An Extension of the Rényi Formula

Yufei HUANG ${ }^{1, *}$, Bolian LIU ${ }^{2}$
1. Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangdong 510403, P. R. China;
2. College of Mathematical Science, South China Normal University, Guangdong 510631, P. R. China

Abstract

In this paper, as a natural extension of the Rényi formula which counts labeled connected unicyclic graphs, we present a formula for the number of labeled ($k+1$)-uniform (p, q)-unicycles as follows:

$$
U_{p, q}^{(k+1)}= \begin{cases}\frac{p!}{2[(k-1)!]^{q}} \cdot \sum_{t=2}^{q} \frac{q^{q-t-1} \cdot \operatorname{sgn}(t k-2)}{(q-t)!}, & p=q k, \\ 0, & p \neq q k\end{cases}
$$

where k, p, q are positive integers.
Keywords Labeled hypergraph; (p, q)-unicycles; $(k+1)$-uniform; Rényi formula
MR(2010) Subject Classification 05C30; 05C65

1. Introduction

Let p, q be positive integers. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ be a finite set, and let $\mathscr{E}=\left\{E_{i} \mid i=\right.$ $1,2, \ldots, q\}$ be a family of subsets of X. Denote by $|X|$ the number of the elements in X. If $E_{i} \neq \emptyset(1 \leq i \leq q)$, then the couple $H=(X, \mathscr{E})$ is called a hypergraph. Usually, $|X|=p$ is called the order of H, the elements of X are called the vertices of H, and the sets $E_{1}, E_{2}, \ldots, E_{q}$ are called the hyperedges. A hypergraph $H=(X, \mathscr{E})$ with $|X|=p$ and $|\mathscr{E}|=q$ is called a (p, q)-hypergraph.

It is known that a hypergraph $H=(X, \mathscr{E})$ with $|X|=p$ and $|\mathscr{E}|=q$ is corresponding to a bipartite graph $G(H)=\left(Y_{1}, Y_{2}, E\right)$, where vertex $x_{i} \in Y_{1}=X(i=1,2, \ldots, p)$ and vertex $E_{j} \in Y_{2}=\mathscr{E}(j=1,2, \ldots, q)$ is adjacent in $G(H)$ if and only if $x_{i} \in E_{j}$ in H.

In a hypergraph $H=(X, \mathscr{E})$, two vertices are said to be adjacent if there is a hyperedge E_{i} that contains both of these vertices; $E_{i} \in \mathscr{E}$ with $\left|E_{i}\right|=1$ is called a loop; if $E_{i} \in \mathscr{E}$ with $\left|E_{i}\right| \geq 2$, and there is only one vertex $v \in E_{i}$ shared with other hyperedges, then E_{i} is called a pendant hyperedge; a chain of length t is defined to be a sequence $\left(x_{1}, E_{1}, x_{2}, E_{2}, \ldots, E_{t}, x_{t+1}\right)$ such that
(1) $x_{1}, x_{2}, \ldots, x_{t}$ are all distinct vertices of H,

[^0](2) $E_{1}, E_{2}, \ldots, E_{t}$ are all distinct hyperedges of H,
(3) $x_{i}, x_{i+1} \in E_{i}$ for $i=1,2, \ldots, t$.

Moreover, if $t>1$ and $x_{1}=x_{t+1}$, then this chain is called a cycle of length t. If there is a chain in the hypergraph that starts at vertex x and terminates at vertex y, then we shall write $x \equiv y$. It is not difficult to verify that the relation $x \equiv y$ is an equivalence relation, whose classes are called the "connected components" of the hypergraph [1]. A hypergraph with exactly one connected component is called a connected hypergraph.

For a hypergraph $H=(X, \mathscr{E}), H$ is called k-uniform if $\forall E_{i} \in \mathscr{E},\left|E_{i}\right|=k$, where k is a positive integer. If H is connected and contains no cycles, then H is called a hypertree; besides, H is called a unicycle if H is connected and contains exactly one cycle.

