j) with |Ei ∩ Ej | = 2, then there exist

pendant hyperedges in H; Conversely, if H contains no pendant hyperedges and |E | ≥ 3, then

|Ei ∩ Ej | ≤ 1 for any Ei, Ej ∈ E (i ̸= j).

(3) If H contains no pendant hyperedges, then for any Ej ∈ E (j = 1, 2, . . . , q), |Ej ∩
(
∪

1≤k≤q
k ̸=j

Ek)| = 2.

Proof (1) By contradiction. Suppose there exist Ei, Ej ∈ E (i ̸= j) such that |Ei ∩ Ej | ≥ 3.

Let x, y, z be three different vertices of Ei ∩ Ej . Then (x,Ei, y, Ej , x) and (x,Ei, z, Ej , x) are

two different cycles, a contradiction.

(2) By contradiction. If H contains no pendant hyperedges, then every hyperedge shares

at least two vertices with all other hyperedges. Since |E | ≥ 3 and H is connected, Ei (or Ej)

shares at least three vertices with all other hyperedges. Therefore, we have

q∑
x=1

|Ex| = |
q∪

x=1

Ex|+
q−1∑
y=1

|Ey ∩ (

q∪
z=y+1

Ez)|

= |
q∪

x=1

Ex|+
1

2

q∑
y=1

|Ey ∩ (
∪

1≤z≤q
z ̸=y

Ez)|

≥ p+
1

2
[2(q − 1) + 3] = p+ q +

1

2
.

By Lemma 2.2, the unicycle H satisfies
∑q

x=1 |Ex| = p + q, a contradiction. Hence there exist

pendant hyperedges in H. The converse can be proved similarly.

(3) IfH contains no pendant hyperedges, then ∀Ej ∈ E (j = 1, 2, . . . , q), |Ej∩(
∪

1≤k≤q
k ̸=j

Ek)| ≥
2. It follows that

p+ q =

q∑
i=1

|Ei| = |
q∪

i=1

Ei|+
1

2

q∑
j=1

|Ej ∩ (
∪

1≤k≤q
k ̸=j

Ek)| ≥ p+
1

2
· (2q) = p+ q,

and the equality holds if and only if |Ej ∩ (
∪

1≤k≤q
k ̸=j

Ek)| = 2 (j = 1, 2, . . . , q). �
It is known that labeled 2-uniform unicycles are the usual labeled, connected, unicyclic

graphs whose counting formula is the Rényi formula [15]. As a natural extension, we shall obtain

a counting formula for labeled (k+1)-uniform (p, q)-unicycles, where k is a positive integer. Let

U
(k+1)
p,q (resp., U

(k+1)

p,q ) denote the number of labeled (k+1)-uniform (p, q)-unicycles (resp., whose

hyperedges are also labeled). It is obvious that U
(k+1)

p,q = q!U
(k+1)
p,q . Moreover, by Corollary 2.3,

if p ̸= qk, then U
(k+1)
p,q = 0; if p = qk, then we have the following results.
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Lemma 2.5 Let q, t be positive integers. If q > t, then

q−t∑
j=0

(−1)j+1

(
q − t

j

)
(q − j)q−t−1 = 0.

Proof Let ∆qOt =
∑q

j=0(−1)j
(
q
j

)
(q − j)t. If q > t, then ∆qOt = 0 (see [16]). Hence

q−t∑
j=0

(−1)j+1

(
q − t

j

)
(q − j)q−t−1

=

q−t∑
j=0

(−1)j+1

(
q − t

j

) q−t−1∑
i=0

(
q − t− 1

i

)
(q − t− j)itq−t−1−i

= −
q−t−1∑
i=0

(
q − t− 1

i

)
tq−t−1−i

q−t∑
j=0

(−1)j
(
q − t

j

)
(q − t− j)i

= −
q−t−1∑
i=0

(
q − t− 1

i

)
tq−t−1−i∆q−tOi = 0,

where the last equality holds since ∆q−tOi = 0 (q − t > i). �

Lemma 2.6 If p = qk, then U
(k+1)

p, q satisfies the following recurrence:

U
(k+1)

p, q =
p!(q − 1)!

2[(k − 1)!]q
+

q∑
j=1

(−1)j+1

(
p

jk

)(
q

j

)
(jk)!