The theory of hypergraphs is generalized from graph theory [1-3]. For example, 2-uniform hypertrees (resp., unicycles) are the usual trees (resp., connected unicyclic graphs) from graph theory [2]. Graphical enumeration is interesting, and many mathematicians have studied labeled enumeration problems and obtained a lot of results [4]. However, there are not many results about the enumeration of labeled hypergraphs [5]. In 1980, Hegde and Sridharan [6] presented formulas for the number of labeled k-colored hypergraphs, labeled connected hypergraphs without loops, labeled even hypergraphs, respectively. Furthermore, Liu [7] obtained counting formulas for hypergraphs of order p (resp., (p, q)-hypergraphs) with exactly k vertices of odd degree, which are generalizations of the results in [6]. On the other hand, Mao [8] studied the properties of hypertrees, and conjectured a counting formula for $(k+1)$-uniform (p, q)-hypertrees. In 1988, Liu [9] gave a proof of Mao's conjecture, and concluded that when $k=1$, such formula is the famous Cayley formula which counts labeled trees [10]. In recent years, there are some papers concerning enumeration of labeled information hypergraphs (which is slightly different from labeled hypergraphs) [11-14].

In this paper, we study the properties of unicycles, and as a natural extension of the Rényi formula which counts labeled connected unicyclic graphs [15], we present a formula for the number of labeled $(k+1)$-uniform (p, q)-unicycles.

2. Counting labeled unicycles

To begin with, we investigate the properties of unicycles.
Lemma 2.1 A hypergraph $H=(X, \mathscr{E})$ is a unicycle if and only if its corresponding bipartite graph $G(H)$ is a connected unicyclic graph.

Proof Note that $\left(x_{1}, E_{1}, x_{2}, E_{2}, \ldots, x_{t}, E_{t}, x_{1}\right)(t>1)$ is the unique cycle of H, if and only if, $\left(x_{1}, E_{1}, x_{2}, E_{2}, \ldots, x_{t}, E_{t}, x_{1}\right)\left(E_{i}\right.$ can be seen as a vertex, where $\left.i=1,2, \ldots, t\right)$ is the unique cycle of $G(H)$. Moreover, it is easy to see that H is connected if and only if $G(H)$ is connected.

Lemma 2.2 ([1]) A connected (p, q)-hypergraph $H=(X, \mathscr{E})$ is a unicycle if and only if $\sum_{i=1}^{q}\left|E_{i}\right|=p+q$.

Corollary 2.3 If a connected (p, q)-hypergraph $H=(X, \mathscr{E})$ is a $(k+1)$-uniform unicycle, then $p=q k$.

Proof It is obvious that $\left|E_{i}\right|=k+1(i=1,2, \ldots, q)$. Combining this with Lemma 2.2, we have $p+q=q(k+1)$, and the proof is completed.

Lemma 2.4 Let $H=(X, \mathscr{E})$ be a unicycle with $|X|=p$ and $|\mathscr{E}|=q$.
(1) For any $E_{i}, E_{j} \in \mathscr{E}(i \neq j)$, we have $\left|E_{i} \cap E_{j}\right| \leq 2$.
(2) If $|\mathscr{E}| \geq 3$ and there are $E_{i}, E_{j} \in \mathscr{E}(i \neq j)$ with $\left|E_{i} \cap E_{j}\right|=2$, then there exist pendant hyperedges in H; Conversely, if H contains no pendant hyperedges and $|\mathscr{E}| \geq 3$, then $\left|E_{i} \cap E_{j}\right| \leq 1$ for any $E_{i}, E_{j} \in \mathscr{E}(i \neq j)$.
(3) If H contains no pendant hyperedges, then for any $E_{j} \in \mathscr{E}(j=1,2, \ldots, q), \mid E_{j} \cap$ $\left(\bigcup_{\substack{1 \leq k \leq q \\ k \neq j}} E_{k}\right) \mid=2$.

Proof (1) By contradiction. Suppose there exist $E_{i}, E_{j} \in \mathscr{E}(i \neq j)$ such that $\left|E_{i} \cap E_{j}\right| \geq 3$. Let x, y, z be three different vertices of $E_{i} \cap E_{j}$. Then $\left(x, E_{i}, y, E_{j}, x\right)$ and $\left(x, E_{i}, z, E_{j}, x\right)$ are two different cycles, a contradiction.
(2) By contradiction. If H contains no pendant hyperedges, then every hyperedge shares at least two vertices with all other hyperedges. Since $|\mathscr{E}| \geq 3$ and H is connected, E_{i} (or E_{j}) shares at least three vertices with all other hyperedges. Therefore, we have

$$
\begin{aligned}
\sum_{x=1}^{q}\left|E_{x}\right| & =\left|\bigcup_{x=1}^{q} E_{x}\right|+\sum_{y=1}^{q-1}\left|E_{y} \cap\left(\bigcup_{z=y+1}^{q} E_{z}\right)\right| \\
& =\left|\bigcup_{x=1}^{q} E_{x}\right|+\frac{1}{2} \sum_{y=1}^{q}\left|E_{y} \cap\left(\bigcup_{\substack{1 \leq z \leq q \\
z \neq y}} E_{z}\right)\right| \\
& \geq p+\frac{1}{2}[2(q-1)+3]=p+q+\frac{1}{2}
\end{aligned}
$$

By Lemma 2.2, the unicycle H satisfies $\sum_{x=1}^{q}\left|E_{x}\right|=p+q$, a contradiction. Hence there exist pendant hyperedges in H. The converse can be proved similarly.
(3) If H contains no pendant hyperedges, then $\forall E_{j} \in \mathscr{E}(j=1,2, \ldots, q),\left|E_{j} \cap\left(\bigcup_{\substack{1 \leq k \leq q \\ k \neq j}} E_{k}\right)\right| \geq$ 2. It follows that

$$
p+q=\sum_{i=1}^{q}\left|E_{i}\right|=\left|\bigcup_{i=1}^{q} E_{i}\right|+\frac{1}{2} \sum_{j=1}^{q}\left|E_{j} \cap\left(\bigcup_{\substack{1 \leq k \leq q \\ k \neq j}} E_{k}\right)\right| \geq p+\frac{1}{2} \cdot(2 q)=p+q
$$

and the equality holds if and only if $\left|E_{j} \cap\left(\bigcup_{\substack{1 \leq k \leq q \\ k \neq j}} E_{k}\right)\right|=2(j=1,2, \ldots, q)$.
It is known that labeled 2-uniform unicycles are the usual labeled, connected, unicyclic graphs whose counting formula is the Rényi formula [15]. As a natural extension, we shall obtain a counting formula for labeled $(k+1)$-uniform (p, q)-unicycles, where k is a positive integer. Let $U_{p, q}^{(k+1)}$ (resp., $\bar{U}_{p, q}^{(k+1)}$) denote the number of labeled $(k+1)$-uniform (p, q)-unicycles (resp., whose hyperedges are also labeled). It is obvious that $\bar{U}_{p, q}^{(k+1)}=q!U_{p, q}^{(k+1)}$. Moreover, by Corollary 2.3, if $p \neq q k$, then $U_{p, q}^{(k+1)}=0$; if $p=q k$, then we have the following results.

Lemma 2.5 Let q, t be positive integers. If $q>t$, then

$$
\sum_{j=0}^{q-t}(-1)^{j+1}\binom{q-t}{j}(q-j)^{q-t-1}=0
$$

Proof Let $\Delta^{q} O^{t}=\sum_{j=0}^{q}(-1)^{j}\binom{q}{j}(q-j)^{t}$. If $q>t$, then $\Delta^{q} O^{t}=0$ (see [16]). Hence

$$
\begin{aligned}
& \sum_{j=0}^{q-t}(-1)^{j+1}\binom{q-t}{j}(q-j)^{q-t-1} \\
& \quad=\sum_{j=0}^{q-t}(-1)^{j+1}\binom{q-t}{j} \sum_{i=0}^{q-t-1}\binom{q-t-1}{i}(q-t-j)^{i} t^{q-t-1-i} \\
& \quad=-\sum_{i=0}^{q-t-1}\binom{q-t-1}{i} t^{q-t-1-i} \sum_{j=0}^{q-t}(-1)^{j}\binom{q-t}{j}(q-t-j)^{i} \\
& \quad=-\sum_{i=0}^{q-t-1}\binom{q-t-1}{i} t^{q-t-1-i} \Delta^{q-t} O^{i}=0,
\end{aligned}
$$

where the last equality holds since $\Delta^{q-t} O^{i}=0(q-t>i)$.
Lemma 2.6 If $p=q k$, then $\bar{U}_{p, q}^{(k+1)}$ satisfies the following recurrence:

$$
\begin{equation*}
\bar{U}_{p, q}^{(k+1)}=\frac{p!(q-1)!}{2[(k-1)!]^{q}}+\sum_{j=1}^{q}(-1)^{j+1}\binom{p}{j k}\binom{q}{j} \frac{(j k)!}{(k!)^{j}}(p-j k)^{j} \bar{U}_{p-j k, q-j}^{(k+1)} . \tag{2.1}
\end{equation*}
$$