(k!)j
(p− jk)jU

(k+1)

p−jk, q−j . (2.1)

Proof By Lemma 2.1, let S be the set of labeled, connected, bipartite unicyclic graphs G(H) =

(Y1, Y2, E) (corresponding to the set of labeled (k+1)-uniform (p, q)-unicycle H = (X,E ) whose

hyperedges are also labeled). Then |S| = U
(k+1)

p,q , |Y1| = p, |Y2| = q, and the degree of each

vertex in Y2 is (k + 1).

In G(H), the vertex in Y2 representing a pendant hyperedge of H is joined to k pendant

vertices in Y1. For convenience, such vertices in Y2 are called pendant-hyperedge vertices, and

those pendant vertices in Y1 are called match vertices. It is easy to see that the number of match

vertices in Y1 is multiples of k. Denote the vertices of Y2 by v1, v2, . . . , vq. Let Ai (i = 1, 2, . . . , q)

be the set of G(H) with vi as a pendant-hyperedge vertex.

Now we give two methods to calculate the number of G(H) without pendant-hyperedge

vertices in Y2 (equivalent to G(H) without match vertices in Y1).

On the one hand, by the principle of Inclusion-Exclusion [16], the number of G(H) without

pendant-hyperedge vertices in Y2 is

|A1 ∩A2 ∩ · · · ∩Aq| = |S − ∪q
i=1Ai| = |S|+

q∑
j=1

(−1)j
∑

1≤i1<i2<···<ij≤q

|Ai1 ∩Ai2 ∩ · · · ∩Aij |.

Note that Ai1 ∩Ai2 ∩· · ·∩Aij (1 ≤ i1 < i2 < · · · < ij ≤ q) is the set of G(H) with vi1 , vi2 , . . . , vij
as pendant-hyperedge vertices. Observe that vit (t = 1, 2, . . . , j) is joined to k match vertices in

Y1, then we shall choose jk match vertices from Y1, and there are
(
p
jk

) (jk)!
(k!)j ways for choosing

and joining. Since the pendant-hyperedge vertices vi1 , vi2 , . . . , vij are all of (k + 1) degree, then
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each of them should be joined to one of the remaining (p− jk) labeled vertices in Y1, and there

are (p− jk)j different ways. Moreover, the remaining (p− jk) labeled vertices in Y1 and (q − j)

labeled vertices in Y2 shall construct labeled, connected, bipartite unicyclic graphs, corresponding

to labeled (k + 1)-uniform (p− jk, q − j)-unicycles whose hyperedges are labeled, and the total

number is U
(k+1)

p−jk,q−j . Therefore,

|Ai1 ∩Ai2 ∩ · · · ∩Aij | =
(
p

jk

)
(jk)!

(k!)j
(p− jk)jU

(k+1)

p−jk, q−j .

And the number of G(H) without pendant-hyperedge vertices in Y2 is

|S|+
q∑

j=1

(−1)j
∑

1≤i1<i2<···<ij≤q

|Ai1 ∩Ai2 ∩ · · · ∩Aij |

= U
(k+1)

p, q +

q∑
j=1

(−1)j
(
q

j

)(
p

jk

)
(jk)!

(k!)j
(p− jk)jU

(k+1)

p−jk, q−j

=

q∑
j=0

(−1)j
(
q

j

)(
p

jk

)
(jk)!

(k!)j
(p− jk)jU

(k+1)

p−jk, q−j .

On the other hand, if G(H) contains no match vertices in Y1, then its corresponding labeled

(k + 1)-uniform (p, q)-unicycle H = (X,E ) whose hyperedges are labeled contains no pendant

hyperedges. By Lemma 2.4, ∀Ej ∈ E (j = 1, 2, . . . , q), we have |Ej ∩ (
∪

1≤k≤q
k ̸=j

Ek)| = 2. Conse-

quently, G(H) should be isomorphic to the following graph (see Figure 1, the solid points and

hollow points represent the vertices in Y1 and Y2, respectively). The number of ways to label

such graph (we shall give the vertices of Y1 and Y2 different types of labels) is

(q − 1)!

2
· p!