Proof By Lemma 2.1, let S be the set of labeled, connected, bipartite unicyclic graphs $G(H)=$ $\left(Y_{1}, Y_{2}, E\right)$ (corresponding to the set of labeled $(k+1)$-uniform (p, q)-unicycle $H=(X, \mathscr{E})$ whose hyperedges are also labeled). Then $|S|=\bar{U}_{p, q}^{(k+1)},\left|Y_{1}\right|=p,\left|Y_{2}\right|=q$, and the degree of each vertex in Y_{2} is $(k+1)$.

In $G(H)$, the vertex in Y_{2} representing a pendant hyperedge of H is joined to k pendant vertices in Y_{1}. For convenience, such vertices in Y_{2} are called pendant-hyperedge vertices, and those pendant vertices in Y_{1} are called match vertices. It is easy to see that the number of match vertices in Y_{1} is multiples of k. Denote the vertices of Y_{2} by $v_{1}, v_{2}, \ldots, v_{q}$. Let $A_{i}(i=1,2, \ldots, q)$ be the set of $G(H)$ with v_{i} as a pendant-hyperedge vertex.

Now we give two methods to calculate the number of $G(H)$ without pendant-hyperedge vertices in Y_{2} (equivalent to $G(H)$ without match vertices in Y_{1}).

On the one hand, by the principle of Inclusion-Exclusion [16], the number of $G(H)$ without pendant-hyperedge vertices in Y_{2} is

$$
\left|\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{q}}\right|=\left|S-\cup_{i=1}^{q} A_{i}\right|=|S|+\sum_{j=1}^{q}(-1)^{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq q}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j}}\right| .
$$

Note that $A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j}}\left(1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq q\right)$ is the set of $G(H)$ with $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{j}}$ as pendant-hyperedge vertices. Observe that $v_{i_{t}}(t=1,2, \ldots, j)$ is joined to k match vertices in Y_{1}, then we shall choose $j k$ match vertices from Y_{1}, and there are $\binom{p}{j k} \frac{(j k)!}{(k!)^{j}}$ ways for choosing and joining. Since the pendant-hyperedge vertices $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{j}}$ are all of $(k+1)$ degree, then
each of them should be joined to one of the remaining $(p-j k)$ labeled vertices in Y_{1}, and there are $(p-j k)^{j}$ different ways. Moreover, the remaining $(p-j k)$ labeled vertices in Y_{1} and $(q-j)$ labeled vertices in Y_{2} shall construct labeled, connected, bipartite unicyclic graphs, corresponding to labeled $(k+1)$-uniform $(p-j k, q-j)$-unicycles whose hyperedges are labeled, and the total number is $\bar{U}_{p-j k, q-j}^{(k+1)}$. Therefore,

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j}}\right|=\binom{p}{j k} \frac{(j k)!}{(k!)^{j}}(p-j k)^{j} \bar{U}_{p-j k, q-j}^{(k+1)}
$$

And the number of $G(H)$ without pendant-hyperedge vertices in Y_{2} is

$$
\begin{aligned}
& |S|+\sum_{j=1}^{q}(-1)^{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq q}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{j}}\right| \\
& \quad=\bar{U}_{p, q}^{(k+1)}+\sum_{j=1}^{q}(-1)^{j}\binom{q}{j}\binom{p}{j k} \frac{(j k)!}{(k!)^{j}}(p-j k)^{j} \bar{U}_{p-j k, q-j}^{(k+1)} \\
& \quad=\sum_{j=0}^{q}(-1)^{j}\binom{q}{j}\binom{p}{j k} \frac{(j k)!}{(k!)^{j}}(p-j k)^{j} \bar{U}_{p-j k, q-j}^{(k+1)} .
\end{aligned}
$$

On the other hand, if $G(H)$ contains no match vertices in Y_{1}, then its corresponding labeled ($k+1$)-uniform (p, q)-unicycle $H=(X, \mathscr{E})$ whose hyperedges are labeled contains no pendant hyperedges. By Lemma $2.4, \forall E_{j} \in \mathscr{E}(j=1,2, \ldots, q)$, we have $\left|E_{j} \cap\left(\bigcup_{\substack{1 \leq k \leq q \\ k \neq j}} E_{k}\right)\right|=2$. Consequently, $G(H)$ should be isomorphic to the following graph (see Figure 1, the solid points and hollow points represent the vertices in Y_{1} and Y_{2}, respectively). The number of ways to label such graph (we shall give the vertices of Y_{1} and Y_{2} different types of labels) is

$$
\frac{(q-1)!}{2} \cdot \frac{p!}{[(k-1)!]^{q}}
$$

Figure $1 G(H)$
Therefore,

$$
\sum_{j=0}^{q}(-1)^{j}\binom{p}{j k}\binom{q}{j} \frac{(j k)!}{(k!)^{j}}(p-j k)^{j} \bar{U}_{p-j k, q-j}^{(k+1)}=\frac{(q-1)!}{2} \cdot \frac{p!}{[(k-1)!]^{q}}
$$

To transpose the terms of $j \neq 0$ in the above equality, we get Eq. (2.1).
Theorem 2.7 Let $\operatorname{sgn}(x)=\left\{\begin{array}{ll}0, & x=0, \\ 1, & x>0, \\ -1, & x<0 .\end{array}\right.$ Then the number of labeled $(k+1)$-uniform (p, q) -
unicycles is

$$
U_{p, q}^{(k+1)}= \begin{cases}\frac{p!}{2[(k-1)!]^{q}} \cdot \sum_{t=2}^{q} \frac{q^{q-t-1} \cdot \operatorname{sgn}(t k-2)}{(q-t)!}, & p=q k, \tag{2.2}\\ 0, & p \neq q k\end{cases}
$$

where p, q, k are positive integers.
Proof If $p \neq q k$, then we obtain the result as desired. If $p=q k$, we first prove the following equality by induction on q :

$$
\begin{equation*}
\bar{U}_{p, q}^{(k+1)}=\frac{p!q!}{2[(k-1)!]^{q}} \cdot \sum_{t=2}^{q} \frac{q^{q-t-1} \cdot \operatorname{sgn}(t k-2)}{(q-t)!} . \tag{2.3}
\end{equation*}
$$

Combining this with $U_{p, q}^{(k+1)}=\frac{1}{q!} \bar{U}_{p, q}^{(k+1)}$, the theorem is proved.
If $q=1$, then $\bar{U}_{p, 1}^{(k+1)}=0$. Note that there is no labeled $(k+1)$-uniform $(p, 1)$-unicycles, then Eq. (2.3) holds. If $q=2$, then

$$
\bar{U}_{p, 2}^{(k+1)}=\frac{(2 k)!}{[(k-1)!]^{2}} \cdot \frac{\operatorname{sgn}(2 k-2)}{2}= \begin{cases}0, & k=1 \\ \frac{(2 k)!}{2[(k-1)!]^{2}}, & k>1\end{cases}
$$

It is not difficult to see that there is no labeled 2-uniform ($p, 2$)-unicycles (namely, connected unicyclic graphs of order 2), and the number of labeled $(k+1)$-uniform ($k>1$) ($p, 2$)-unicycles is the number of ways to label the following graph G (see Figure 2, the solid points and hollow points shall use different types of labels), that is,

$$
\frac{(2 k)!}{2[(k-1)!]^{2}}
$$

Hence Eq. (2.3) holds.

Figure $2 G$
Suppose that Eq. (2.3) holds when the number of hyperedges is less than q. By Lemma 2.6 and induction hypothesis,

$$
\begin{aligned}
\bar{U}_{p, q}^{(k+1)}= & \frac{p!(q-1)!}{2[(k-1)!]^{q}}+\sum_{j=1}^{q}(-1)^{j+1}\binom{p}{j k}\binom{q}{j} \frac{(j k)!}{(k!)^{j}}(p-j k)^{j} \bar{U}_{p-j k, q-j}^{(k+1)} \\
= & \frac{(q k)!(q-1)!}{2[(k-1)!]^{q}}+\sum_{j=1}^{q}(-1)^{j+1}\binom{q k}{j k}\binom{q}{j} \frac{(j k)!}{(k!)^{j}}(q k-j k)^{j} . \\
& \frac{(q k-j k)!(q-j)!}{2[(k-1)!]^{q-j}} \cdot \sum_{t=2}^{q-j} \frac{(q-j)^{q-j-t-1} \cdot \operatorname{sgn}(t k-2)}{(q-j-t)!}
\end{aligned}
$$

$$
=\frac{(q k)!q!}{2[(k-1)!]^{q}} \cdot\left[\frac{1}{q}+\sum_{t=2}^{q-1} \frac{\operatorname{sgn}(t k-2)}{(q-t)!} \sum_{j=1}^{q-t}(-1)^{j+1}\binom{q-t}{j}(q-j)^{q-t-1}\right] .
$$