[(k − 1)!]q
.

s c s c · · · s c
s s· · ·
︷ ︸︸ ︷k − 1 s s· · ·

︷ ︸︸ ︷k − 1 s s· · ·
︷ ︸︸ ︷k − 1

Figure 1 G(H)

Therefore,

q∑
j=0

(−1)j
(
p

jk

)(
q

j

)
(jk)!

(k!)j
(p− jk)jU

(k+1)

p−jk, q−j =
(q − 1)!

2
· p!

[(k − 1)!]q
.

To transpose the terms of j ̸= 0 in the above equality, we get Eq. (2.1). �

Theorem 2.7 Let sgn(x) =


0, x = 0,

1, x > 0,

−1, x < 0.

Then the number of labeled (k+1)-uniform (p, q)-
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unicycles is

U (k+1)
p,q =


p!

2[(k − 1)!]q
·

q∑
t=2

qq−t−1 · sgn(tk − 2)

(q − t)!
, p = qk,

0, p ̸= qk,

(2.2)

where p, q, k are positive integers.

Proof If p ̸= qk, then we obtain the result as desired. If p = qk, we first prove the following

equality by induction on q:

U
(k+1)

p,q =
p!q!

2[(k − 1)!]q
·

q∑
t=2

qq−t−1 · sgn(tk − 2)

(q − t)!
. (2.3)

Combining this with U
(k+1)
p,q = 1

q!U
(k+1)

p, q , the theorem is proved.

If q = 1, then U
(k+1)

p,1 = 0. Note that there is no labeled (k + 1)-uniform (p, 1)-unicycles,

then Eq. (2.3) holds. If q = 2, then

U
(k+1)

p, 2 =
(2k)!

[(k − 1)!]2
· sgn(2k − 2)

2
=


0, k = 1,

(2k)!

2[(k − 1)!]2
, k > 1.

It is not difficult to see that there is no labeled 2-uniform (p, 2)-unicycles (namely, connected

unicyclic graphs of order 2), and the number of labeled (k + 1)-uniform (k > 1) (p, 2)-unicycles

is the number of ways to label the following graph G (see Figure 2, the solid points and hollow

points shall use different types of labels), that is,

(2k)!

2[(k − 1)!]2
.

Hence Eq. (2.3) holds.

s c s c
s s· · ·
︷ ︸︸ ︷k − 1 s s· · ·

︷ ︸︸ ︷k − 1

Figure 2 G

Suppose that Eq. (2.3) holds when the number of hyperedges is less than q. By Lemma 2.6

and induction hypothesis,

U
(k+1)

p,q =
p!(q − 1)!

2[(k − 1)!]q
+

q∑
j=1

(−1)j+1

(
p

jk

)(
q

j

)
(jk)!

(k!)j
(p− jk)jU

(k+1)

p−jk, q−j

=
(qk)!(q − 1)!

2[(k − 1)!]q
+

q∑
j=1

(−1)j+1

(
qk

jk

)(
q

j

)
(jk)!

(k!)j
(qk − jk)j ·

(qk − jk)!(q − j)!

2[(k − 1)!]q−j
·
q−j∑
t=2

(q − j)q−j−t−1 · sgn(tk − 2)

(q − j − t)!
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=
(qk)!q!

2[(k − 1)!]q
· [ 1
q
+

q−1∑
t=2

sgn(tk − 2)

(q − t)!

q−t∑
j=1

(−1)j+1

(
q − t

j

)
(q − j)q−t−1].

Combining this with Lemma 2.5 gives

U
(k+1)

p,q =
(qk)!q!

2[(k − 1)!]q
[
1

q
+

q−1∑
t=2

sgn(tk − 2)

(q − t)!
qq−t−1]

=
(qk)!q!

2[(k − 1)!]q

q∑
t=2

sgn(tk − 2)

(q − t)!
qq−t−1

=
p!q!

2[(k − 1)!]q
·

q∑
t=2

qq−t−1 · sgn(tk − 2)

(q − t)!
.

All in all, this completes the proof of Theorem 2.7. �

Remark 2.8 By Eq. (2.2), when k = 1, we get the Rényi formula which counts labeled connected

unicyclic graphs of order p (see [15]):

U (2)
p, p =

1

2

p∑
t=3

(p− 1)! · pp−t

(p− t)!
.
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