Combining this with Lemma 2.5 gives

$$
\begin{aligned}
\bar{U}_{p, q}^{(k+1)} & =\frac{(q k)!q!}{2[(k-1)!]^{q}}\left[\frac{1}{q}+\sum_{t=2}^{q-1} \frac{\operatorname{sgn}(t k-2)}{(q-t)!} q^{q-t-1}\right] \\
& =\frac{(q k)!q!}{2[(k-1)!]^{q}} \sum_{t=2}^{q} \frac{\operatorname{sgn}(t k-2)}{(q-t)!} q^{q-t-1} \\
& =\frac{p!q!}{2[(k-1)!]^{q}} \cdot \sum_{t=2}^{q} \frac{q^{q-t-1} \cdot \operatorname{sgn}(t k-2)}{(q-t)!}
\end{aligned}
$$

All in all, this completes the proof of Theorem 2.7.
Remark 2.8 By Eq. (2.2), when $k=1$, we get the Rényi formula which counts labeled connected unicyclic graphs of order p (see [15]):

$$
U_{p, p}^{(2)}=\frac{1}{2} \sum_{t=3}^{p} \frac{(p-1)!\cdot p^{p-t}}{(p-t)!} .
$$

Acknowledgements The authors are very grateful to the referees for their helpful comments and useful suggestions on the earlier versions of this paper.

References

[1] C. BERGE. Graphs and Hypergraphs. North-Holland Pub., Amsterdam, 1973.
[2] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. Macmillan, London, 1976.
[3] C. BERGE. Hypergraphs. North-Holland Pub., Amsterdam, 1989.
[4] F. HARARY, E. M. PALMER. Graphical Enumeration. Academic Press Inc., New York, 1973.
[5] T. ANDRIAMAMPIANINA, V. RAVELOMANANA. Enumeration of connected uniform hypergraphs. Proceedings of FPSAC, 2005.
[6] M. HEGDE, M. R. SRIDHARAN. Enumeration of labeled digraphs and hypergraphs. Lecture Notes in Math., 1980, 885: 267-283.
[7] Bolian LIU. On the enumeration of labeled digraphs and hypergraphs. Chinese Quarterly J. Math., 1989, 4: 27-32.
[8] Jingzhong MAO. On the tree of hypergraph: hypertree. J. Central China Normal University, 1982, S1: 45-49.
[9] Bolian LIU. Enumeration of hypertrees. Appl. Math. A Journal of Chinese Universities, 1988, 3: 359-363.
[10] A. CAYLEY. A theorem on trees. Quart. J. Math. Oxford, 1889, 23: 376-378.
[11] Muhuo LIU, Bolian LIU. Counting strict (d)-connected acyclic hypergraphs. Acta Math. Sinica (Chin. Ser.), 2007, 50(6): 1305-1310. (in Chinese)
[12] Zhilong SHAN, Bolian LIU. Counting strict non-uniform linear hypertrees. Acta Math. Appl. Sin., 2002, 25(3): 455-459. (in Chinese)
[13] Zhilong SHAN, Bolian LIU. A counting formula for uniformly symmetric linear acyclic hypergraphs of order $(k+1)$. Kexue Tongbao (Chinese), 2000, 45(16): 1705-1709. (in Chinese)
[14] Jianfang WANG, Haizhu LI. Counting acyclic hypergraphs. Sci. China Ser. A, 2001, 44(2): 220-224.
[15] A. RÉNYI. On connected graphs (I). Magyar Tud. Akad. Mat. Kutató Int. Közl, 1959, 4: 385-388.
[16] L. COMTET. Advanced Combinatorics. Reidel, Dordrechet, 1974.

[^0]: Received September 16, 2015; Accepted November 10, 2015
 Supported by the National Natural Science Foundation of China (Grant No. 11501139).

 * Corresponding author

 E-mail address: fayger@qq.com (Yufei HUANG)

